ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC vs.
Revision 1.525 by root, Wed Jan 22 14:09:07 2020 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2019 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL) 64# elif !defined EV_USE_CLOCK_SYSCALL
63# define EV_USE_CLOCK_SYSCALL 0 65# define EV_USE_CLOCK_SYSCALL 0
64# endif 66# endif
65 67
66# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
77# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
79# endif 81# endif
80# endif 82# endif
81 83
84# if HAVE_NANOSLEEP
82# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
85# else 88# else
89# undef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
87# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
88# endif 100# endif
89 101
102# if HAVE_POLL && HAVE_POLL_H
90# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
91# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif 105# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else 106# else
107# undef EV_USE_POLL
102# define EV_USE_POLL 0 108# define EV_USE_POLL 0
103# endif
104# endif 109# endif
105 110
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
109# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
110# define EV_USE_EPOLL 0
111# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
112# endif 118# endif
113 119
114# ifndef EV_USE_KQUEUE 120# if HAVE_LINUX_AIO_ABI_H
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 121# ifndef EV_USE_LINUXAIO
116# define EV_USE_KQUEUE 1 122# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
117# else
118# define EV_USE_KQUEUE 0
119# endif 123# endif
124# else
125# undef EV_USE_LINUXAIO
126# define EV_USE_LINUXAIO 0
120# endif 127# endif
121 128
129# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
122# ifndef EV_USE_PORT 130# ifndef EV_USE_IOURING
123# if HAVE_PORT_H && HAVE_PORT_CREATE 131# define EV_USE_IOURING EV_FEATURE_BACKENDS
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif 132# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else 133# else
134# undef EV_USE_IOURING
134# define EV_USE_INOTIFY 0 135# define EV_USE_IOURING 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif 136# endif
153 137
138# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
139# ifndef EV_USE_KQUEUE
140# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
141# endif
142# else
143# undef EV_USE_KQUEUE
144# define EV_USE_KQUEUE 0
154#endif 145# endif
146
147# if HAVE_PORT_H && HAVE_PORT_CREATE
148# ifndef EV_USE_PORT
149# define EV_USE_PORT EV_FEATURE_BACKENDS
150# endif
151# else
152# undef EV_USE_PORT
153# define EV_USE_PORT 0
154# endif
155 155
156#include <math.h> 156# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
157# ifndef EV_USE_INOTIFY
158# define EV_USE_INOTIFY EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_INOTIFY
162# define EV_USE_INOTIFY 0
163# endif
164
165# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
166# ifndef EV_USE_SIGNALFD
167# define EV_USE_SIGNALFD EV_FEATURE_OS
168# endif
169# else
170# undef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD 0
172# endif
173
174# if HAVE_EVENTFD
175# ifndef EV_USE_EVENTFD
176# define EV_USE_EVENTFD EV_FEATURE_OS
177# endif
178# else
179# undef EV_USE_EVENTFD
180# define EV_USE_EVENTFD 0
181# endif
182
183# if HAVE_SYS_TIMERFD_H
184# ifndef EV_USE_TIMERFD
185# define EV_USE_TIMERFD EV_FEATURE_OS
186# endif
187# else
188# undef EV_USE_TIMERFD
189# define EV_USE_TIMERFD 0
190# endif
191
192#endif
193
194/* OS X, in its infinite idiocy, actually HARDCODES
195 * a limit of 1024 into their select. Where people have brains,
196 * OS X engineers apparently have a vacuum. Or maybe they were
197 * ordered to have a vacuum, or they do anything for money.
198 * This might help. Or not.
199 * Note that this must be defined early, as other include files
200 * will rely on this define as well.
201 */
202#define _DARWIN_UNLIMITED_SELECT 1
203
157#include <stdlib.h> 204#include <stdlib.h>
205#include <string.h>
158#include <fcntl.h> 206#include <fcntl.h>
159#include <stddef.h> 207#include <stddef.h>
160 208
161#include <stdio.h> 209#include <stdio.h>
162 210
163#include <assert.h> 211#include <assert.h>
164#include <errno.h> 212#include <errno.h>
165#include <sys/types.h> 213#include <sys/types.h>
166#include <time.h> 214#include <time.h>
215#include <limits.h>
167 216
168#include <signal.h> 217#include <signal.h>
169 218
170#ifdef EV_H 219#ifdef EV_H
171# include EV_H 220# include EV_H
172#else 221#else
173# include "ev.h" 222# include "ev.h"
223#endif
224
225#if EV_NO_THREADS
226# undef EV_NO_SMP
227# define EV_NO_SMP 1
228# undef ECB_NO_THREADS
229# define ECB_NO_THREADS 1
230#endif
231#if EV_NO_SMP
232# undef EV_NO_SMP
233# define ECB_NO_SMP 1
174#endif 234#endif
175 235
176#ifndef _WIN32 236#ifndef _WIN32
177# include <sys/time.h> 237# include <sys/time.h>
178# include <sys/wait.h> 238# include <sys/wait.h>
179# include <unistd.h> 239# include <unistd.h>
180#else 240#else
181# include <io.h> 241# include <io.h>
182# define WIN32_LEAN_AND_MEAN 242# define WIN32_LEAN_AND_MEAN
243# include <winsock2.h>
183# include <windows.h> 244# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET 245# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1 246# define EV_SELECT_IS_WINSOCKET 1
186# endif 247# endif
248# undef EV_AVOID_STDIO
187#endif 249#endif
188 250
189/* this block tries to deduce configuration from header-defined symbols and defaults */ 251/* this block tries to deduce configuration from header-defined symbols and defaults */
190 252
191/* try to deduce the maximum number of signals on this platform */ 253/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG) 254#if defined EV_NSIG
193/* use what's provided */ 255/* use what's provided */
194#elif defined (NSIG) 256#elif defined NSIG
195# define EV_NSIG (NSIG) 257# define EV_NSIG (NSIG)
196#elif defined(_NSIG) 258#elif defined _NSIG
197# define EV_NSIG (_NSIG) 259# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX) 260#elif defined SIGMAX
199# define EV_NSIG (SIGMAX+1) 261# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX) 262#elif defined SIG_MAX
201# define EV_NSIG (SIG_MAX+1) 263# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX) 264#elif defined _SIG_MAX
203# define EV_NSIG (_SIG_MAX+1) 265# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG) 266#elif defined MAXSIG
205# define EV_NSIG (MAXSIG+1) 267# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG) 268#elif defined MAX_SIG
207# define EV_NSIG (MAX_SIG+1) 269# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE) 270#elif defined SIGARRAYSIZE
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */ 271# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig) 272#elif defined _sys_nsig
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ 273# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else 274#else
213# error "unable to find value for NSIG, please report" 275# define EV_NSIG (8 * sizeof (sigset_t) + 1)
214/* to make it compile regardless, just remove the above line */ 276#endif
215# define EV_NSIG 65 277
278#ifndef EV_USE_FLOOR
279# define EV_USE_FLOOR 0
216#endif 280#endif
217 281
218#ifndef EV_USE_CLOCK_SYSCALL 282#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2 283# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
220# define EV_USE_CLOCK_SYSCALL 1 284# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
221# else 285# else
222# define EV_USE_CLOCK_SYSCALL 0 286# define EV_USE_CLOCK_SYSCALL 0
223# endif 287# endif
224#endif 288#endif
225 289
290#if !(_POSIX_TIMERS > 0)
291# ifndef EV_USE_MONOTONIC
292# define EV_USE_MONOTONIC 0
293# endif
294# ifndef EV_USE_REALTIME
295# define EV_USE_REALTIME 0
296# endif
297#endif
298
226#ifndef EV_USE_MONOTONIC 299#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 300# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1 301# define EV_USE_MONOTONIC EV_FEATURE_OS
229# else 302# else
230# define EV_USE_MONOTONIC 0 303# define EV_USE_MONOTONIC 0
231# endif 304# endif
232#endif 305#endif
233 306
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 308# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif 309#endif
237 310
238#ifndef EV_USE_NANOSLEEP 311#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L 312# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1 313# define EV_USE_NANOSLEEP EV_FEATURE_OS
241# else 314# else
242# define EV_USE_NANOSLEEP 0 315# define EV_USE_NANOSLEEP 0
243# endif 316# endif
244#endif 317#endif
245 318
246#ifndef EV_USE_SELECT 319#ifndef EV_USE_SELECT
247# define EV_USE_SELECT 1 320# define EV_USE_SELECT EV_FEATURE_BACKENDS
248#endif 321#endif
249 322
250#ifndef EV_USE_POLL 323#ifndef EV_USE_POLL
251# ifdef _WIN32 324# ifdef _WIN32
252# define EV_USE_POLL 0 325# define EV_USE_POLL 0
253# else 326# else
254# define EV_USE_POLL 1 327# define EV_USE_POLL EV_FEATURE_BACKENDS
255# endif 328# endif
256#endif 329#endif
257 330
258#ifndef EV_USE_EPOLL 331#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 332# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1 333# define EV_USE_EPOLL EV_FEATURE_BACKENDS
261# else 334# else
262# define EV_USE_EPOLL 0 335# define EV_USE_EPOLL 0
263# endif 336# endif
264#endif 337#endif
265 338
269 342
270#ifndef EV_USE_PORT 343#ifndef EV_USE_PORT
271# define EV_USE_PORT 0 344# define EV_USE_PORT 0
272#endif 345#endif
273 346
347#ifndef EV_USE_LINUXAIO
348# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
349# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
350# else
351# define EV_USE_LINUXAIO 0
352# endif
353#endif
354
355#ifndef EV_USE_IOURING
356# if __linux /* later checks might disable again */
357# define EV_USE_IOURING 1
358# else
359# define EV_USE_IOURING 0
360# endif
361#endif
362
274#ifndef EV_USE_INOTIFY 363#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 364# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1 365# define EV_USE_INOTIFY EV_FEATURE_OS
277# else 366# else
278# define EV_USE_INOTIFY 0 367# define EV_USE_INOTIFY 0
279# endif 368# endif
280#endif 369#endif
281 370
282#ifndef EV_PID_HASHSIZE 371#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL 372# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif 373#endif
289 374
290#ifndef EV_INOTIFY_HASHSIZE 375#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL 376# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif 377#endif
297 378
298#ifndef EV_USE_EVENTFD 379#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 380# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1 381# define EV_USE_EVENTFD EV_FEATURE_OS
301# else 382# else
302# define EV_USE_EVENTFD 0 383# define EV_USE_EVENTFD 0
303# endif 384# endif
304#endif 385#endif
305 386
306#ifndef EV_USE_SIGNALFD 387#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9)) 388# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1 389# define EV_USE_SIGNALFD EV_FEATURE_OS
309# else 390# else
310# define EV_USE_SIGNALFD 0 391# define EV_USE_SIGNALFD 0
392# endif
393#endif
394
395#ifndef EV_USE_TIMERFD
396# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
397# define EV_USE_TIMERFD EV_FEATURE_OS
398# else
399# define EV_USE_TIMERFD 0
311# endif 400# endif
312#endif 401#endif
313 402
314#if 0 /* debugging */ 403#if 0 /* debugging */
315# define EV_VERIFY 3 404# define EV_VERIFY 3
316# define EV_USE_4HEAP 1 405# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1 406# define EV_HEAP_CACHE_AT 1
318#endif 407#endif
319 408
320#ifndef EV_VERIFY 409#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL 410# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
322#endif 411#endif
323 412
324#ifndef EV_USE_4HEAP 413#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL 414# define EV_USE_4HEAP EV_FEATURE_DATA
326#endif 415#endif
327 416
328#ifndef EV_HEAP_CACHE_AT 417#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL 418# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
419#endif
420
421#ifdef __ANDROID__
422/* supposedly, android doesn't typedef fd_mask */
423# undef EV_USE_SELECT
424# define EV_USE_SELECT 0
425/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
426# undef EV_USE_CLOCK_SYSCALL
427# define EV_USE_CLOCK_SYSCALL 0
428#endif
429
430/* aix's poll.h seems to cause lots of trouble */
431#ifdef _AIX
432/* AIX has a completely broken poll.h header */
433# undef EV_USE_POLL
434# define EV_USE_POLL 0
330#endif 435#endif
331 436
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ 437/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */ 438/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL 439#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h> 440# include <sys/syscall.h>
336# ifdef SYS_clock_gettime 441# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) 442# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC 443# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1 444# define EV_USE_MONOTONIC 1
445# define EV_NEED_SYSCALL 1
340# else 446# else
341# undef EV_USE_CLOCK_SYSCALL 447# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0 448# define EV_USE_CLOCK_SYSCALL 0
343# endif 449# endif
344#endif 450#endif
358#if !EV_STAT_ENABLE 464#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY 465# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0 466# define EV_USE_INOTIFY 0
361#endif 467#endif
362 468
469#if __linux && EV_USE_IOURING
470# include <linux/version.h>
471# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
472# undef EV_USE_IOURING
473# define EV_USE_IOURING 0
474# endif
475#endif
476
363#if !EV_USE_NANOSLEEP 477#if !EV_USE_NANOSLEEP
364# ifndef _WIN32 478/* hp-ux has it in sys/time.h, which we unconditionally include above */
479# if !defined _WIN32 && !defined __hpux
365# include <sys/select.h> 480# include <sys/select.h>
366# endif 481# endif
367#endif 482#endif
368 483
484#if EV_USE_LINUXAIO
485# include <sys/syscall.h>
486# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
487# define EV_NEED_SYSCALL 1
488# else
489# undef EV_USE_LINUXAIO
490# define EV_USE_LINUXAIO 0
491# endif
492#endif
493
494#if EV_USE_IOURING
495# include <sys/syscall.h>
496# if !SYS_io_uring_setup && __linux && !__alpha
497# define SYS_io_uring_setup 425
498# define SYS_io_uring_enter 426
499# define SYS_io_uring_wregister 427
500# endif
501# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
502# define EV_NEED_SYSCALL 1
503# else
504# undef EV_USE_IOURING
505# define EV_USE_IOURING 0
506# endif
507#endif
508
369#if EV_USE_INOTIFY 509#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h> 510# include <sys/statfs.h>
372# include <sys/inotify.h> 511# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 512/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW 513# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY 514# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0 515# define EV_USE_INOTIFY 0
377# endif 516# endif
378#endif 517#endif
379 518
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD 519#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 520/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
386# include <stdint.h> 521# include <stdint.h>
387# ifndef EFD_NONBLOCK 522# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK 523# define EFD_NONBLOCK O_NONBLOCK
389# endif 524# endif
390# ifndef EFD_CLOEXEC 525# ifndef EFD_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC 527# define EFD_CLOEXEC O_CLOEXEC
393# else 528# else
394# define EFD_CLOEXEC 02000000 529# define EFD_CLOEXEC 02000000
395# endif 530# endif
396# endif 531# endif
397# ifdef __cplusplus 532EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
398extern "C" { 533#endif
534
535#if EV_USE_SIGNALFD
536/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
537# include <stdint.h>
538# ifndef SFD_NONBLOCK
539# define SFD_NONBLOCK O_NONBLOCK
399# endif 540# endif
400int eventfd (unsigned int initval, int flags); 541# ifndef SFD_CLOEXEC
401# ifdef __cplusplus 542# ifdef O_CLOEXEC
402} 543# define SFD_CLOEXEC O_CLOEXEC
544# else
545# define SFD_CLOEXEC 02000000
546# endif
403# endif 547# endif
548EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
549
550struct signalfd_siginfo
551{
552 uint32_t ssi_signo;
553 char pad[128 - sizeof (uint32_t)];
554};
555#endif
556
557/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
558#if EV_USE_TIMERFD
559# include <sys/timerfd.h>
560/* timerfd is only used for periodics */
561# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
562# undef EV_USE_TIMERFD
563# define EV_USE_TIMERFD 0
404#endif 564# endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif 565#endif
409 566
410/**/ 567/*****************************************************************************/
411 568
412#if EV_VERIFY >= 3 569#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 570# define EV_FREQUENT_CHECK ev_verify (EV_A)
414#else 571#else
415# define EV_FREQUENT_CHECK do { } while (0) 572# define EV_FREQUENT_CHECK do { } while (0)
416#endif 573#endif
417 574
418/* 575/*
419 * This is used to avoid floating point rounding problems. 576 * This is used to work around floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000. 577 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */ 578 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 579#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
580/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
427 581
428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 582#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 583#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 584#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
431 585
586/* find a portable timestamp that is "always" in the future but fits into time_t.
587 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
588 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
589#define EV_TSTAMP_HUGE \
590 (sizeof (time_t) >= 8 ? 10000000000000. \
591 : 0 < (time_t)4294967295 ? 4294967295. \
592 : 2147483647.) \
593
594#ifndef EV_TS_CONST
595# define EV_TS_CONST(nv) nv
596# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
597# define EV_TS_FROM_USEC(us) us * 1e-6
598# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
599# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
600# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
601# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
602#endif
603
604/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
605/* ECB.H BEGIN */
606/*
607 * libecb - http://software.schmorp.de/pkg/libecb
608 *
609 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
610 * Copyright (©) 2011 Emanuele Giaquinta
611 * All rights reserved.
612 *
613 * Redistribution and use in source and binary forms, with or without modifica-
614 * tion, are permitted provided that the following conditions are met:
615 *
616 * 1. Redistributions of source code must retain the above copyright notice,
617 * this list of conditions and the following disclaimer.
618 *
619 * 2. Redistributions in binary form must reproduce the above copyright
620 * notice, this list of conditions and the following disclaimer in the
621 * documentation and/or other materials provided with the distribution.
622 *
623 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
624 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
625 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
626 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
627 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
628 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
629 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
630 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
631 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
632 * OF THE POSSIBILITY OF SUCH DAMAGE.
633 *
634 * Alternatively, the contents of this file may be used under the terms of
635 * the GNU General Public License ("GPL") version 2 or any later version,
636 * in which case the provisions of the GPL are applicable instead of
637 * the above. If you wish to allow the use of your version of this file
638 * only under the terms of the GPL and not to allow others to use your
639 * version of this file under the BSD license, indicate your decision
640 * by deleting the provisions above and replace them with the notice
641 * and other provisions required by the GPL. If you do not delete the
642 * provisions above, a recipient may use your version of this file under
643 * either the BSD or the GPL.
644 */
645
646#ifndef ECB_H
647#define ECB_H
648
649/* 16 bits major, 16 bits minor */
650#define ECB_VERSION 0x00010008
651
652#include <string.h> /* for memcpy */
653
654#ifdef _WIN32
655 typedef signed char int8_t;
656 typedef unsigned char uint8_t;
657 typedef signed char int_fast8_t;
658 typedef unsigned char uint_fast8_t;
659 typedef signed short int16_t;
660 typedef unsigned short uint16_t;
661 typedef signed int int_fast16_t;
662 typedef unsigned int uint_fast16_t;
663 typedef signed int int32_t;
664 typedef unsigned int uint32_t;
665 typedef signed int int_fast32_t;
666 typedef unsigned int uint_fast32_t;
432#if __GNUC__ >= 4 667 #if __GNUC__
433# define expect(expr,value) __builtin_expect ((expr),(value)) 668 typedef signed long long int64_t;
434# define noinline __attribute__ ((noinline)) 669 typedef unsigned long long uint64_t;
670 #else /* _MSC_VER || __BORLANDC__ */
671 typedef signed __int64 int64_t;
672 typedef unsigned __int64 uint64_t;
673 #endif
674 typedef int64_t int_fast64_t;
675 typedef uint64_t uint_fast64_t;
676 #ifdef _WIN64
677 #define ECB_PTRSIZE 8
678 typedef uint64_t uintptr_t;
679 typedef int64_t intptr_t;
680 #else
681 #define ECB_PTRSIZE 4
682 typedef uint32_t uintptr_t;
683 typedef int32_t intptr_t;
684 #endif
435#else 685#else
436# define expect(expr,value) (expr) 686 #include <inttypes.h>
437# define noinline 687 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 688 #define ECB_PTRSIZE 8
439# define inline 689 #else
690 #define ECB_PTRSIZE 4
691 #endif
440# endif 692#endif
693
694#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
695#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
696
697#ifndef ECB_OPTIMIZE_SIZE
698 #if __OPTIMIZE_SIZE__
699 #define ECB_OPTIMIZE_SIZE 1
700 #else
701 #define ECB_OPTIMIZE_SIZE 0
441#endif 702 #endif
703#endif
442 704
443#define expect_false(expr) expect ((expr) != 0, 0) 705/* work around x32 idiocy by defining proper macros */
444#define expect_true(expr) expect ((expr) != 0, 1) 706#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
445#define inline_size static inline 707 #if _ILP32
708 #define ECB_AMD64_X32 1
709 #else
710 #define ECB_AMD64 1
711 #endif
712#endif
446 713
447#if EV_MINIMAL 714/* many compilers define _GNUC_ to some versions but then only implement
448# define inline_speed static noinline 715 * what their idiot authors think are the "more important" extensions,
716 * causing enormous grief in return for some better fake benchmark numbers.
717 * or so.
718 * we try to detect these and simply assume they are not gcc - if they have
719 * an issue with that they should have done it right in the first place.
720 */
721#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
722 #define ECB_GCC_VERSION(major,minor) 0
449#else 723#else
724 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
725#endif
726
727#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
728
729#if __clang__ && defined __has_builtin
730 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
731#else
732 #define ECB_CLANG_BUILTIN(x) 0
733#endif
734
735#if __clang__ && defined __has_extension
736 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
737#else
738 #define ECB_CLANG_EXTENSION(x) 0
739#endif
740
741#define ECB_CPP (__cplusplus+0)
742#define ECB_CPP11 (__cplusplus >= 201103L)
743#define ECB_CPP14 (__cplusplus >= 201402L)
744#define ECB_CPP17 (__cplusplus >= 201703L)
745
746#if ECB_CPP
747 #define ECB_C 0
748 #define ECB_STDC_VERSION 0
749#else
750 #define ECB_C 1
751 #define ECB_STDC_VERSION __STDC_VERSION__
752#endif
753
754#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
755#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
756#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
757
758#if ECB_CPP
759 #define ECB_EXTERN_C extern "C"
760 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
761 #define ECB_EXTERN_C_END }
762#else
763 #define ECB_EXTERN_C extern
764 #define ECB_EXTERN_C_BEG
765 #define ECB_EXTERN_C_END
766#endif
767
768/*****************************************************************************/
769
770/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
771/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
772
773#if ECB_NO_THREADS
774 #define ECB_NO_SMP 1
775#endif
776
777#if ECB_NO_SMP
778 #define ECB_MEMORY_FENCE do { } while (0)
779#endif
780
781/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
782#if __xlC__ && ECB_CPP
783 #include <builtins.h>
784#endif
785
786#if 1400 <= _MSC_VER
787 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
788#endif
789
790#ifndef ECB_MEMORY_FENCE
791 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
792 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
793 #if __i386 || __i386__
794 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
795 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
796 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
797 #elif ECB_GCC_AMD64
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
803 #elif defined __ARM_ARCH_2__ \
804 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
805 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
806 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
807 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
808 || defined __ARM_ARCH_5TEJ__
809 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
810 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
811 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
812 || defined __ARM_ARCH_6T2__
813 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
814 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
815 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
816 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
817 #elif __aarch64__
818 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
819 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
821 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
822 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
823 #elif defined __s390__ || defined __s390x__
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
825 #elif defined __mips__
826 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
827 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
829 #elif defined __alpha__
830 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
831 #elif defined __hppa__
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
833 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
834 #elif defined __ia64__
835 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
836 #elif defined __m68k__
837 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
838 #elif defined __m88k__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
840 #elif defined __sh__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #endif
843 #endif
844#endif
845
846#ifndef ECB_MEMORY_FENCE
847 #if ECB_GCC_VERSION(4,7)
848 /* see comment below (stdatomic.h) about the C11 memory model. */
849 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
850 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
851 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
852 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
853
854 #elif ECB_CLANG_EXTENSION(c_atomic)
855 /* see comment below (stdatomic.h) about the C11 memory model. */
856 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
857 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
858 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
859 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
860
861 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
862 #define ECB_MEMORY_FENCE __sync_synchronize ()
863 #elif _MSC_VER >= 1500 /* VC++ 2008 */
864 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
865 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
866 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
867 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
868 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
869 #elif _MSC_VER >= 1400 /* VC++ 2005 */
870 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
871 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
872 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
873 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
874 #elif defined _WIN32
875 #include <WinNT.h>
876 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
877 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
878 #include <mbarrier.h>
879 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
880 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
881 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
882 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
883 #elif __xlC__
884 #define ECB_MEMORY_FENCE __sync ()
885 #endif
886#endif
887
888#ifndef ECB_MEMORY_FENCE
889 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
890 /* we assume that these memory fences work on all variables/all memory accesses, */
891 /* not just C11 atomics and atomic accesses */
892 #include <stdatomic.h>
893 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
894 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
895 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
896 #endif
897#endif
898
899#ifndef ECB_MEMORY_FENCE
900 #if !ECB_AVOID_PTHREADS
901 /*
902 * if you get undefined symbol references to pthread_mutex_lock,
903 * or failure to find pthread.h, then you should implement
904 * the ECB_MEMORY_FENCE operations for your cpu/compiler
905 * OR provide pthread.h and link against the posix thread library
906 * of your system.
907 */
908 #include <pthread.h>
909 #define ECB_NEEDS_PTHREADS 1
910 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
911
912 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
913 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
914 #endif
915#endif
916
917#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
918 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
919#endif
920
921#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
927#endif
928
929/*****************************************************************************/
930
931#if ECB_CPP
932 #define ecb_inline static inline
933#elif ECB_GCC_VERSION(2,5)
934 #define ecb_inline static __inline__
935#elif ECB_C99
936 #define ecb_inline static inline
937#else
938 #define ecb_inline static
939#endif
940
941#if ECB_GCC_VERSION(3,3)
942 #define ecb_restrict __restrict__
943#elif ECB_C99
944 #define ecb_restrict restrict
945#else
946 #define ecb_restrict
947#endif
948
949typedef int ecb_bool;
950
951#define ECB_CONCAT_(a, b) a ## b
952#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
953#define ECB_STRINGIFY_(a) # a
954#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
955#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
956
957#define ecb_function_ ecb_inline
958
959#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
960 #define ecb_attribute(attrlist) __attribute__ (attrlist)
961#else
962 #define ecb_attribute(attrlist)
963#endif
964
965#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
966 #define ecb_is_constant(expr) __builtin_constant_p (expr)
967#else
968 /* possible C11 impl for integral types
969 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
970 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
971
972 #define ecb_is_constant(expr) 0
973#endif
974
975#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
976 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
977#else
978 #define ecb_expect(expr,value) (expr)
979#endif
980
981#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
982 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
983#else
984 #define ecb_prefetch(addr,rw,locality)
985#endif
986
987/* no emulation for ecb_decltype */
988#if ECB_CPP11
989 // older implementations might have problems with decltype(x)::type, work around it
990 template<class T> struct ecb_decltype_t { typedef T type; };
991 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
992#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
993 #define ecb_decltype(x) __typeof__ (x)
994#endif
995
996#if _MSC_VER >= 1300
997 #define ecb_deprecated __declspec (deprecated)
998#else
999 #define ecb_deprecated ecb_attribute ((__deprecated__))
1000#endif
1001
1002#if _MSC_VER >= 1500
1003 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1004#elif ECB_GCC_VERSION(4,5)
1005 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1006#else
1007 #define ecb_deprecated_message(msg) ecb_deprecated
1008#endif
1009
1010#if _MSC_VER >= 1400
1011 #define ecb_noinline __declspec (noinline)
1012#else
1013 #define ecb_noinline ecb_attribute ((__noinline__))
1014#endif
1015
1016#define ecb_unused ecb_attribute ((__unused__))
1017#define ecb_const ecb_attribute ((__const__))
1018#define ecb_pure ecb_attribute ((__pure__))
1019
1020#if ECB_C11 || __IBMC_NORETURN
1021 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1022 #define ecb_noreturn _Noreturn
1023#elif ECB_CPP11
1024 #define ecb_noreturn [[noreturn]]
1025#elif _MSC_VER >= 1200
1026 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1027 #define ecb_noreturn __declspec (noreturn)
1028#else
1029 #define ecb_noreturn ecb_attribute ((__noreturn__))
1030#endif
1031
1032#if ECB_GCC_VERSION(4,3)
1033 #define ecb_artificial ecb_attribute ((__artificial__))
1034 #define ecb_hot ecb_attribute ((__hot__))
1035 #define ecb_cold ecb_attribute ((__cold__))
1036#else
1037 #define ecb_artificial
1038 #define ecb_hot
1039 #define ecb_cold
1040#endif
1041
1042/* put around conditional expressions if you are very sure that the */
1043/* expression is mostly true or mostly false. note that these return */
1044/* booleans, not the expression. */
1045#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1046#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1047/* for compatibility to the rest of the world */
1048#define ecb_likely(expr) ecb_expect_true (expr)
1049#define ecb_unlikely(expr) ecb_expect_false (expr)
1050
1051/* count trailing zero bits and count # of one bits */
1052#if ECB_GCC_VERSION(3,4) \
1053 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1054 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1055 && ECB_CLANG_BUILTIN(__builtin_popcount))
1056 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1057 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1058 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1059 #define ecb_ctz32(x) __builtin_ctz (x)
1060 #define ecb_ctz64(x) __builtin_ctzll (x)
1061 #define ecb_popcount32(x) __builtin_popcount (x)
1062 /* no popcountll */
1063#else
1064 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1065 ecb_function_ ecb_const int
1066 ecb_ctz32 (uint32_t x)
1067 {
1068#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1069 unsigned long r;
1070 _BitScanForward (&r, x);
1071 return (int)r;
1072#else
1073 int r = 0;
1074
1075 x &= ~x + 1; /* this isolates the lowest bit */
1076
1077#if ECB_branchless_on_i386
1078 r += !!(x & 0xaaaaaaaa) << 0;
1079 r += !!(x & 0xcccccccc) << 1;
1080 r += !!(x & 0xf0f0f0f0) << 2;
1081 r += !!(x & 0xff00ff00) << 3;
1082 r += !!(x & 0xffff0000) << 4;
1083#else
1084 if (x & 0xaaaaaaaa) r += 1;
1085 if (x & 0xcccccccc) r += 2;
1086 if (x & 0xf0f0f0f0) r += 4;
1087 if (x & 0xff00ff00) r += 8;
1088 if (x & 0xffff0000) r += 16;
1089#endif
1090
1091 return r;
1092#endif
1093 }
1094
1095 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1096 ecb_function_ ecb_const int
1097 ecb_ctz64 (uint64_t x)
1098 {
1099#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1100 unsigned long r;
1101 _BitScanForward64 (&r, x);
1102 return (int)r;
1103#else
1104 int shift = x & 0xffffffff ? 0 : 32;
1105 return ecb_ctz32 (x >> shift) + shift;
1106#endif
1107 }
1108
1109 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1110 ecb_function_ ecb_const int
1111 ecb_popcount32 (uint32_t x)
1112 {
1113 x -= (x >> 1) & 0x55555555;
1114 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1115 x = ((x >> 4) + x) & 0x0f0f0f0f;
1116 x *= 0x01010101;
1117
1118 return x >> 24;
1119 }
1120
1121 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1122 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1123 {
1124#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1125 unsigned long r;
1126 _BitScanReverse (&r, x);
1127 return (int)r;
1128#else
1129 int r = 0;
1130
1131 if (x >> 16) { x >>= 16; r += 16; }
1132 if (x >> 8) { x >>= 8; r += 8; }
1133 if (x >> 4) { x >>= 4; r += 4; }
1134 if (x >> 2) { x >>= 2; r += 2; }
1135 if (x >> 1) { r += 1; }
1136
1137 return r;
1138#endif
1139 }
1140
1141 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1142 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1143 {
1144#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1145 unsigned long r;
1146 _BitScanReverse64 (&r, x);
1147 return (int)r;
1148#else
1149 int r = 0;
1150
1151 if (x >> 32) { x >>= 32; r += 32; }
1152
1153 return r + ecb_ld32 (x);
1154#endif
1155 }
1156#endif
1157
1158ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1159ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1160ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1161ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1162
1163ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1164ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1165{
1166 return ( (x * 0x0802U & 0x22110U)
1167 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1168}
1169
1170ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1171ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1172{
1173 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1174 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1175 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1176 x = ( x >> 8 ) | ( x << 8);
1177
1178 return x;
1179}
1180
1181ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1182ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1183{
1184 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1185 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1186 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1187 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1188 x = ( x >> 16 ) | ( x << 16);
1189
1190 return x;
1191}
1192
1193/* popcount64 is only available on 64 bit cpus as gcc builtin */
1194/* so for this version we are lazy */
1195ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1196ecb_function_ ecb_const int
1197ecb_popcount64 (uint64_t x)
1198{
1199 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1200}
1201
1202ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1203ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1204ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1205ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1206ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1207ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1208ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1209ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1210
1211ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1212ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1213ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1214ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1215ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1216ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1217ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1218ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1219
1220#if ECB_CPP
1221
1222inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1223inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1224inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1225inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1226
1227inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1228inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1229inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1230inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1231
1232inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1233inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1234inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1235inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1236
1237inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1238inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1239inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1240inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1241
1242inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1243inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1244inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1245
1246inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1247inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1248inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1249inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1250
1251inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1252inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1253inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1254inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1255
1256#endif
1257
1258#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1259 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1260 #define ecb_bswap16(x) __builtin_bswap16 (x)
1261 #else
1262 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1263 #endif
1264 #define ecb_bswap32(x) __builtin_bswap32 (x)
1265 #define ecb_bswap64(x) __builtin_bswap64 (x)
1266#elif _MSC_VER
1267 #include <stdlib.h>
1268 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1269 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1270 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1271#else
1272 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1273 ecb_function_ ecb_const uint16_t
1274 ecb_bswap16 (uint16_t x)
1275 {
1276 return ecb_rotl16 (x, 8);
1277 }
1278
1279 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1280 ecb_function_ ecb_const uint32_t
1281 ecb_bswap32 (uint32_t x)
1282 {
1283 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1284 }
1285
1286 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1287 ecb_function_ ecb_const uint64_t
1288 ecb_bswap64 (uint64_t x)
1289 {
1290 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1291 }
1292#endif
1293
1294#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1295 #define ecb_unreachable() __builtin_unreachable ()
1296#else
1297 /* this seems to work fine, but gcc always emits a warning for it :/ */
1298 ecb_inline ecb_noreturn void ecb_unreachable (void);
1299 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1300#endif
1301
1302/* try to tell the compiler that some condition is definitely true */
1303#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1304
1305ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1306ecb_inline ecb_const uint32_t
1307ecb_byteorder_helper (void)
1308{
1309 /* the union code still generates code under pressure in gcc, */
1310 /* but less than using pointers, and always seems to */
1311 /* successfully return a constant. */
1312 /* the reason why we have this horrible preprocessor mess */
1313 /* is to avoid it in all cases, at least on common architectures */
1314 /* or when using a recent enough gcc version (>= 4.6) */
1315#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1316 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1317 #define ECB_LITTLE_ENDIAN 1
1318 return 0x44332211;
1319#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1320 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1321 #define ECB_BIG_ENDIAN 1
1322 return 0x11223344;
1323#else
1324 union
1325 {
1326 uint8_t c[4];
1327 uint32_t u;
1328 } u = { 0x11, 0x22, 0x33, 0x44 };
1329 return u.u;
1330#endif
1331}
1332
1333ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1334ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1335ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1336ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1337
1338/*****************************************************************************/
1339/* unaligned load/store */
1340
1341ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1342ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1343ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1344
1345ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1350ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1351ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1354ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1355ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1356
1357ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1362ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1363ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1364
1365ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1370ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1371ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1372
1373ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1374ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1375ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1376
1377ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1378ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1379ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1380
1381#if ECB_CPP
1382
1383inline uint8_t ecb_bswap (uint8_t v) { return v; }
1384inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1385inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1386inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1387
1388template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1389template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1390template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1391template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1392template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1393template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1394template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1395template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1396
1397template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1398template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1399template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1400template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1401template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1402template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1403template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1404template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1405
1406#endif
1407
1408/*****************************************************************************/
1409
1410#if ECB_GCC_VERSION(3,0) || ECB_C99
1411 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1412#else
1413 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1414#endif
1415
1416#if ECB_CPP
1417 template<typename T>
1418 static inline T ecb_div_rd (T val, T div)
1419 {
1420 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1421 }
1422 template<typename T>
1423 static inline T ecb_div_ru (T val, T div)
1424 {
1425 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1426 }
1427#else
1428 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1429 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1430#endif
1431
1432#if ecb_cplusplus_does_not_suck
1433 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1434 template<typename T, int N>
1435 static inline int ecb_array_length (const T (&arr)[N])
1436 {
1437 return N;
1438 }
1439#else
1440 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1441#endif
1442
1443/*****************************************************************************/
1444
1445ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1446ecb_function_ ecb_const uint32_t
1447ecb_binary16_to_binary32 (uint32_t x)
1448{
1449 unsigned int s = (x & 0x8000) << (31 - 15);
1450 int e = (x >> 10) & 0x001f;
1451 unsigned int m = x & 0x03ff;
1452
1453 if (ecb_expect_false (e == 31))
1454 /* infinity or NaN */
1455 e = 255 - (127 - 15);
1456 else if (ecb_expect_false (!e))
1457 {
1458 if (ecb_expect_true (!m))
1459 /* zero, handled by code below by forcing e to 0 */
1460 e = 0 - (127 - 15);
1461 else
1462 {
1463 /* subnormal, renormalise */
1464 unsigned int s = 10 - ecb_ld32 (m);
1465
1466 m = (m << s) & 0x3ff; /* mask implicit bit */
1467 e -= s - 1;
1468 }
1469 }
1470
1471 /* e and m now are normalised, or zero, (or inf or nan) */
1472 e += 127 - 15;
1473
1474 return s | (e << 23) | (m << (23 - 10));
1475}
1476
1477ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1478ecb_function_ ecb_const uint16_t
1479ecb_binary32_to_binary16 (uint32_t x)
1480{
1481 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1482 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1483 unsigned int m = x & 0x007fffff;
1484
1485 x &= 0x7fffffff;
1486
1487 /* if it's within range of binary16 normals, use fast path */
1488 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1489 {
1490 /* mantissa round-to-even */
1491 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1492
1493 /* handle overflow */
1494 if (ecb_expect_false (m >= 0x00800000))
1495 {
1496 m >>= 1;
1497 e += 1;
1498 }
1499
1500 return s | (e << 10) | (m >> (23 - 10));
1501 }
1502
1503 /* handle large numbers and infinity */
1504 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1505 return s | 0x7c00;
1506
1507 /* handle zero, subnormals and small numbers */
1508 if (ecb_expect_true (x < 0x38800000))
1509 {
1510 /* zero */
1511 if (ecb_expect_true (!x))
1512 return s;
1513
1514 /* handle subnormals */
1515
1516 /* too small, will be zero */
1517 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1518 return s;
1519
1520 m |= 0x00800000; /* make implicit bit explicit */
1521
1522 /* very tricky - we need to round to the nearest e (+10) bit value */
1523 {
1524 unsigned int bits = 14 - e;
1525 unsigned int half = (1 << (bits - 1)) - 1;
1526 unsigned int even = (m >> bits) & 1;
1527
1528 /* if this overflows, we will end up with a normalised number */
1529 m = (m + half + even) >> bits;
1530 }
1531
1532 return s | m;
1533 }
1534
1535 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1536 m >>= 13;
1537
1538 return s | 0x7c00 | m | !m;
1539}
1540
1541/*******************************************************************************/
1542/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1543
1544/* basically, everything uses "ieee pure-endian" floating point numbers */
1545/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1546#if 0 \
1547 || __i386 || __i386__ \
1548 || ECB_GCC_AMD64 \
1549 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1550 || defined __s390__ || defined __s390x__ \
1551 || defined __mips__ \
1552 || defined __alpha__ \
1553 || defined __hppa__ \
1554 || defined __ia64__ \
1555 || defined __m68k__ \
1556 || defined __m88k__ \
1557 || defined __sh__ \
1558 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1559 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1560 || defined __aarch64__
1561 #define ECB_STDFP 1
1562#else
1563 #define ECB_STDFP 0
1564#endif
1565
1566#ifndef ECB_NO_LIBM
1567
1568 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1569
1570 /* only the oldest of old doesn't have this one. solaris. */
1571 #ifdef INFINITY
1572 #define ECB_INFINITY INFINITY
1573 #else
1574 #define ECB_INFINITY HUGE_VAL
1575 #endif
1576
1577 #ifdef NAN
1578 #define ECB_NAN NAN
1579 #else
1580 #define ECB_NAN ECB_INFINITY
1581 #endif
1582
1583 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1584 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1585 #define ecb_frexpf(x,e) frexpf ((x), (e))
1586 #else
1587 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1588 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1589 #endif
1590
1591 /* convert a float to ieee single/binary32 */
1592 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1593 ecb_function_ ecb_const uint32_t
1594 ecb_float_to_binary32 (float x)
1595 {
1596 uint32_t r;
1597
1598 #if ECB_STDFP
1599 memcpy (&r, &x, 4);
1600 #else
1601 /* slow emulation, works for anything but -0 */
1602 uint32_t m;
1603 int e;
1604
1605 if (x == 0e0f ) return 0x00000000U;
1606 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1607 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1608 if (x != x ) return 0x7fbfffffU;
1609
1610 m = ecb_frexpf (x, &e) * 0x1000000U;
1611
1612 r = m & 0x80000000U;
1613
1614 if (r)
1615 m = -m;
1616
1617 if (e <= -126)
1618 {
1619 m &= 0xffffffU;
1620 m >>= (-125 - e);
1621 e = -126;
1622 }
1623
1624 r |= (e + 126) << 23;
1625 r |= m & 0x7fffffU;
1626 #endif
1627
1628 return r;
1629 }
1630
1631 /* converts an ieee single/binary32 to a float */
1632 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1633 ecb_function_ ecb_const float
1634 ecb_binary32_to_float (uint32_t x)
1635 {
1636 float r;
1637
1638 #if ECB_STDFP
1639 memcpy (&r, &x, 4);
1640 #else
1641 /* emulation, only works for normals and subnormals and +0 */
1642 int neg = x >> 31;
1643 int e = (x >> 23) & 0xffU;
1644
1645 x &= 0x7fffffU;
1646
1647 if (e)
1648 x |= 0x800000U;
1649 else
1650 e = 1;
1651
1652 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1653 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1654
1655 r = neg ? -r : r;
1656 #endif
1657
1658 return r;
1659 }
1660
1661 /* convert a double to ieee double/binary64 */
1662 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1663 ecb_function_ ecb_const uint64_t
1664 ecb_double_to_binary64 (double x)
1665 {
1666 uint64_t r;
1667
1668 #if ECB_STDFP
1669 memcpy (&r, &x, 8);
1670 #else
1671 /* slow emulation, works for anything but -0 */
1672 uint64_t m;
1673 int e;
1674
1675 if (x == 0e0 ) return 0x0000000000000000U;
1676 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1677 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1678 if (x != x ) return 0X7ff7ffffffffffffU;
1679
1680 m = frexp (x, &e) * 0x20000000000000U;
1681
1682 r = m & 0x8000000000000000;;
1683
1684 if (r)
1685 m = -m;
1686
1687 if (e <= -1022)
1688 {
1689 m &= 0x1fffffffffffffU;
1690 m >>= (-1021 - e);
1691 e = -1022;
1692 }
1693
1694 r |= ((uint64_t)(e + 1022)) << 52;
1695 r |= m & 0xfffffffffffffU;
1696 #endif
1697
1698 return r;
1699 }
1700
1701 /* converts an ieee double/binary64 to a double */
1702 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1703 ecb_function_ ecb_const double
1704 ecb_binary64_to_double (uint64_t x)
1705 {
1706 double r;
1707
1708 #if ECB_STDFP
1709 memcpy (&r, &x, 8);
1710 #else
1711 /* emulation, only works for normals and subnormals and +0 */
1712 int neg = x >> 63;
1713 int e = (x >> 52) & 0x7ffU;
1714
1715 x &= 0xfffffffffffffU;
1716
1717 if (e)
1718 x |= 0x10000000000000U;
1719 else
1720 e = 1;
1721
1722 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1723 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1724
1725 r = neg ? -r : r;
1726 #endif
1727
1728 return r;
1729 }
1730
1731 /* convert a float to ieee half/binary16 */
1732 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1733 ecb_function_ ecb_const uint16_t
1734 ecb_float_to_binary16 (float x)
1735 {
1736 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1737 }
1738
1739 /* convert an ieee half/binary16 to float */
1740 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1741 ecb_function_ ecb_const float
1742 ecb_binary16_to_float (uint16_t x)
1743 {
1744 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1745 }
1746
1747#endif
1748
1749#endif
1750
1751/* ECB.H END */
1752
1753#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1754/* if your architecture doesn't need memory fences, e.g. because it is
1755 * single-cpu/core, or if you use libev in a project that doesn't use libev
1756 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1757 * libev, in which cases the memory fences become nops.
1758 * alternatively, you can remove this #error and link against libpthread,
1759 * which will then provide the memory fences.
1760 */
1761# error "memory fences not defined for your architecture, please report"
1762#endif
1763
1764#ifndef ECB_MEMORY_FENCE
1765# define ECB_MEMORY_FENCE do { } while (0)
1766# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1767# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1768#endif
1769
1770#define inline_size ecb_inline
1771
1772#if EV_FEATURE_CODE
450# define inline_speed static inline 1773# define inline_speed ecb_inline
1774#else
1775# define inline_speed ecb_noinline static
451#endif 1776#endif
1777
1778/*****************************************************************************/
1779/* raw syscall wrappers */
1780
1781#if EV_NEED_SYSCALL
1782
1783#include <sys/syscall.h>
1784
1785/*
1786 * define some syscall wrappers for common architectures
1787 * this is mostly for nice looks during debugging, not performance.
1788 * our syscalls return < 0, not == -1, on error. which is good
1789 * enough for linux aio.
1790 * TODO: arm is also common nowadays, maybe even mips and x86
1791 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1792 */
1793#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1794 /* the costly errno access probably kills this for size optimisation */
1795
1796 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1797 ({ \
1798 long res; \
1799 register unsigned long r6 __asm__ ("r9" ); \
1800 register unsigned long r5 __asm__ ("r8" ); \
1801 register unsigned long r4 __asm__ ("r10"); \
1802 register unsigned long r3 __asm__ ("rdx"); \
1803 register unsigned long r2 __asm__ ("rsi"); \
1804 register unsigned long r1 __asm__ ("rdi"); \
1805 if (narg >= 6) r6 = (unsigned long)(arg6); \
1806 if (narg >= 5) r5 = (unsigned long)(arg5); \
1807 if (narg >= 4) r4 = (unsigned long)(arg4); \
1808 if (narg >= 3) r3 = (unsigned long)(arg3); \
1809 if (narg >= 2) r2 = (unsigned long)(arg2); \
1810 if (narg >= 1) r1 = (unsigned long)(arg1); \
1811 __asm__ __volatile__ ( \
1812 "syscall\n\t" \
1813 : "=a" (res) \
1814 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1815 : "cc", "r11", "cx", "memory"); \
1816 errno = -res; \
1817 res; \
1818 })
1819
1820#endif
1821
1822#ifdef ev_syscall
1823 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1824 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1825 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1826 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1827 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1828 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1829 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1830#else
1831 #define ev_syscall0(nr) syscall (nr)
1832 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1833 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1834 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1835 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1836 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1837 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1838#endif
1839
1840#endif
1841
1842/*****************************************************************************/
452 1843
453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1844#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454 1845
455#if EV_MINPRI == EV_MAXPRI 1846#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0) 1847# define ABSPRI(w) (((W)w), 0)
457#else 1848#else
458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1849# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif 1850#endif
460 1851
461#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1852#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
463 1853
464typedef ev_watcher *W; 1854typedef ev_watcher *W;
465typedef ev_watcher_list *WL; 1855typedef ev_watcher_list *WL;
466typedef ev_watcher_time *WT; 1856typedef ev_watcher_time *WT;
467 1857
468#define ev_active(w) ((W)(w))->active 1858#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at 1859#define ev_at(w) ((WT)(w))->at
470 1860
471#if EV_USE_REALTIME 1861#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1862/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */ 1863/* giving it a reasonably high chance of working on typical architectures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1864static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif 1865#endif
476 1866
477#if EV_USE_MONOTONIC 1867#if EV_USE_MONOTONIC
478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1868static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
480 1870
481#ifndef EV_FD_TO_WIN32_HANDLE 1871#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd) 1872# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif 1873#endif
484#ifndef EV_WIN32_HANDLE_TO_FD 1874#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0) 1875# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
486#endif 1876#endif
487#ifndef EV_WIN32_CLOSE_FD 1877#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd) 1878# define EV_WIN32_CLOSE_FD(fd) close (fd)
489#endif 1879#endif
490 1880
492# include "ev_win32.c" 1882# include "ev_win32.c"
493#endif 1883#endif
494 1884
495/*****************************************************************************/ 1885/*****************************************************************************/
496 1886
1887#if EV_USE_LINUXAIO
1888# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1889#endif
1890
1891/* define a suitable floor function (only used by periodics atm) */
1892
1893#if EV_USE_FLOOR
1894# include <math.h>
1895# define ev_floor(v) floor (v)
1896#else
1897
1898#include <float.h>
1899
1900/* a floor() replacement function, should be independent of ev_tstamp type */
1901ecb_noinline
1902static ev_tstamp
1903ev_floor (ev_tstamp v)
1904{
1905 /* the choice of shift factor is not terribly important */
1906#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1907 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1908#else
1909 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1910#endif
1911
1912 /* special treatment for negative arguments */
1913 if (ecb_expect_false (v < 0.))
1914 {
1915 ev_tstamp f = -ev_floor (-v);
1916
1917 return f - (f == v ? 0 : 1);
1918 }
1919
1920 /* argument too large for an unsigned long? then reduce it */
1921 if (ecb_expect_false (v >= shift))
1922 {
1923 ev_tstamp f;
1924
1925 if (v == v - 1.)
1926 return v; /* very large numbers are assumed to be integer */
1927
1928 f = shift * ev_floor (v * (1. / shift));
1929 return f + ev_floor (v - f);
1930 }
1931
1932 /* fits into an unsigned long */
1933 return (unsigned long)v;
1934}
1935
1936#endif
1937
1938/*****************************************************************************/
1939
1940#ifdef __linux
1941# include <sys/utsname.h>
1942#endif
1943
1944ecb_noinline ecb_cold
1945static unsigned int
1946ev_linux_version (void)
1947{
1948#ifdef __linux
1949 unsigned int v = 0;
1950 struct utsname buf;
1951 int i;
1952 char *p = buf.release;
1953
1954 if (uname (&buf))
1955 return 0;
1956
1957 for (i = 3+1; --i; )
1958 {
1959 unsigned int c = 0;
1960
1961 for (;;)
1962 {
1963 if (*p >= '0' && *p <= '9')
1964 c = c * 10 + *p++ - '0';
1965 else
1966 {
1967 p += *p == '.';
1968 break;
1969 }
1970 }
1971
1972 v = (v << 8) | c;
1973 }
1974
1975 return v;
1976#else
1977 return 0;
1978#endif
1979}
1980
1981/*****************************************************************************/
1982
1983#if EV_AVOID_STDIO
1984ecb_noinline ecb_cold
1985static void
1986ev_printerr (const char *msg)
1987{
1988 write (STDERR_FILENO, msg, strlen (msg));
1989}
1990#endif
1991
497static void (*syserr_cb)(const char *msg); 1992static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
498 1993
1994ecb_cold
499void 1995void
500ev_set_syserr_cb (void (*cb)(const char *msg)) 1996ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
501{ 1997{
502 syserr_cb = cb; 1998 syserr_cb = cb;
503} 1999}
504 2000
505static void noinline 2001ecb_noinline ecb_cold
2002static void
506ev_syserr (const char *msg) 2003ev_syserr (const char *msg)
507{ 2004{
508 if (!msg) 2005 if (!msg)
509 msg = "(libev) system error"; 2006 msg = "(libev) system error";
510 2007
511 if (syserr_cb) 2008 if (syserr_cb)
512 syserr_cb (msg); 2009 syserr_cb (msg);
513 else 2010 else
514 { 2011 {
2012#if EV_AVOID_STDIO
2013 ev_printerr (msg);
2014 ev_printerr (": ");
2015 ev_printerr (strerror (errno));
2016 ev_printerr ("\n");
2017#else
515 perror (msg); 2018 perror (msg);
2019#endif
516 abort (); 2020 abort ();
517 } 2021 }
518} 2022}
519 2023
520static void * 2024static void *
521ev_realloc_emul (void *ptr, long size) 2025ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
522{ 2026{
523 /* some systems, notably openbsd and darwin, fail to properly 2027 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and 2028 * implement realloc (x, 0) (as required by both ansi c-89 and
525 * the single unix specification, so work around them here. 2029 * the single unix specification, so work around them here.
2030 * recently, also (at least) fedora and debian started breaking it,
2031 * despite documenting it otherwise.
526 */ 2032 */
527 2033
528 if (size) 2034 if (size)
529 return realloc (ptr, size); 2035 return realloc (ptr, size);
530 2036
531 free (ptr); 2037 free (ptr);
532 return 0; 2038 return 0;
533} 2039}
534 2040
535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 2041static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
536 2042
2043ecb_cold
537void 2044void
538ev_set_allocator (void *(*cb)(void *ptr, long size)) 2045ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
539{ 2046{
540 alloc = cb; 2047 alloc = cb;
541} 2048}
542 2049
543inline_speed void * 2050inline_speed void *
545{ 2052{
546 ptr = alloc (ptr, size); 2053 ptr = alloc (ptr, size);
547 2054
548 if (!ptr && size) 2055 if (!ptr && size)
549 { 2056 {
2057#if EV_AVOID_STDIO
2058 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2059#else
550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2060 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2061#endif
551 abort (); 2062 abort ();
552 } 2063 }
553 2064
554 return ptr; 2065 return ptr;
555} 2066}
566typedef struct 2077typedef struct
567{ 2078{
568 WL head; 2079 WL head;
569 unsigned char events; /* the events watched for */ 2080 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */ 2081 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 2082 unsigned char emask; /* some backends store the actual kernel mask in here */
572 unsigned char unused; 2083 unsigned char eflags; /* flags field for use by backends */
573#if EV_USE_EPOLL 2084#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */ 2085 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif 2086#endif
576#if EV_SELECT_IS_WINSOCKET 2087#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
577 SOCKET handle; 2088 SOCKET handle;
2089#endif
2090#if EV_USE_IOCP
2091 OVERLAPPED or, ow;
578#endif 2092#endif
579} ANFD; 2093} ANFD;
580 2094
581/* stores the pending event set for a given watcher */ 2095/* stores the pending event set for a given watcher */
582typedef struct 2096typedef struct
624 #undef VAR 2138 #undef VAR
625 }; 2139 };
626 #include "ev_wrap.h" 2140 #include "ev_wrap.h"
627 2141
628 static struct ev_loop default_loop_struct; 2142 static struct ev_loop default_loop_struct;
629 struct ev_loop *ev_default_loop_ptr; 2143 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
630 2144
631#else 2145#else
632 2146
633 ev_tstamp ev_rt_now; 2147 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
634 #define VAR(name,decl) static decl; 2148 #define VAR(name,decl) static decl;
635 #include "ev_vars.h" 2149 #include "ev_vars.h"
636 #undef VAR 2150 #undef VAR
637 2151
638 static int ev_default_loop_ptr; 2152 static int ev_default_loop_ptr;
639 2153
640#endif 2154#endif
641 2155
642#if EV_MINIMAL < 2 2156#if EV_FEATURE_API
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) 2157# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) 2158# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A) 2159# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else 2160#else
647# define EV_RELEASE_CB (void)0 2161# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0 2162# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A) 2163# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif 2164#endif
651 2165
652#define EVUNLOOP_RECURSE 0x80 2166#define EVBREAK_RECURSE 0x80
653 2167
654/*****************************************************************************/ 2168/*****************************************************************************/
655 2169
656#ifndef EV_HAVE_EV_TIME 2170#ifndef EV_HAVE_EV_TIME
657ev_tstamp 2171ev_tstamp
658ev_time (void) 2172ev_time (void) EV_NOEXCEPT
659{ 2173{
660#if EV_USE_REALTIME 2174#if EV_USE_REALTIME
661 if (expect_true (have_realtime)) 2175 if (ecb_expect_true (have_realtime))
662 { 2176 {
663 struct timespec ts; 2177 struct timespec ts;
664 clock_gettime (CLOCK_REALTIME, &ts); 2178 clock_gettime (CLOCK_REALTIME, &ts);
665 return ts.tv_sec + ts.tv_nsec * 1e-9; 2179 return EV_TS_GET (ts);
666 } 2180 }
667#endif 2181#endif
668 2182
2183 {
669 struct timeval tv; 2184 struct timeval tv;
670 gettimeofday (&tv, 0); 2185 gettimeofday (&tv, 0);
671 return tv.tv_sec + tv.tv_usec * 1e-6; 2186 return EV_TV_GET (tv);
2187 }
672} 2188}
673#endif 2189#endif
674 2190
675inline_size ev_tstamp 2191inline_size ev_tstamp
676get_clock (void) 2192get_clock (void)
677{ 2193{
678#if EV_USE_MONOTONIC 2194#if EV_USE_MONOTONIC
679 if (expect_true (have_monotonic)) 2195 if (ecb_expect_true (have_monotonic))
680 { 2196 {
681 struct timespec ts; 2197 struct timespec ts;
682 clock_gettime (CLOCK_MONOTONIC, &ts); 2198 clock_gettime (CLOCK_MONOTONIC, &ts);
683 return ts.tv_sec + ts.tv_nsec * 1e-9; 2199 return EV_TS_GET (ts);
684 } 2200 }
685#endif 2201#endif
686 2202
687 return ev_time (); 2203 return ev_time ();
688} 2204}
689 2205
690#if EV_MULTIPLICITY 2206#if EV_MULTIPLICITY
691ev_tstamp 2207ev_tstamp
692ev_now (EV_P) 2208ev_now (EV_P) EV_NOEXCEPT
693{ 2209{
694 return ev_rt_now; 2210 return ev_rt_now;
695} 2211}
696#endif 2212#endif
697 2213
698void 2214void
699ev_sleep (ev_tstamp delay) 2215ev_sleep (ev_tstamp delay) EV_NOEXCEPT
700{ 2216{
701 if (delay > 0.) 2217 if (delay > EV_TS_CONST (0.))
702 { 2218 {
703#if EV_USE_NANOSLEEP 2219#if EV_USE_NANOSLEEP
704 struct timespec ts; 2220 struct timespec ts;
705 2221
706 ts.tv_sec = (time_t)delay; 2222 EV_TS_SET (ts, delay);
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0); 2223 nanosleep (&ts, 0);
710#elif defined(_WIN32) 2224#elif defined _WIN32
2225 /* maybe this should round up, as ms is very low resolution */
2226 /* compared to select (µs) or nanosleep (ns) */
711 Sleep ((unsigned long)(delay * 1e3)); 2227 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
712#else 2228#else
713 struct timeval tv; 2229 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717 2230
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2231 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */ 2232 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */ 2233 /* by older ones */
2234 EV_TV_SET (tv, delay);
721 select (0, 0, 0, 0, &tv); 2235 select (0, 0, 0, 0, &tv);
722#endif 2236#endif
723 } 2237 }
724} 2238}
725 2239
726/*****************************************************************************/ 2240/*****************************************************************************/
727 2241
728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2242#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729 2243
730/* find a suitable new size for the given array, */ 2244/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */ 2245/* hopefully by rounding to a nice-to-malloc size */
732inline_size int 2246inline_size int
733array_nextsize (int elem, int cur, int cnt) 2247array_nextsize (int elem, int cur, int cnt)
734{ 2248{
735 int ncur = cur + 1; 2249 int ncur = cur + 1;
736 2250
737 do 2251 do
738 ncur <<= 1; 2252 ncur <<= 1;
739 while (cnt > ncur); 2253 while (cnt > ncur);
740 2254
741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2255 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2256 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
743 { 2257 {
744 ncur *= elem; 2258 ncur *= elem;
745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2259 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
746 ncur = ncur - sizeof (void *) * 4; 2260 ncur = ncur - sizeof (void *) * 4;
748 } 2262 }
749 2263
750 return ncur; 2264 return ncur;
751} 2265}
752 2266
753static noinline void * 2267ecb_noinline ecb_cold
2268static void *
754array_realloc (int elem, void *base, int *cur, int cnt) 2269array_realloc (int elem, void *base, int *cur, int cnt)
755{ 2270{
756 *cur = array_nextsize (elem, *cur, cnt); 2271 *cur = array_nextsize (elem, *cur, cnt);
757 return ev_realloc (base, elem * *cur); 2272 return ev_realloc (base, elem * *cur);
758} 2273}
759 2274
2275#define array_needsize_noinit(base,offset,count)
2276
760#define array_init_zero(base,count) \ 2277#define array_needsize_zerofill(base,offset,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2278 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
762 2279
763#define array_needsize(type,base,cur,cnt,init) \ 2280#define array_needsize(type,base,cur,cnt,init) \
764 if (expect_false ((cnt) > (cur))) \ 2281 if (ecb_expect_false ((cnt) > (cur))) \
765 { \ 2282 { \
766 int ocur_ = (cur); \ 2283 ecb_unused int ocur_ = (cur); \
767 (base) = (type *)array_realloc \ 2284 (base) = (type *)array_realloc \
768 (sizeof (type), (base), &(cur), (cnt)); \ 2285 (sizeof (type), (base), &(cur), (cnt)); \
769 init ((base) + (ocur_), (cur) - ocur_); \ 2286 init ((base), ocur_, ((cur) - ocur_)); \
770 } 2287 }
771 2288
772#if 0 2289#if 0
773#define array_slim(type,stem) \ 2290#define array_slim(type,stem) \
774 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
784 2301
785/*****************************************************************************/ 2302/*****************************************************************************/
786 2303
787/* dummy callback for pending events */ 2304/* dummy callback for pending events */
788static void noinline 2305ecb_noinline
2306static void
789pendingcb (EV_P_ ev_prepare *w, int revents) 2307pendingcb (EV_P_ ev_prepare *w, int revents)
790{ 2308{
791} 2309}
792 2310
793void noinline 2311ecb_noinline
2312void
794ev_feed_event (EV_P_ void *w, int revents) 2313ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
795{ 2314{
796 W w_ = (W)w; 2315 W w_ = (W)w;
797 int pri = ABSPRI (w_); 2316 int pri = ABSPRI (w_);
798 2317
799 if (expect_false (w_->pending)) 2318 if (ecb_expect_false (w_->pending))
800 pendings [pri][w_->pending - 1].events |= revents; 2319 pendings [pri][w_->pending - 1].events |= revents;
801 else 2320 else
802 { 2321 {
803 w_->pending = ++pendingcnt [pri]; 2322 w_->pending = ++pendingcnt [pri];
804 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2323 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
805 pendings [pri][w_->pending - 1].w = w_; 2324 pendings [pri][w_->pending - 1].w = w_;
806 pendings [pri][w_->pending - 1].events = revents; 2325 pendings [pri][w_->pending - 1].events = revents;
807 } 2326 }
2327
2328 pendingpri = NUMPRI - 1;
808} 2329}
809 2330
810inline_speed void 2331inline_speed void
811feed_reverse (EV_P_ W w) 2332feed_reverse (EV_P_ W w)
812{ 2333{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2); 2334 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
814 rfeeds [rfeedcnt++] = w; 2335 rfeeds [rfeedcnt++] = w;
815} 2336}
816 2337
817inline_size void 2338inline_size void
818feed_reverse_done (EV_P_ int revents) 2339feed_reverse_done (EV_P_ int revents)
832} 2353}
833 2354
834/*****************************************************************************/ 2355/*****************************************************************************/
835 2356
836inline_speed void 2357inline_speed void
837fd_event_nc (EV_P_ int fd, int revents) 2358fd_event_nocheck (EV_P_ int fd, int revents)
838{ 2359{
839 ANFD *anfd = anfds + fd; 2360 ANFD *anfd = anfds + fd;
840 ev_io *w; 2361 ev_io *w;
841 2362
842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2363 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
853inline_speed void 2374inline_speed void
854fd_event (EV_P_ int fd, int revents) 2375fd_event (EV_P_ int fd, int revents)
855{ 2376{
856 ANFD *anfd = anfds + fd; 2377 ANFD *anfd = anfds + fd;
857 2378
858 if (expect_true (!anfd->reify)) 2379 if (ecb_expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents); 2380 fd_event_nocheck (EV_A_ fd, revents);
860} 2381}
861 2382
862void 2383void
863ev_feed_fd_event (EV_P_ int fd, int revents) 2384ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
864{ 2385{
865 if (fd >= 0 && fd < anfdmax) 2386 if (fd >= 0 && fd < anfdmax)
866 fd_event_nc (EV_A_ fd, revents); 2387 fd_event_nocheck (EV_A_ fd, revents);
867} 2388}
868 2389
869/* make sure the external fd watch events are in-sync */ 2390/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */ 2391/* with the kernel/libev internal state */
871inline_size void 2392inline_size void
872fd_reify (EV_P) 2393fd_reify (EV_P)
873{ 2394{
874 int i; 2395 int i;
875 2396
2397 /* most backends do not modify the fdchanges list in backend_modfiy.
2398 * except io_uring, which has fixed-size buffers which might force us
2399 * to handle events in backend_modify, causing fdchanges to be amended,
2400 * which could result in an endless loop.
2401 * to avoid this, we do not dynamically handle fds that were added
2402 * during fd_reify. that means that for those backends, fdchangecnt
2403 * might be non-zero during poll, which must cause them to not block.
2404 * to not put too much of a burden on other backends, this detail
2405 * needs to be handled in the backend.
2406 */
2407 int changecnt = fdchangecnt;
2408
2409#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
876 for (i = 0; i < fdchangecnt; ++i) 2410 for (i = 0; i < changecnt; ++i)
2411 {
2412 int fd = fdchanges [i];
2413 ANFD *anfd = anfds + fd;
2414
2415 if (anfd->reify & EV__IOFDSET && anfd->head)
2416 {
2417 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2418
2419 if (handle != anfd->handle)
2420 {
2421 unsigned long arg;
2422
2423 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2424
2425 /* handle changed, but fd didn't - we need to do it in two steps */
2426 backend_modify (EV_A_ fd, anfd->events, 0);
2427 anfd->events = 0;
2428 anfd->handle = handle;
2429 }
2430 }
2431 }
2432#endif
2433
2434 for (i = 0; i < changecnt; ++i)
877 { 2435 {
878 int fd = fdchanges [i]; 2436 int fd = fdchanges [i];
879 ANFD *anfd = anfds + fd; 2437 ANFD *anfd = anfds + fd;
880 ev_io *w; 2438 ev_io *w;
881 2439
882 unsigned char events = 0; 2440 unsigned char o_events = anfd->events;
2441 unsigned char o_reify = anfd->reify;
883 2442
884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2443 anfd->reify = 0;
885 events |= (unsigned char)w->events;
886 2444
887#if EV_SELECT_IS_WINSOCKET 2445 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
888 if (events)
889 { 2446 {
890 unsigned long arg; 2447 anfd->events = 0;
891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2448
892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2449 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2450 anfd->events |= (unsigned char)w->events;
2451
2452 if (o_events != anfd->events)
2453 o_reify = EV__IOFDSET; /* actually |= */
893 } 2454 }
894#endif
895 2455
896 { 2456 if (o_reify & EV__IOFDSET)
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
900 anfd->reify = 0;
901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events); 2457 backend_modify (EV_A_ fd, o_events, anfd->events);
905 } 2458 }
906 }
907 2459
2460 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2461 * this is a rare case (see beginning comment in this function), so we copy them to the
2462 * front and hope the backend handles this case.
2463 */
2464 if (ecb_expect_false (fdchangecnt != changecnt))
2465 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2466
908 fdchangecnt = 0; 2467 fdchangecnt -= changecnt;
909} 2468}
910 2469
911/* something about the given fd changed */ 2470/* something about the given fd changed */
912inline_size void 2471inline_size
2472void
913fd_change (EV_P_ int fd, int flags) 2473fd_change (EV_P_ int fd, int flags)
914{ 2474{
915 unsigned char reify = anfds [fd].reify; 2475 unsigned char reify = anfds [fd].reify;
916 anfds [fd].reify |= flags; 2476 anfds [fd].reify |= flags;
917 2477
918 if (expect_true (!reify)) 2478 if (ecb_expect_true (!reify))
919 { 2479 {
920 ++fdchangecnt; 2480 ++fdchangecnt;
921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2481 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
922 fdchanges [fdchangecnt - 1] = fd; 2482 fdchanges [fdchangecnt - 1] = fd;
923 } 2483 }
924} 2484}
925 2485
926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ 2486/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void 2487inline_speed ecb_cold void
928fd_kill (EV_P_ int fd) 2488fd_kill (EV_P_ int fd)
929{ 2489{
930 ev_io *w; 2490 ev_io *w;
931 2491
932 while ((w = (ev_io *)anfds [fd].head)) 2492 while ((w = (ev_io *)anfds [fd].head))
934 ev_io_stop (EV_A_ w); 2494 ev_io_stop (EV_A_ w);
935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
936 } 2496 }
937} 2497}
938 2498
939/* check whether the given fd is atcually valid, for error recovery */ 2499/* check whether the given fd is actually valid, for error recovery */
940inline_size int 2500inline_size ecb_cold int
941fd_valid (int fd) 2501fd_valid (int fd)
942{ 2502{
943#ifdef _WIN32 2503#ifdef _WIN32
944 return _get_osfhandle (fd) != -1; 2504 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
945#else 2505#else
946 return fcntl (fd, F_GETFD) != -1; 2506 return fcntl (fd, F_GETFD) != -1;
947#endif 2507#endif
948} 2508}
949 2509
950/* called on EBADF to verify fds */ 2510/* called on EBADF to verify fds */
951static void noinline 2511ecb_noinline ecb_cold
2512static void
952fd_ebadf (EV_P) 2513fd_ebadf (EV_P)
953{ 2514{
954 int fd; 2515 int fd;
955 2516
956 for (fd = 0; fd < anfdmax; ++fd) 2517 for (fd = 0; fd < anfdmax; ++fd)
958 if (!fd_valid (fd) && errno == EBADF) 2519 if (!fd_valid (fd) && errno == EBADF)
959 fd_kill (EV_A_ fd); 2520 fd_kill (EV_A_ fd);
960} 2521}
961 2522
962/* called on ENOMEM in select/poll to kill some fds and retry */ 2523/* called on ENOMEM in select/poll to kill some fds and retry */
963static void noinline 2524ecb_noinline ecb_cold
2525static void
964fd_enomem (EV_P) 2526fd_enomem (EV_P)
965{ 2527{
966 int fd; 2528 int fd;
967 2529
968 for (fd = anfdmax; fd--; ) 2530 for (fd = anfdmax; fd--; )
972 break; 2534 break;
973 } 2535 }
974} 2536}
975 2537
976/* usually called after fork if backend needs to re-arm all fds from scratch */ 2538/* usually called after fork if backend needs to re-arm all fds from scratch */
977static void noinline 2539ecb_noinline
2540static void
978fd_rearm_all (EV_P) 2541fd_rearm_all (EV_P)
979{ 2542{
980 int fd; 2543 int fd;
981 2544
982 for (fd = 0; fd < anfdmax; ++fd) 2545 for (fd = 0; fd < anfdmax; ++fd)
986 anfds [fd].emask = 0; 2549 anfds [fd].emask = 0;
987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); 2550 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
988 } 2551 }
989} 2552}
990 2553
2554/* used to prepare libev internal fd's */
2555/* this is not fork-safe */
2556inline_speed void
2557fd_intern (int fd)
2558{
2559#ifdef _WIN32
2560 unsigned long arg = 1;
2561 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2562#else
2563 fcntl (fd, F_SETFD, FD_CLOEXEC);
2564 fcntl (fd, F_SETFL, O_NONBLOCK);
2565#endif
2566}
2567
991/*****************************************************************************/ 2568/*****************************************************************************/
992 2569
993/* 2570/*
994 * the heap functions want a real array index. array index 0 uis guaranteed to not 2571 * the heap functions want a real array index. array index 0 is guaranteed to not
995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2572 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
996 * the branching factor of the d-tree. 2573 * the branching factor of the d-tree.
997 */ 2574 */
998 2575
999/* 2576/*
1021 ev_tstamp minat; 2598 ev_tstamp minat;
1022 ANHE *minpos; 2599 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2600 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024 2601
1025 /* find minimum child */ 2602 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E)) 2603 if (ecb_expect_true (pos + DHEAP - 1 < E))
1027 { 2604 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2605 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2606 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2607 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2608 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 } 2609 }
1033 else if (pos < E) 2610 else if (pos < E)
1034 { 2611 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2612 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2613 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2614 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2615 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 } 2616 }
1040 else 2617 else
1041 break; 2618 break;
1042 2619
1043 if (ANHE_at (he) <= minat) 2620 if (ANHE_at (he) <= minat)
1051 2628
1052 heap [k] = he; 2629 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k; 2630 ev_active (ANHE_w (he)) = k;
1054} 2631}
1055 2632
1056#else /* 4HEAP */ 2633#else /* not 4HEAP */
1057 2634
1058#define HEAP0 1 2635#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1) 2636#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p)) 2637#define UPHEAP_DONE(p,k) (!(p))
1061 2638
1133 upheap (heap, i + HEAP0); 2710 upheap (heap, i + HEAP0);
1134} 2711}
1135 2712
1136/*****************************************************************************/ 2713/*****************************************************************************/
1137 2714
1138/* associate signal watchers to a signal signal */ 2715/* associate signal watchers to a signal */
1139typedef struct 2716typedef struct
1140{ 2717{
1141 EV_ATOMIC_T pending; 2718 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY 2719#if EV_MULTIPLICITY
1143 EV_P; 2720 EV_P;
1147 2724
1148static ANSIG signals [EV_NSIG - 1]; 2725static ANSIG signals [EV_NSIG - 1];
1149 2726
1150/*****************************************************************************/ 2727/*****************************************************************************/
1151 2728
1152/* used to prepare libev internal fd's */ 2729#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1153/* this is not fork-safe */ 2730
2731ecb_noinline ecb_cold
2732static void
2733evpipe_init (EV_P)
2734{
2735 if (!ev_is_active (&pipe_w))
2736 {
2737 int fds [2];
2738
2739# if EV_USE_EVENTFD
2740 fds [0] = -1;
2741 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2742 if (fds [1] < 0 && errno == EINVAL)
2743 fds [1] = eventfd (0, 0);
2744
2745 if (fds [1] < 0)
2746# endif
2747 {
2748 while (pipe (fds))
2749 ev_syserr ("(libev) error creating signal/async pipe");
2750
2751 fd_intern (fds [0]);
2752 }
2753
2754 evpipe [0] = fds [0];
2755
2756 if (evpipe [1] < 0)
2757 evpipe [1] = fds [1]; /* first call, set write fd */
2758 else
2759 {
2760 /* on subsequent calls, do not change evpipe [1] */
2761 /* so that evpipe_write can always rely on its value. */
2762 /* this branch does not do anything sensible on windows, */
2763 /* so must not be executed on windows */
2764
2765 dup2 (fds [1], evpipe [1]);
2766 close (fds [1]);
2767 }
2768
2769 fd_intern (evpipe [1]);
2770
2771 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2772 ev_io_start (EV_A_ &pipe_w);
2773 ev_unref (EV_A); /* watcher should not keep loop alive */
2774 }
2775}
2776
1154inline_speed void 2777inline_speed void
1155fd_intern (int fd) 2778evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1156{ 2779{
1157#ifdef _WIN32 2780 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1158 unsigned long arg = 1;
1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1160#else
1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
1162 fcntl (fd, F_SETFL, O_NONBLOCK);
1163#endif
1164}
1165 2781
1166static void noinline 2782 if (ecb_expect_true (*flag))
1167evpipe_init (EV_P) 2783 return;
1168{ 2784
1169 if (!ev_is_active (&pipe_w)) 2785 *flag = 1;
2786 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2787
2788 pipe_write_skipped = 1;
2789
2790 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2791
2792 if (pipe_write_wanted)
1170 { 2793 {
2794 int old_errno;
2795
2796 pipe_write_skipped = 0;
2797 ECB_MEMORY_FENCE_RELEASE;
2798
2799 old_errno = errno; /* save errno because write will clobber it */
2800
1171#if EV_USE_EVENTFD 2801#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); 2802 if (evpipe [0] < 0)
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 { 2803 {
1178 evpipe [0] = -1; 2804 uint64_t counter = 1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */ 2805 write (evpipe [1], &counter, sizeof (uint64_t));
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 } 2806 }
1182 else 2807 else
1183#endif 2808#endif
1184 { 2809 {
1185 while (pipe (evpipe)) 2810#ifdef _WIN32
1186 ev_syserr ("(libev) error creating signal/async pipe"); 2811 WSABUF buf;
1187 2812 DWORD sent;
1188 fd_intern (evpipe [0]); 2813 buf.buf = (char *)&buf;
1189 fd_intern (evpipe [1]); 2814 buf.len = 1;
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ); 2815 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2816#else
2817 write (evpipe [1], &(evpipe [1]), 1);
2818#endif
1191 } 2819 }
1192
1193 ev_io_start (EV_A_ &pipe_w);
1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196}
1197
1198inline_size void
1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200{
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
1215 write (evpipe [1], &old_errno, 1);
1216 2820
1217 errno = old_errno; 2821 errno = old_errno;
1218 } 2822 }
1219} 2823}
1220 2824
1223static void 2827static void
1224pipecb (EV_P_ ev_io *iow, int revents) 2828pipecb (EV_P_ ev_io *iow, int revents)
1225{ 2829{
1226 int i; 2830 int i;
1227 2831
2832 if (revents & EV_READ)
2833 {
1228#if EV_USE_EVENTFD 2834#if EV_USE_EVENTFD
1229 if (evfd >= 0) 2835 if (evpipe [0] < 0)
1230 { 2836 {
1231 uint64_t counter; 2837 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t)); 2838 read (evpipe [1], &counter, sizeof (uint64_t));
1233 } 2839 }
1234 else 2840 else
1235#endif 2841#endif
1236 { 2842 {
1237 char dummy; 2843 char dummy[4];
2844#ifdef _WIN32
2845 WSABUF buf;
2846 DWORD recvd;
2847 DWORD flags = 0;
2848 buf.buf = dummy;
2849 buf.len = sizeof (dummy);
2850 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2851#else
1238 read (evpipe [0], &dummy, 1); 2852 read (evpipe [0], &dummy, sizeof (dummy));
2853#endif
2854 }
1239 } 2855 }
1240 2856
2857 pipe_write_skipped = 0;
2858
2859 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2860
2861#if EV_SIGNAL_ENABLE
1241 if (sig_pending) 2862 if (sig_pending)
1242 { 2863 {
1243 sig_pending = 0; 2864 sig_pending = 0;
1244 2865
2866 ECB_MEMORY_FENCE;
2867
1245 for (i = EV_NSIG - 1; i--; ) 2868 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending)) 2869 if (ecb_expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1); 2870 ev_feed_signal_event (EV_A_ i + 1);
1248 } 2871 }
2872#endif
1249 2873
1250#if EV_ASYNC_ENABLE 2874#if EV_ASYNC_ENABLE
1251 if (async_pending) 2875 if (async_pending)
1252 { 2876 {
1253 async_pending = 0; 2877 async_pending = 0;
2878
2879 ECB_MEMORY_FENCE;
1254 2880
1255 for (i = asynccnt; i--; ) 2881 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent) 2882 if (asyncs [i]->sent)
1257 { 2883 {
1258 asyncs [i]->sent = 0; 2884 asyncs [i]->sent = 0;
2885 ECB_MEMORY_FENCE_RELEASE;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2886 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 } 2887 }
1261 } 2888 }
1262#endif 2889#endif
1263} 2890}
1264 2891
1265/*****************************************************************************/ 2892/*****************************************************************************/
1266 2893
2894void
2895ev_feed_signal (int signum) EV_NOEXCEPT
2896{
2897#if EV_MULTIPLICITY
2898 EV_P;
2899 ECB_MEMORY_FENCE_ACQUIRE;
2900 EV_A = signals [signum - 1].loop;
2901
2902 if (!EV_A)
2903 return;
2904#endif
2905
2906 signals [signum - 1].pending = 1;
2907 evpipe_write (EV_A_ &sig_pending);
2908}
2909
1267static void 2910static void
1268ev_sighandler (int signum) 2911ev_sighandler (int signum)
1269{ 2912{
1270#if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272#endif
1273
1274#if _WIN32 2913#ifdef _WIN32
1275 signal (signum, ev_sighandler); 2914 signal (signum, ev_sighandler);
1276#endif 2915#endif
1277 2916
1278 signals [signum - 1].pending = 1; 2917 ev_feed_signal (signum);
1279 evpipe_write (EV_A_ &sig_pending);
1280} 2918}
1281 2919
1282void noinline 2920ecb_noinline
2921void
1283ev_feed_signal_event (EV_P_ int signum) 2922ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
1284{ 2923{
1285 WL w; 2924 WL w;
1286 2925
1287 if (expect_false (signum <= 0 || signum > EV_NSIG)) 2926 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
1288 return; 2927 return;
1289 2928
1290 --signum; 2929 --signum;
1291 2930
1292#if EV_MULTIPLICITY 2931#if EV_MULTIPLICITY
1293 /* it is permissible to try to feed a signal to the wrong loop */ 2932 /* it is permissible to try to feed a signal to the wrong loop */
1294 /* or, likely more useful, feeding a signal nobody is waiting for */ 2933 /* or, likely more useful, feeding a signal nobody is waiting for */
1295 2934
1296 if (expect_false (signals [signum].loop != EV_A)) 2935 if (ecb_expect_false (signals [signum].loop != EV_A))
1297 return; 2936 return;
1298#endif 2937#endif
1299 2938
1300 signals [signum].pending = 0; 2939 signals [signum].pending = 0;
2940 ECB_MEMORY_FENCE_RELEASE;
1301 2941
1302 for (w = signals [signum].head; w; w = w->next) 2942 for (w = signals [signum].head; w; w = w->next)
1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2943 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1304} 2944}
1305 2945
1321 break; 2961 break;
1322 } 2962 }
1323} 2963}
1324#endif 2964#endif
1325 2965
2966#endif
2967
1326/*****************************************************************************/ 2968/*****************************************************************************/
1327 2969
2970#if EV_CHILD_ENABLE
1328static WL childs [EV_PID_HASHSIZE]; 2971static WL childs [EV_PID_HASHSIZE];
1329
1330#ifndef _WIN32
1331 2972
1332static ev_signal childev; 2973static ev_signal childev;
1333 2974
1334#ifndef WIFCONTINUED 2975#ifndef WIFCONTINUED
1335# define WIFCONTINUED(status) 0 2976# define WIFCONTINUED(status) 0
1340child_reap (EV_P_ int chain, int pid, int status) 2981child_reap (EV_P_ int chain, int pid, int status)
1341{ 2982{
1342 ev_child *w; 2983 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2984 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1344 2985
1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2986 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 { 2987 {
1347 if ((w->pid == pid || !w->pid) 2988 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1))) 2989 && (!traced || (w->flags & 1)))
1349 { 2990 {
1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2991 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 /* make sure we are called again until all children have been reaped */ 3016 /* make sure we are called again until all children have been reaped */
1376 /* we need to do it this way so that the callback gets called before we continue */ 3017 /* we need to do it this way so that the callback gets called before we continue */
1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3018 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1378 3019
1379 child_reap (EV_A_ pid, pid, status); 3020 child_reap (EV_A_ pid, pid, status);
1380 if (EV_PID_HASHSIZE > 1) 3021 if ((EV_PID_HASHSIZE) > 1)
1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3022 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1382} 3023}
1383 3024
1384#endif 3025#endif
1385 3026
1386/*****************************************************************************/ 3027/*****************************************************************************/
1387 3028
3029#if EV_USE_TIMERFD
3030
3031static void periodics_reschedule (EV_P);
3032
3033static void
3034timerfdcb (EV_P_ ev_io *iow, int revents)
3035{
3036 struct itimerspec its = { 0 };
3037
3038 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3039 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3040
3041 ev_rt_now = ev_time ();
3042 /* periodics_reschedule only needs ev_rt_now */
3043 /* but maybe in the future we want the full treatment. */
3044 /*
3045 now_floor = EV_TS_CONST (0.);
3046 time_update (EV_A_ EV_TSTAMP_HUGE);
3047 */
3048#if EV_PERIODIC_ENABLE
3049 periodics_reschedule (EV_A);
3050#endif
3051}
3052
3053ecb_noinline ecb_cold
3054static void
3055evtimerfd_init (EV_P)
3056{
3057 if (!ev_is_active (&timerfd_w))
3058 {
3059 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3060
3061 if (timerfd >= 0)
3062 {
3063 fd_intern (timerfd); /* just to be sure */
3064
3065 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3066 ev_set_priority (&timerfd_w, EV_MINPRI);
3067 ev_io_start (EV_A_ &timerfd_w);
3068 ev_unref (EV_A); /* watcher should not keep loop alive */
3069
3070 /* (re-) arm timer */
3071 timerfdcb (EV_A_ 0, 0);
3072 }
3073 }
3074}
3075
3076#endif
3077
3078/*****************************************************************************/
3079
3080#if EV_USE_IOCP
3081# include "ev_iocp.c"
3082#endif
1388#if EV_USE_PORT 3083#if EV_USE_PORT
1389# include "ev_port.c" 3084# include "ev_port.c"
1390#endif 3085#endif
1391#if EV_USE_KQUEUE 3086#if EV_USE_KQUEUE
1392# include "ev_kqueue.c" 3087# include "ev_kqueue.c"
1393#endif 3088#endif
1394#if EV_USE_EPOLL 3089#if EV_USE_EPOLL
1395# include "ev_epoll.c" 3090# include "ev_epoll.c"
1396#endif 3091#endif
3092#if EV_USE_LINUXAIO
3093# include "ev_linuxaio.c"
3094#endif
3095#if EV_USE_IOURING
3096# include "ev_iouring.c"
3097#endif
1397#if EV_USE_POLL 3098#if EV_USE_POLL
1398# include "ev_poll.c" 3099# include "ev_poll.c"
1399#endif 3100#endif
1400#if EV_USE_SELECT 3101#if EV_USE_SELECT
1401# include "ev_select.c" 3102# include "ev_select.c"
1402#endif 3103#endif
1403 3104
1404int 3105ecb_cold int
1405ev_version_major (void) 3106ev_version_major (void) EV_NOEXCEPT
1406{ 3107{
1407 return EV_VERSION_MAJOR; 3108 return EV_VERSION_MAJOR;
1408} 3109}
1409 3110
1410int 3111ecb_cold int
1411ev_version_minor (void) 3112ev_version_minor (void) EV_NOEXCEPT
1412{ 3113{
1413 return EV_VERSION_MINOR; 3114 return EV_VERSION_MINOR;
1414} 3115}
1415 3116
1416/* return true if we are running with elevated privileges and should ignore env variables */ 3117/* return true if we are running with elevated privileges and should ignore env variables */
1417int inline_size 3118inline_size ecb_cold int
1418enable_secure (void) 3119enable_secure (void)
1419{ 3120{
1420#ifdef _WIN32 3121#ifdef _WIN32
1421 return 0; 3122 return 0;
1422#else 3123#else
1423 return getuid () != geteuid () 3124 return getuid () != geteuid ()
1424 || getgid () != getegid (); 3125 || getgid () != getegid ();
1425#endif 3126#endif
1426} 3127}
1427 3128
3129ecb_cold
1428unsigned int 3130unsigned int
1429ev_supported_backends (void) 3131ev_supported_backends (void) EV_NOEXCEPT
1430{ 3132{
1431 unsigned int flags = 0; 3133 unsigned int flags = 0;
1432 3134
1433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3135 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3136 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3137 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3138 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3139 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1438 3140 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3141 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3142
1439 return flags; 3143 return flags;
1440} 3144}
1441 3145
3146ecb_cold
1442unsigned int 3147unsigned int
1443ev_recommended_backends (void) 3148ev_recommended_backends (void) EV_NOEXCEPT
1444{ 3149{
1445 unsigned int flags = ev_supported_backends (); 3150 unsigned int flags = ev_supported_backends ();
1446 3151
1447#ifndef __NetBSD__ 3152#ifndef __NetBSD__
1448 /* kqueue is borked on everything but netbsd apparently */ 3153 /* kqueue is borked on everything but netbsd apparently */
1452#ifdef __APPLE__ 3157#ifdef __APPLE__
1453 /* only select works correctly on that "unix-certified" platform */ 3158 /* only select works correctly on that "unix-certified" platform */
1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 3159 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 3160 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1456#endif 3161#endif
3162#ifdef __FreeBSD__
3163 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3164#endif
3165
3166 /* TODO: linuxaio is very experimental */
3167#if !EV_RECOMMEND_LINUXAIO
3168 flags &= ~EVBACKEND_LINUXAIO;
3169#endif
3170 /* TODO: linuxaio is super experimental */
3171#if !EV_RECOMMEND_IOURING
3172 flags &= ~EVBACKEND_IOURING;
3173#endif
1457 3174
1458 return flags; 3175 return flags;
1459} 3176}
1460 3177
3178ecb_cold
1461unsigned int 3179unsigned int
1462ev_embeddable_backends (void) 3180ev_embeddable_backends (void) EV_NOEXCEPT
1463{ 3181{
1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3182 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1465 3183
1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3184 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */ 3185 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1468 flags &= ~EVBACKEND_EPOLL; 3186 flags &= ~EVBACKEND_EPOLL;
3187
3188 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1469 3189
1470 return flags; 3190 return flags;
1471} 3191}
1472 3192
1473unsigned int 3193unsigned int
1474ev_backend (EV_P) 3194ev_backend (EV_P) EV_NOEXCEPT
1475{ 3195{
1476 return backend; 3196 return backend;
1477} 3197}
1478 3198
1479#if EV_MINIMAL < 2 3199#if EV_FEATURE_API
1480unsigned int 3200unsigned int
1481ev_loop_count (EV_P) 3201ev_iteration (EV_P) EV_NOEXCEPT
1482{ 3202{
1483 return loop_count; 3203 return loop_count;
1484} 3204}
1485 3205
1486unsigned int 3206unsigned int
1487ev_loop_depth (EV_P) 3207ev_depth (EV_P) EV_NOEXCEPT
1488{ 3208{
1489 return loop_depth; 3209 return loop_depth;
1490} 3210}
1491 3211
1492void 3212void
1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3213ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1494{ 3214{
1495 io_blocktime = interval; 3215 io_blocktime = interval;
1496} 3216}
1497 3217
1498void 3218void
1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3219ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1500{ 3220{
1501 timeout_blocktime = interval; 3221 timeout_blocktime = interval;
1502} 3222}
1503 3223
1504void 3224void
1505ev_set_userdata (EV_P_ void *data) 3225ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
1506{ 3226{
1507 userdata = data; 3227 userdata = data;
1508} 3228}
1509 3229
1510void * 3230void *
1511ev_userdata (EV_P) 3231ev_userdata (EV_P) EV_NOEXCEPT
1512{ 3232{
1513 return userdata; 3233 return userdata;
1514} 3234}
1515 3235
3236void
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) 3237ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
1517{ 3238{
1518 invoke_cb = invoke_pending_cb; 3239 invoke_cb = invoke_pending_cb;
1519} 3240}
1520 3241
3242void
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) 3243ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
1522{ 3244{
1523 release_cb = release; 3245 release_cb = release;
1524 acquire_cb = acquire; 3246 acquire_cb = acquire;
1525} 3247}
1526#endif 3248#endif
1527 3249
1528/* initialise a loop structure, must be zero-initialised */ 3250/* initialise a loop structure, must be zero-initialised */
1529static void noinline 3251ecb_noinline ecb_cold
3252static void
1530loop_init (EV_P_ unsigned int flags) 3253loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1531{ 3254{
1532 if (!backend) 3255 if (!backend)
1533 { 3256 {
3257 origflags = flags;
3258
1534#if EV_USE_REALTIME 3259#if EV_USE_REALTIME
1535 if (!have_realtime) 3260 if (!have_realtime)
1536 { 3261 {
1537 struct timespec ts; 3262 struct timespec ts;
1538 3263
1560 if (!(flags & EVFLAG_NOENV) 3285 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure () 3286 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS")) 3287 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS")); 3288 flags = atoi (getenv ("LIBEV_FLAGS"));
1564 3289
1565 ev_rt_now = ev_time (); 3290 ev_rt_now = ev_time ();
1566 mn_now = get_clock (); 3291 mn_now = get_clock ();
1567 now_floor = mn_now; 3292 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now; 3293 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2 3294#if EV_FEATURE_API
1570 invoke_cb = ev_invoke_pending; 3295 invoke_cb = ev_invoke_pending;
1571#endif 3296#endif
1572 3297
1573 io_blocktime = 0.; 3298 io_blocktime = 0.;
1574 timeout_blocktime = 0.; 3299 timeout_blocktime = 0.;
1575 backend = 0; 3300 backend = 0;
1576 backend_fd = -1; 3301 backend_fd = -1;
1577 sig_pending = 0; 3302 sig_pending = 0;
1578#if EV_ASYNC_ENABLE 3303#if EV_ASYNC_ENABLE
1579 async_pending = 0; 3304 async_pending = 0;
1580#endif 3305#endif
3306 pipe_write_skipped = 0;
3307 pipe_write_wanted = 0;
3308 evpipe [0] = -1;
3309 evpipe [1] = -1;
1581#if EV_USE_INOTIFY 3310#if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; 3311 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583#endif 3312#endif
1584#if EV_USE_SIGNALFD 3313#if EV_USE_SIGNALFD
3314 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3315#endif
3316#if EV_USE_TIMERFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2; 3317 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
1586#endif 3318#endif
1587 3319
1588 if (!(flags & 0x0000ffffU)) 3320 if (!(flags & EVBACKEND_MASK))
1589 flags |= ev_recommended_backends (); 3321 flags |= ev_recommended_backends ();
1590 3322
3323#if EV_USE_IOCP
3324 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3325#endif
1591#if EV_USE_PORT 3326#if EV_USE_PORT
1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1593#endif 3328#endif
1594#if EV_USE_KQUEUE 3329#if EV_USE_KQUEUE
1595 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3330 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3331#endif
3332#if EV_USE_IOURING
3333 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3334#endif
3335#if EV_USE_LINUXAIO
3336 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1596#endif 3337#endif
1597#if EV_USE_EPOLL 3338#if EV_USE_EPOLL
1598 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3339 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1599#endif 3340#endif
1600#if EV_USE_POLL 3341#if EV_USE_POLL
1601 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3342 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1602#endif 3343#endif
1603#if EV_USE_SELECT 3344#if EV_USE_SELECT
1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3345 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1605#endif 3346#endif
1606 3347
1607 ev_prepare_init (&pending_w, pendingcb); 3348 ev_prepare_init (&pending_w, pendingcb);
1608 3349
3350#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1609 ev_init (&pipe_w, pipecb); 3351 ev_init (&pipe_w, pipecb);
1610 ev_set_priority (&pipe_w, EV_MAXPRI); 3352 ev_set_priority (&pipe_w, EV_MAXPRI);
3353#endif
1611 } 3354 }
1612} 3355}
1613 3356
1614/* free up a loop structure */ 3357/* free up a loop structure */
1615static void noinline 3358ecb_cold
3359void
1616loop_destroy (EV_P) 3360ev_loop_destroy (EV_P)
1617{ 3361{
1618 int i; 3362 int i;
3363
3364#if EV_MULTIPLICITY
3365 /* mimic free (0) */
3366 if (!EV_A)
3367 return;
3368#endif
3369
3370#if EV_CLEANUP_ENABLE
3371 /* queue cleanup watchers (and execute them) */
3372 if (ecb_expect_false (cleanupcnt))
3373 {
3374 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3375 EV_INVOKE_PENDING;
3376 }
3377#endif
3378
3379#if EV_CHILD_ENABLE
3380 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3381 {
3382 ev_ref (EV_A); /* child watcher */
3383 ev_signal_stop (EV_A_ &childev);
3384 }
3385#endif
1619 3386
1620 if (ev_is_active (&pipe_w)) 3387 if (ev_is_active (&pipe_w))
1621 { 3388 {
1622 /*ev_ref (EV_A);*/ 3389 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/ 3390 /*ev_io_stop (EV_A_ &pipe_w);*/
1624 3391
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]); 3392 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]); 3393 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 } 3394 }
1636 3395
1637#if EV_USE_SIGNALFD 3396#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w)) 3397 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd); 3398 close (sigfd);
1644 } 3399#endif
3400
3401#if EV_USE_TIMERFD
3402 if (ev_is_active (&timerfd_w))
3403 close (timerfd);
1645#endif 3404#endif
1646 3405
1647#if EV_USE_INOTIFY 3406#if EV_USE_INOTIFY
1648 if (fs_fd >= 0) 3407 if (fs_fd >= 0)
1649 close (fs_fd); 3408 close (fs_fd);
1650#endif 3409#endif
1651 3410
1652 if (backend_fd >= 0) 3411 if (backend_fd >= 0)
1653 close (backend_fd); 3412 close (backend_fd);
1654 3413
3414#if EV_USE_IOCP
3415 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3416#endif
1655#if EV_USE_PORT 3417#if EV_USE_PORT
1656 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3418 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1657#endif 3419#endif
1658#if EV_USE_KQUEUE 3420#if EV_USE_KQUEUE
1659 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3421 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3422#endif
3423#if EV_USE_IOURING
3424 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3425#endif
3426#if EV_USE_LINUXAIO
3427 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1660#endif 3428#endif
1661#if EV_USE_EPOLL 3429#if EV_USE_EPOLL
1662 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3430 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1663#endif 3431#endif
1664#if EV_USE_POLL 3432#if EV_USE_POLL
1665 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3433 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1666#endif 3434#endif
1667#if EV_USE_SELECT 3435#if EV_USE_SELECT
1668 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3436 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1669#endif 3437#endif
1670 3438
1671 for (i = NUMPRI; i--; ) 3439 for (i = NUMPRI; i--; )
1672 { 3440 {
1673 array_free (pending, [i]); 3441 array_free (pending, [i]);
1686 array_free (periodic, EMPTY); 3454 array_free (periodic, EMPTY);
1687#endif 3455#endif
1688#if EV_FORK_ENABLE 3456#if EV_FORK_ENABLE
1689 array_free (fork, EMPTY); 3457 array_free (fork, EMPTY);
1690#endif 3458#endif
3459#if EV_CLEANUP_ENABLE
3460 array_free (cleanup, EMPTY);
3461#endif
1691 array_free (prepare, EMPTY); 3462 array_free (prepare, EMPTY);
1692 array_free (check, EMPTY); 3463 array_free (check, EMPTY);
1693#if EV_ASYNC_ENABLE 3464#if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY); 3465 array_free (async, EMPTY);
1695#endif 3466#endif
1696 3467
1697 backend = 0; 3468 backend = 0;
3469
3470#if EV_MULTIPLICITY
3471 if (ev_is_default_loop (EV_A))
3472#endif
3473 ev_default_loop_ptr = 0;
3474#if EV_MULTIPLICITY
3475 else
3476 ev_free (EV_A);
3477#endif
1698} 3478}
1699 3479
1700#if EV_USE_INOTIFY 3480#if EV_USE_INOTIFY
1701inline_size void infy_fork (EV_P); 3481inline_size void infy_fork (EV_P);
1702#endif 3482#endif
1703 3483
1704inline_size void 3484inline_size void
1705loop_fork (EV_P) 3485loop_fork (EV_P)
1706{ 3486{
1707#if EV_USE_PORT 3487#if EV_USE_PORT
1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3488 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1709#endif 3489#endif
1710#if EV_USE_KQUEUE 3490#if EV_USE_KQUEUE
1711 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3491 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3492#endif
3493#if EV_USE_IOURING
3494 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3495#endif
3496#if EV_USE_LINUXAIO
3497 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1712#endif 3498#endif
1713#if EV_USE_EPOLL 3499#if EV_USE_EPOLL
1714 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3500 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1715#endif 3501#endif
1716#if EV_USE_INOTIFY 3502#if EV_USE_INOTIFY
1717 infy_fork (EV_A); 3503 infy_fork (EV_A);
1718#endif 3504#endif
1719 3505
3506 if (postfork != 2)
3507 {
3508 #if EV_USE_SIGNALFD
3509 /* surprisingly, nothing needs to be done for signalfd, accoridng to docs, it does the right thing on fork */
3510 #endif
3511
3512 #if EV_USE_TIMERFD
3513 if (ev_is_active (&timerfd_w))
3514 {
3515 ev_ref (EV_A);
3516 ev_io_stop (EV_A_ &timerfd_w);
3517
3518 close (timerfd);
3519 timerfd = -2;
3520
3521 evtimerfd_init (EV_A);
3522 /* reschedule periodics, in case we missed something */
3523 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
3524 }
3525 #endif
3526
3527 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1720 if (ev_is_active (&pipe_w)) 3528 if (ev_is_active (&pipe_w))
1721 { 3529 {
1722 /* this "locks" the handlers against writing to the pipe */ 3530 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1723 /* while we modify the fd vars */ 3531
1724 sig_pending = 1;
1725#if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727#endif
1728
1729 ev_ref (EV_A); 3532 ev_ref (EV_A);
1730 ev_io_stop (EV_A_ &pipe_w); 3533 ev_io_stop (EV_A_ &pipe_w);
1731 3534
1732#if EV_USE_EVENTFD
1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
1736
1737 if (evpipe [0] >= 0) 3535 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]); 3536 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]); 3537
3538 evpipe_init (EV_A);
3539 /* iterate over everything, in case we missed something before */
3540 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1741 } 3541 }
1742 3542 #endif
1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
1746 } 3543 }
1747 3544
1748 postfork = 0; 3545 postfork = 0;
1749} 3546}
1750 3547
1751#if EV_MULTIPLICITY 3548#if EV_MULTIPLICITY
1752 3549
3550ecb_cold
1753struct ev_loop * 3551struct ev_loop *
1754ev_loop_new (unsigned int flags) 3552ev_loop_new (unsigned int flags) EV_NOEXCEPT
1755{ 3553{
1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3554 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1757 3555
1758 memset (EV_A, 0, sizeof (struct ev_loop)); 3556 memset (EV_A, 0, sizeof (struct ev_loop));
1759 loop_init (EV_A_ flags); 3557 loop_init (EV_A_ flags);
1760 3558
1761 if (ev_backend (EV_A)) 3559 if (ev_backend (EV_A))
1762 return EV_A; 3560 return EV_A;
1763 3561
3562 ev_free (EV_A);
1764 return 0; 3563 return 0;
1765} 3564}
1766 3565
1767void
1768ev_loop_destroy (EV_P)
1769{
1770 loop_destroy (EV_A);
1771 ev_free (loop);
1772}
1773
1774void
1775ev_loop_fork (EV_P)
1776{
1777 postfork = 1; /* must be in line with ev_default_fork */
1778}
1779#endif /* multiplicity */ 3566#endif /* multiplicity */
1780 3567
1781#if EV_VERIFY 3568#if EV_VERIFY
1782static void noinline 3569ecb_noinline ecb_cold
3570static void
1783verify_watcher (EV_P_ W w) 3571verify_watcher (EV_P_ W w)
1784{ 3572{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3573 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786 3574
1787 if (w->pending) 3575 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3576 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789} 3577}
1790 3578
1791static void noinline 3579ecb_noinline ecb_cold
3580static void
1792verify_heap (EV_P_ ANHE *heap, int N) 3581verify_heap (EV_P_ ANHE *heap, int N)
1793{ 3582{
1794 int i; 3583 int i;
1795 3584
1796 for (i = HEAP0; i < N + HEAP0; ++i) 3585 for (i = HEAP0; i < N + HEAP0; ++i)
1801 3590
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3591 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 } 3592 }
1804} 3593}
1805 3594
1806static void noinline 3595ecb_noinline ecb_cold
3596static void
1807array_verify (EV_P_ W *ws, int cnt) 3597array_verify (EV_P_ W *ws, int cnt)
1808{ 3598{
1809 while (cnt--) 3599 while (cnt--)
1810 { 3600 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]); 3602 verify_watcher (EV_A_ ws [cnt]);
1813 } 3603 }
1814} 3604}
1815#endif 3605#endif
1816 3606
1817#if EV_MINIMAL < 2 3607#if EV_FEATURE_API
1818void 3608void ecb_cold
1819ev_loop_verify (EV_P) 3609ev_verify (EV_P) EV_NOEXCEPT
1820{ 3610{
1821#if EV_VERIFY 3611#if EV_VERIFY
1822 int i; 3612 int i;
1823 WL w; 3613 WL w, w2;
1824 3614
1825 assert (activecnt >= -1); 3615 assert (activecnt >= -1);
1826 3616
1827 assert (fdchangemax >= fdchangecnt); 3617 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i) 3618 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3619 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830 3620
1831 assert (anfdmax >= 0); 3621 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i) 3622 for (i = 0; i < anfdmax; ++i)
3623 {
3624 int j = 0;
3625
1833 for (w = anfds [i].head; w; w = w->next) 3626 for (w = w2 = anfds [i].head; w; w = w->next)
1834 { 3627 {
1835 verify_watcher (EV_A_ (W)w); 3628 verify_watcher (EV_A_ (W)w);
3629
3630 if (j++ & 1)
3631 {
3632 assert (("libev: io watcher list contains a loop", w != w2));
3633 w2 = w2->next;
3634 }
3635
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3636 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3637 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 } 3638 }
3639 }
1839 3640
1840 assert (timermax >= timercnt); 3641 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt); 3642 verify_heap (EV_A_ timers, timercnt);
1842 3643
1843#if EV_PERIODIC_ENABLE 3644#if EV_PERIODIC_ENABLE
1858#if EV_FORK_ENABLE 3659#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt); 3660 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt); 3661 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif 3662#endif
1862 3663
3664#if EV_CLEANUP_ENABLE
3665 assert (cleanupmax >= cleanupcnt);
3666 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3667#endif
3668
1863#if EV_ASYNC_ENABLE 3669#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt); 3670 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt); 3671 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif 3672#endif
1867 3673
3674#if EV_PREPARE_ENABLE
1868 assert (preparemax >= preparecnt); 3675 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt); 3676 array_verify (EV_A_ (W *)prepares, preparecnt);
3677#endif
1870 3678
3679#if EV_CHECK_ENABLE
1871 assert (checkmax >= checkcnt); 3680 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt); 3681 array_verify (EV_A_ (W *)checks, checkcnt);
3682#endif
1873 3683
1874# if 0 3684# if 0
3685#if EV_CHILD_ENABLE
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3686 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) 3687 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3688#endif
1877# endif 3689# endif
1878#endif 3690#endif
1879} 3691}
1880#endif 3692#endif
1881 3693
1882#if EV_MULTIPLICITY 3694#if EV_MULTIPLICITY
3695ecb_cold
1883struct ev_loop * 3696struct ev_loop *
1884ev_default_loop_init (unsigned int flags)
1885#else 3697#else
1886int 3698int
3699#endif
1887ev_default_loop (unsigned int flags) 3700ev_default_loop (unsigned int flags) EV_NOEXCEPT
1888#endif
1889{ 3701{
1890 if (!ev_default_loop_ptr) 3702 if (!ev_default_loop_ptr)
1891 { 3703 {
1892#if EV_MULTIPLICITY 3704#if EV_MULTIPLICITY
1893 EV_P = ev_default_loop_ptr = &default_loop_struct; 3705 EV_P = ev_default_loop_ptr = &default_loop_struct;
1897 3709
1898 loop_init (EV_A_ flags); 3710 loop_init (EV_A_ flags);
1899 3711
1900 if (ev_backend (EV_A)) 3712 if (ev_backend (EV_A))
1901 { 3713 {
1902#ifndef _WIN32 3714#if EV_CHILD_ENABLE
1903 ev_signal_init (&childev, childcb, SIGCHLD); 3715 ev_signal_init (&childev, childcb, SIGCHLD);
1904 ev_set_priority (&childev, EV_MAXPRI); 3716 ev_set_priority (&childev, EV_MAXPRI);
1905 ev_signal_start (EV_A_ &childev); 3717 ev_signal_start (EV_A_ &childev);
1906 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3718 ev_unref (EV_A); /* child watcher should not keep loop alive */
1907#endif 3719#endif
1912 3724
1913 return ev_default_loop_ptr; 3725 return ev_default_loop_ptr;
1914} 3726}
1915 3727
1916void 3728void
1917ev_default_destroy (void) 3729ev_loop_fork (EV_P) EV_NOEXCEPT
1918{ 3730{
1919#if EV_MULTIPLICITY 3731 postfork = 1;
1920 EV_P = ev_default_loop_ptr;
1921#endif
1922
1923 ev_default_loop_ptr = 0;
1924
1925#ifndef _WIN32
1926 ev_ref (EV_A); /* child watcher */
1927 ev_signal_stop (EV_A_ &childev);
1928#endif
1929
1930 loop_destroy (EV_A);
1931}
1932
1933void
1934ev_default_fork (void)
1935{
1936#if EV_MULTIPLICITY
1937 EV_P = ev_default_loop_ptr;
1938#endif
1939
1940 postfork = 1; /* must be in line with ev_loop_fork */
1941} 3732}
1942 3733
1943/*****************************************************************************/ 3734/*****************************************************************************/
1944 3735
1945void 3736void
1947{ 3738{
1948 EV_CB_INVOKE ((W)w, revents); 3739 EV_CB_INVOKE ((W)w, revents);
1949} 3740}
1950 3741
1951unsigned int 3742unsigned int
1952ev_pending_count (EV_P) 3743ev_pending_count (EV_P) EV_NOEXCEPT
1953{ 3744{
1954 int pri; 3745 int pri;
1955 unsigned int count = 0; 3746 unsigned int count = 0;
1956 3747
1957 for (pri = NUMPRI; pri--; ) 3748 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri]; 3749 count += pendingcnt [pri];
1959 3750
1960 return count; 3751 return count;
1961} 3752}
1962 3753
1963void noinline 3754ecb_noinline
3755void
1964ev_invoke_pending (EV_P) 3756ev_invoke_pending (EV_P)
1965{ 3757{
1966 int pri; 3758 pendingpri = NUMPRI;
1967 3759
1968 for (pri = NUMPRI; pri--; ) 3760 do
3761 {
3762 --pendingpri;
3763
3764 /* pendingpri possibly gets modified in the inner loop */
1969 while (pendingcnt [pri]) 3765 while (pendingcnt [pendingpri])
1970 { 3766 {
1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1972 3768
1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1975
1976 p->w->pending = 0; 3769 p->w->pending = 0;
1977 EV_CB_INVOKE (p->w, p->events); 3770 EV_CB_INVOKE (p->w, p->events);
1978 EV_FREQUENT_CHECK; 3771 EV_FREQUENT_CHECK;
1979 } 3772 }
3773 }
3774 while (pendingpri);
1980} 3775}
1981 3776
1982#if EV_IDLE_ENABLE 3777#if EV_IDLE_ENABLE
1983/* make idle watchers pending. this handles the "call-idle */ 3778/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */ 3779/* only when higher priorities are idle" logic */
1985inline_size void 3780inline_size void
1986idle_reify (EV_P) 3781idle_reify (EV_P)
1987{ 3782{
1988 if (expect_false (idleall)) 3783 if (ecb_expect_false (idleall))
1989 { 3784 {
1990 int pri; 3785 int pri;
1991 3786
1992 for (pri = NUMPRI; pri--; ) 3787 for (pri = NUMPRI; pri--; )
1993 { 3788 {
2023 { 3818 {
2024 ev_at (w) += w->repeat; 3819 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now) 3820 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now; 3821 ev_at (w) = mn_now;
2027 3822
2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3823 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
2029 3824
2030 ANHE_at_cache (timers [HEAP0]); 3825 ANHE_at_cache (timers [HEAP0]);
2031 downheap (timers, timercnt, HEAP0); 3826 downheap (timers, timercnt, HEAP0);
2032 } 3827 }
2033 else 3828 else
2036 EV_FREQUENT_CHECK; 3831 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w); 3832 feed_reverse (EV_A_ (W)w);
2038 } 3833 }
2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 3834 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2040 3835
2041 feed_reverse_done (EV_A_ EV_TIMEOUT); 3836 feed_reverse_done (EV_A_ EV_TIMER);
2042 } 3837 }
2043} 3838}
2044 3839
2045#if EV_PERIODIC_ENABLE 3840#if EV_PERIODIC_ENABLE
3841
3842ecb_noinline
3843static void
3844periodic_recalc (EV_P_ ev_periodic *w)
3845{
3846 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3847 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3848
3849 /* the above almost always errs on the low side */
3850 while (at <= ev_rt_now)
3851 {
3852 ev_tstamp nat = at + w->interval;
3853
3854 /* when resolution fails us, we use ev_rt_now */
3855 if (ecb_expect_false (nat == at))
3856 {
3857 at = ev_rt_now;
3858 break;
3859 }
3860
3861 at = nat;
3862 }
3863
3864 ev_at (w) = at;
3865}
3866
2046/* make periodics pending */ 3867/* make periodics pending */
2047inline_size void 3868inline_size void
2048periodics_reify (EV_P) 3869periodics_reify (EV_P)
2049{ 3870{
2050 EV_FREQUENT_CHECK; 3871 EV_FREQUENT_CHECK;
2051 3872
2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2053 { 3874 {
2054 int feed_count = 0;
2055
2056 do 3875 do
2057 { 3876 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3877 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059 3878
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3879 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2069 ANHE_at_cache (periodics [HEAP0]); 3888 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0); 3889 downheap (periodics, periodiccnt, HEAP0);
2071 } 3890 }
2072 else if (w->interval) 3891 else if (w->interval)
2073 { 3892 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3893 periodic_recalc (EV_A_ w);
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]); 3894 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0); 3895 downheap (periodics, periodiccnt, HEAP0);
2090 } 3896 }
2091 else 3897 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3898 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2099 feed_reverse_done (EV_A_ EV_PERIODIC); 3905 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 } 3906 }
2101} 3907}
2102 3908
2103/* simply recalculate all periodics */ 3909/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */ 3910/* TODO: maybe ensure that at least one event happens when jumping forward? */
2105static void noinline 3911ecb_noinline ecb_cold
3912static void
2106periodics_reschedule (EV_P) 3913periodics_reschedule (EV_P)
2107{ 3914{
2108 int i; 3915 int i;
2109 3916
2110 /* adjust periodics after time jump */ 3917 /* adjust periodics after time jump */
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114 3921
2115 if (w->reschedule_cb) 3922 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval) 3924 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3925 periodic_recalc (EV_A_ w);
2119 3926
2120 ANHE_at_cache (periodics [i]); 3927 ANHE_at_cache (periodics [i]);
2121 } 3928 }
2122 3929
2123 reheap (periodics, periodiccnt); 3930 reheap (periodics, periodiccnt);
2124} 3931}
2125#endif 3932#endif
2126 3933
2127/* adjust all timers by a given offset */ 3934/* adjust all timers by a given offset */
2128static void noinline 3935ecb_noinline ecb_cold
3936static void
2129timers_reschedule (EV_P_ ev_tstamp adjust) 3937timers_reschedule (EV_P_ ev_tstamp adjust)
2130{ 3938{
2131 int i; 3939 int i;
2132 3940
2133 for (i = 0; i < timercnt; ++i) 3941 for (i = 0; i < timercnt; ++i)
2137 ANHE_at_cache (*he); 3945 ANHE_at_cache (*he);
2138 } 3946 }
2139} 3947}
2140 3948
2141/* fetch new monotonic and realtime times from the kernel */ 3949/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */ 3950/* also detect if there was a timejump, and act accordingly */
2143inline_speed void 3951inline_speed void
2144time_update (EV_P_ ev_tstamp max_block) 3952time_update (EV_P_ ev_tstamp max_block)
2145{ 3953{
2146#if EV_USE_MONOTONIC 3954#if EV_USE_MONOTONIC
2147 if (expect_true (have_monotonic)) 3955 if (ecb_expect_true (have_monotonic))
2148 { 3956 {
2149 int i; 3957 int i;
2150 ev_tstamp odiff = rtmn_diff; 3958 ev_tstamp odiff = rtmn_diff;
2151 3959
2152 mn_now = get_clock (); 3960 mn_now = get_clock ();
2153 3961
2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3962 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2155 /* interpolate in the meantime */ 3963 /* interpolate in the meantime */
2156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3964 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
2157 { 3965 {
2158 ev_rt_now = rtmn_diff + mn_now; 3966 ev_rt_now = rtmn_diff + mn_now;
2159 return; 3967 return;
2160 } 3968 }
2161 3969
2170 * doesn't hurt either as we only do this on time-jumps or 3978 * doesn't hurt either as we only do this on time-jumps or
2171 * in the unlikely event of having been preempted here. 3979 * in the unlikely event of having been preempted here.
2172 */ 3980 */
2173 for (i = 4; --i; ) 3981 for (i = 4; --i; )
2174 { 3982 {
3983 ev_tstamp diff;
2175 rtmn_diff = ev_rt_now - mn_now; 3984 rtmn_diff = ev_rt_now - mn_now;
2176 3985
2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3986 diff = odiff - rtmn_diff;
3987
3988 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
2178 return; /* all is well */ 3989 return; /* all is well */
2179 3990
2180 ev_rt_now = ev_time (); 3991 ev_rt_now = ev_time ();
2181 mn_now = get_clock (); 3992 mn_now = get_clock ();
2182 now_floor = mn_now; 3993 now_floor = mn_now;
2191 else 4002 else
2192#endif 4003#endif
2193 { 4004 {
2194 ev_rt_now = ev_time (); 4005 ev_rt_now = ev_time ();
2195 4006
2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4007 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
2197 { 4008 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */ 4009 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now); 4010 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2200#if EV_PERIODIC_ENABLE 4011#if EV_PERIODIC_ENABLE
2201 periodics_reschedule (EV_A); 4012 periodics_reschedule (EV_A);
2204 4015
2205 mn_now = ev_rt_now; 4016 mn_now = ev_rt_now;
2206 } 4017 }
2207} 4018}
2208 4019
2209void 4020int
2210ev_loop (EV_P_ int flags) 4021ev_run (EV_P_ int flags)
2211{ 4022{
2212#if EV_MINIMAL < 2 4023#if EV_FEATURE_API
2213 ++loop_depth; 4024 ++loop_depth;
2214#endif 4025#endif
2215 4026
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE)); 4027 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2217 4028
2218 loop_done = EVUNLOOP_CANCEL; 4029 loop_done = EVBREAK_CANCEL;
2219 4030
2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ 4031 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2221 4032
2222 do 4033 do
2223 { 4034 {
2224#if EV_VERIFY >= 2 4035#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A); 4036 ev_verify (EV_A);
2226#endif 4037#endif
2227 4038
2228#ifndef _WIN32 4039#ifndef _WIN32
2229 if (expect_false (curpid)) /* penalise the forking check even more */ 4040 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
2230 if (expect_false (getpid () != curpid)) 4041 if (ecb_expect_false (getpid () != curpid))
2231 { 4042 {
2232 curpid = getpid (); 4043 curpid = getpid ();
2233 postfork = 1; 4044 postfork = 1;
2234 } 4045 }
2235#endif 4046#endif
2236 4047
2237#if EV_FORK_ENABLE 4048#if EV_FORK_ENABLE
2238 /* we might have forked, so queue fork handlers */ 4049 /* we might have forked, so queue fork handlers */
2239 if (expect_false (postfork)) 4050 if (ecb_expect_false (postfork))
2240 if (forkcnt) 4051 if (forkcnt)
2241 { 4052 {
2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4053 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2243 EV_INVOKE_PENDING; 4054 EV_INVOKE_PENDING;
2244 } 4055 }
2245#endif 4056#endif
2246 4057
4058#if EV_PREPARE_ENABLE
2247 /* queue prepare watchers (and execute them) */ 4059 /* queue prepare watchers (and execute them) */
2248 if (expect_false (preparecnt)) 4060 if (ecb_expect_false (preparecnt))
2249 { 4061 {
2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2251 EV_INVOKE_PENDING; 4063 EV_INVOKE_PENDING;
2252 } 4064 }
4065#endif
2253 4066
2254 if (expect_false (loop_done)) 4067 if (ecb_expect_false (loop_done))
2255 break; 4068 break;
2256 4069
2257 /* we might have forked, so reify kernel state if necessary */ 4070 /* we might have forked, so reify kernel state if necessary */
2258 if (expect_false (postfork)) 4071 if (ecb_expect_false (postfork))
2259 loop_fork (EV_A); 4072 loop_fork (EV_A);
2260 4073
2261 /* update fd-related kernel structures */ 4074 /* update fd-related kernel structures */
2262 fd_reify (EV_A); 4075 fd_reify (EV_A);
2263 4076
2264 /* calculate blocking time */ 4077 /* calculate blocking time */
2265 { 4078 {
2266 ev_tstamp waittime = 0.; 4079 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.; 4080 ev_tstamp sleeptime = 0.;
2268 4081
4082 /* remember old timestamp for io_blocktime calculation */
4083 ev_tstamp prev_mn_now = mn_now;
4084
4085 /* update time to cancel out callback processing overhead */
4086 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4087
4088 /* from now on, we want a pipe-wake-up */
4089 pipe_write_wanted = 1;
4090
4091 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4092
2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4093 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2270 { 4094 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
2274 /* update time to cancel out callback processing overhead */
2275 time_update (EV_A_ 1e100);
2276
2277 waittime = MAX_BLOCKTIME; 4095 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4096
4097#if EV_USE_TIMERFD
4098 /* sleep a lot longer when we can reliably detect timejumps */
4099 if (ecb_expect_true (timerfd >= 0))
4100 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4101#endif
4102#if !EV_PERIODIC_ENABLE
4103 /* without periodics but with monotonic clock there is no need */
4104 /* for any time jump detection, so sleep longer */
4105 if (ecb_expect_true (have_monotonic))
4106 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4107#endif
2278 4108
2279 if (timercnt) 4109 if (timercnt)
2280 { 4110 {
2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 4111 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2282 if (waittime > to) waittime = to; 4112 if (waittime > to) waittime = to;
2283 } 4113 }
2284 4114
2285#if EV_PERIODIC_ENABLE 4115#if EV_PERIODIC_ENABLE
2286 if (periodiccnt) 4116 if (periodiccnt)
2287 { 4117 {
2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 4118 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2289 if (waittime > to) waittime = to; 4119 if (waittime > to) waittime = to;
2290 } 4120 }
2291#endif 4121#endif
2292 4122
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */ 4123 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime)) 4124 if (ecb_expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime; 4125 waittime = timeout_blocktime;
2296 4126
4127 /* now there are two more special cases left, either we have
4128 * already-expired timers, so we should not sleep, or we have timers
4129 * that expire very soon, in which case we need to wait for a minimum
4130 * amount of time for some event loop backends.
4131 */
4132 if (ecb_expect_false (waittime < backend_mintime))
4133 waittime = waittime <= EV_TS_CONST (0.)
4134 ? EV_TS_CONST (0.)
4135 : backend_mintime;
4136
2297 /* extra check because io_blocktime is commonly 0 */ 4137 /* extra check because io_blocktime is commonly 0 */
2298 if (expect_false (io_blocktime)) 4138 if (ecb_expect_false (io_blocktime))
2299 { 4139 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now); 4140 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301 4141
2302 if (sleeptime > waittime - backend_fudge) 4142 if (sleeptime > waittime - backend_mintime)
2303 sleeptime = waittime - backend_fudge; 4143 sleeptime = waittime - backend_mintime;
2304 4144
2305 if (expect_true (sleeptime > 0.)) 4145 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
2306 { 4146 {
2307 ev_sleep (sleeptime); 4147 ev_sleep (sleeptime);
2308 waittime -= sleeptime; 4148 waittime -= sleeptime;
2309 } 4149 }
2310 } 4150 }
2311 } 4151 }
2312 4152
2313#if EV_MINIMAL < 2 4153#if EV_FEATURE_API
2314 ++loop_count; 4154 ++loop_count;
2315#endif 4155#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */ 4156 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2317 backend_poll (EV_A_ waittime); 4157 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */ 4158 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4159
4160 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4161
4162 ECB_MEMORY_FENCE_ACQUIRE;
4163 if (pipe_write_skipped)
4164 {
4165 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4166 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4167 }
2319 4168
2320 /* update ev_rt_now, do magic */ 4169 /* update ev_rt_now, do magic */
2321 time_update (EV_A_ waittime + sleeptime); 4170 time_update (EV_A_ waittime + sleeptime);
2322 } 4171 }
2323 4172
2330#if EV_IDLE_ENABLE 4179#if EV_IDLE_ENABLE
2331 /* queue idle watchers unless other events are pending */ 4180 /* queue idle watchers unless other events are pending */
2332 idle_reify (EV_A); 4181 idle_reify (EV_A);
2333#endif 4182#endif
2334 4183
4184#if EV_CHECK_ENABLE
2335 /* queue check watchers, to be executed first */ 4185 /* queue check watchers, to be executed first */
2336 if (expect_false (checkcnt)) 4186 if (ecb_expect_false (checkcnt))
2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4187 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4188#endif
2338 4189
2339 EV_INVOKE_PENDING; 4190 EV_INVOKE_PENDING;
2340 } 4191 }
2341 while (expect_true ( 4192 while (ecb_expect_true (
2342 activecnt 4193 activecnt
2343 && !loop_done 4194 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4195 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2345 )); 4196 ));
2346 4197
2347 if (loop_done == EVUNLOOP_ONE) 4198 if (loop_done == EVBREAK_ONE)
2348 loop_done = EVUNLOOP_CANCEL; 4199 loop_done = EVBREAK_CANCEL;
2349 4200
2350#if EV_MINIMAL < 2 4201#if EV_FEATURE_API
2351 --loop_depth; 4202 --loop_depth;
2352#endif 4203#endif
4204
4205 return activecnt;
2353} 4206}
2354 4207
2355void 4208void
2356ev_unloop (EV_P_ int how) 4209ev_break (EV_P_ int how) EV_NOEXCEPT
2357{ 4210{
2358 loop_done = how; 4211 loop_done = how;
2359} 4212}
2360 4213
2361void 4214void
2362ev_ref (EV_P) 4215ev_ref (EV_P) EV_NOEXCEPT
2363{ 4216{
2364 ++activecnt; 4217 ++activecnt;
2365} 4218}
2366 4219
2367void 4220void
2368ev_unref (EV_P) 4221ev_unref (EV_P) EV_NOEXCEPT
2369{ 4222{
2370 --activecnt; 4223 --activecnt;
2371} 4224}
2372 4225
2373void 4226void
2374ev_now_update (EV_P) 4227ev_now_update (EV_P) EV_NOEXCEPT
2375{ 4228{
2376 time_update (EV_A_ 1e100); 4229 time_update (EV_A_ EV_TSTAMP_HUGE);
2377} 4230}
2378 4231
2379void 4232void
2380ev_suspend (EV_P) 4233ev_suspend (EV_P) EV_NOEXCEPT
2381{ 4234{
2382 ev_now_update (EV_A); 4235 ev_now_update (EV_A);
2383} 4236}
2384 4237
2385void 4238void
2386ev_resume (EV_P) 4239ev_resume (EV_P) EV_NOEXCEPT
2387{ 4240{
2388 ev_tstamp mn_prev = mn_now; 4241 ev_tstamp mn_prev = mn_now;
2389 4242
2390 ev_now_update (EV_A); 4243 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev); 4244 timers_reschedule (EV_A_ mn_now - mn_prev);
2408inline_size void 4261inline_size void
2409wlist_del (WL *head, WL elem) 4262wlist_del (WL *head, WL elem)
2410{ 4263{
2411 while (*head) 4264 while (*head)
2412 { 4265 {
2413 if (expect_true (*head == elem)) 4266 if (ecb_expect_true (*head == elem))
2414 { 4267 {
2415 *head = elem->next; 4268 *head = elem->next;
2416 break; 4269 break;
2417 } 4270 }
2418 4271
2430 w->pending = 0; 4283 w->pending = 0;
2431 } 4284 }
2432} 4285}
2433 4286
2434int 4287int
2435ev_clear_pending (EV_P_ void *w) 4288ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2436{ 4289{
2437 W w_ = (W)w; 4290 W w_ = (W)w;
2438 int pending = w_->pending; 4291 int pending = w_->pending;
2439 4292
2440 if (expect_true (pending)) 4293 if (ecb_expect_true (pending))
2441 { 4294 {
2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4295 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w; 4296 p->w = (W)&pending_w;
2444 w_->pending = 0; 4297 w_->pending = 0;
2445 return p->events; 4298 return p->events;
2472 w->active = 0; 4325 w->active = 0;
2473} 4326}
2474 4327
2475/*****************************************************************************/ 4328/*****************************************************************************/
2476 4329
2477void noinline 4330ecb_noinline
4331void
2478ev_io_start (EV_P_ ev_io *w) 4332ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2479{ 4333{
2480 int fd = w->fd; 4334 int fd = w->fd;
2481 4335
2482 if (expect_false (ev_is_active (w))) 4336 if (ecb_expect_false (ev_is_active (w)))
2483 return; 4337 return;
2484 4338
2485 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 4339 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 4340 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487 4341
4342#if EV_VERIFY >= 2
4343 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4344#endif
2488 EV_FREQUENT_CHECK; 4345 EV_FREQUENT_CHECK;
2489 4346
2490 ev_start (EV_A_ (W)w, 1); 4347 ev_start (EV_A_ (W)w, 1);
2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4348 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2492 wlist_add (&anfds[fd].head, (WL)w); 4349 wlist_add (&anfds[fd].head, (WL)w);
4350
4351 /* common bug, apparently */
4352 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
2493 4353
2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); 4354 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2495 w->events &= ~EV__IOFDSET; 4355 w->events &= ~EV__IOFDSET;
2496 4356
2497 EV_FREQUENT_CHECK; 4357 EV_FREQUENT_CHECK;
2498} 4358}
2499 4359
2500void noinline 4360ecb_noinline
4361void
2501ev_io_stop (EV_P_ ev_io *w) 4362ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2502{ 4363{
2503 clear_pending (EV_A_ (W)w); 4364 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 4365 if (ecb_expect_false (!ev_is_active (w)))
2505 return; 4366 return;
2506 4367
2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4368 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508 4369
4370#if EV_VERIFY >= 2
4371 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4372#endif
2509 EV_FREQUENT_CHECK; 4373 EV_FREQUENT_CHECK;
2510 4374
2511 wlist_del (&anfds[w->fd].head, (WL)w); 4375 wlist_del (&anfds[w->fd].head, (WL)w);
2512 ev_stop (EV_A_ (W)w); 4376 ev_stop (EV_A_ (W)w);
2513 4377
2514 fd_change (EV_A_ w->fd, 1); 4378 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2515 4379
2516 EV_FREQUENT_CHECK; 4380 EV_FREQUENT_CHECK;
2517} 4381}
2518 4382
2519void noinline 4383ecb_noinline
4384void
2520ev_timer_start (EV_P_ ev_timer *w) 4385ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2521{ 4386{
2522 if (expect_false (ev_is_active (w))) 4387 if (ecb_expect_false (ev_is_active (w)))
2523 return; 4388 return;
2524 4389
2525 ev_at (w) += mn_now; 4390 ev_at (w) += mn_now;
2526 4391
2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4392 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2528 4393
2529 EV_FREQUENT_CHECK; 4394 EV_FREQUENT_CHECK;
2530 4395
2531 ++timercnt; 4396 ++timercnt;
2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4397 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4398 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2534 ANHE_w (timers [ev_active (w)]) = (WT)w; 4399 ANHE_w (timers [ev_active (w)]) = (WT)w;
2535 ANHE_at_cache (timers [ev_active (w)]); 4400 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w)); 4401 upheap (timers, ev_active (w));
2537 4402
2538 EV_FREQUENT_CHECK; 4403 EV_FREQUENT_CHECK;
2539 4404
2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4405 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2541} 4406}
2542 4407
2543void noinline 4408ecb_noinline
4409void
2544ev_timer_stop (EV_P_ ev_timer *w) 4410ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2545{ 4411{
2546 clear_pending (EV_A_ (W)w); 4412 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 4413 if (ecb_expect_false (!ev_is_active (w)))
2548 return; 4414 return;
2549 4415
2550 EV_FREQUENT_CHECK; 4416 EV_FREQUENT_CHECK;
2551 4417
2552 { 4418 {
2554 4420
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4421 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556 4422
2557 --timercnt; 4423 --timercnt;
2558 4424
2559 if (expect_true (active < timercnt + HEAP0)) 4425 if (ecb_expect_true (active < timercnt + HEAP0))
2560 { 4426 {
2561 timers [active] = timers [timercnt + HEAP0]; 4427 timers [active] = timers [timercnt + HEAP0];
2562 adjustheap (timers, timercnt, active); 4428 adjustheap (timers, timercnt, active);
2563 } 4429 }
2564 } 4430 }
2565 4431
4432 ev_at (w) -= mn_now;
4433
4434 ev_stop (EV_A_ (W)w);
4435
2566 EV_FREQUENT_CHECK; 4436 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
2569
2570 ev_stop (EV_A_ (W)w);
2571} 4437}
2572 4438
2573void noinline 4439ecb_noinline
4440void
2574ev_timer_again (EV_P_ ev_timer *w) 4441ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2575{ 4442{
2576 EV_FREQUENT_CHECK; 4443 EV_FREQUENT_CHECK;
4444
4445 clear_pending (EV_A_ (W)w);
2577 4446
2578 if (ev_is_active (w)) 4447 if (ev_is_active (w))
2579 { 4448 {
2580 if (w->repeat) 4449 if (w->repeat)
2581 { 4450 {
2594 4463
2595 EV_FREQUENT_CHECK; 4464 EV_FREQUENT_CHECK;
2596} 4465}
2597 4466
2598ev_tstamp 4467ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w) 4468ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
2600{ 4469{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); 4470 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
2602} 4471}
2603 4472
2604#if EV_PERIODIC_ENABLE 4473#if EV_PERIODIC_ENABLE
2605void noinline 4474ecb_noinline
4475void
2606ev_periodic_start (EV_P_ ev_periodic *w) 4476ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2607{ 4477{
2608 if (expect_false (ev_is_active (w))) 4478 if (ecb_expect_false (ev_is_active (w)))
2609 return; 4479 return;
4480
4481#if EV_USE_TIMERFD
4482 if (timerfd == -2)
4483 evtimerfd_init (EV_A);
4484#endif
2610 4485
2611 if (w->reschedule_cb) 4486 if (w->reschedule_cb)
2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4487 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2613 else if (w->interval) 4488 else if (w->interval)
2614 { 4489 {
2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4490 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2616 /* this formula differs from the one in periodic_reify because we do not always round up */ 4491 periodic_recalc (EV_A_ w);
2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2618 } 4492 }
2619 else 4493 else
2620 ev_at (w) = w->offset; 4494 ev_at (w) = w->offset;
2621 4495
2622 EV_FREQUENT_CHECK; 4496 EV_FREQUENT_CHECK;
2623 4497
2624 ++periodiccnt; 4498 ++periodiccnt;
2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4499 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4500 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2627 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4501 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2628 ANHE_at_cache (periodics [ev_active (w)]); 4502 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w)); 4503 upheap (periodics, ev_active (w));
2630 4504
2631 EV_FREQUENT_CHECK; 4505 EV_FREQUENT_CHECK;
2632 4506
2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4507 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2634} 4508}
2635 4509
2636void noinline 4510ecb_noinline
4511void
2637ev_periodic_stop (EV_P_ ev_periodic *w) 4512ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2638{ 4513{
2639 clear_pending (EV_A_ (W)w); 4514 clear_pending (EV_A_ (W)w);
2640 if (expect_false (!ev_is_active (w))) 4515 if (ecb_expect_false (!ev_is_active (w)))
2641 return; 4516 return;
2642 4517
2643 EV_FREQUENT_CHECK; 4518 EV_FREQUENT_CHECK;
2644 4519
2645 { 4520 {
2647 4522
2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4523 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2649 4524
2650 --periodiccnt; 4525 --periodiccnt;
2651 4526
2652 if (expect_true (active < periodiccnt + HEAP0)) 4527 if (ecb_expect_true (active < periodiccnt + HEAP0))
2653 { 4528 {
2654 periodics [active] = periodics [periodiccnt + HEAP0]; 4529 periodics [active] = periodics [periodiccnt + HEAP0];
2655 adjustheap (periodics, periodiccnt, active); 4530 adjustheap (periodics, periodiccnt, active);
2656 } 4531 }
2657 } 4532 }
2658 4533
4534 ev_stop (EV_A_ (W)w);
4535
2659 EV_FREQUENT_CHECK; 4536 EV_FREQUENT_CHECK;
2660
2661 ev_stop (EV_A_ (W)w);
2662} 4537}
2663 4538
2664void noinline 4539ecb_noinline
4540void
2665ev_periodic_again (EV_P_ ev_periodic *w) 4541ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2666{ 4542{
2667 /* TODO: use adjustheap and recalculation */ 4543 /* TODO: use adjustheap and recalculation */
2668 ev_periodic_stop (EV_A_ w); 4544 ev_periodic_stop (EV_A_ w);
2669 ev_periodic_start (EV_A_ w); 4545 ev_periodic_start (EV_A_ w);
2670} 4546}
2672 4548
2673#ifndef SA_RESTART 4549#ifndef SA_RESTART
2674# define SA_RESTART 0 4550# define SA_RESTART 0
2675#endif 4551#endif
2676 4552
2677void noinline 4553#if EV_SIGNAL_ENABLE
4554
4555ecb_noinline
4556void
2678ev_signal_start (EV_P_ ev_signal *w) 4557ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2679{ 4558{
2680 if (expect_false (ev_is_active (w))) 4559 if (ecb_expect_false (ev_is_active (w)))
2681 return; 4560 return;
2682 4561
2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); 4562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2684 4563
2685#if EV_MULTIPLICITY 4564#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops", 4565 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); 4566 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688 4567
2689 signals [w->signum - 1].loop = EV_A; 4568 signals [w->signum - 1].loop = EV_A;
4569 ECB_MEMORY_FENCE_RELEASE;
2690#endif 4570#endif
2691 4571
2692 EV_FREQUENT_CHECK; 4572 EV_FREQUENT_CHECK;
2693 4573
2694#if EV_USE_SIGNALFD 4574#if EV_USE_SIGNALFD
2727 if (!((WL)w)->next) 4607 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD 4608# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/ 4609 if (sigfd < 0) /*TODO*/
2730# endif 4610# endif
2731 { 4611 {
2732# if _WIN32 4612# ifdef _WIN32
4613 evpipe_init (EV_A);
4614
2733 signal (w->signum, ev_sighandler); 4615 signal (w->signum, ev_sighandler);
2734# else 4616# else
2735 struct sigaction sa; 4617 struct sigaction sa;
2736 4618
2737 evpipe_init (EV_A); 4619 evpipe_init (EV_A);
2739 sa.sa_handler = ev_sighandler; 4621 sa.sa_handler = ev_sighandler;
2740 sigfillset (&sa.sa_mask); 4622 sigfillset (&sa.sa_mask);
2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4623 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2742 sigaction (w->signum, &sa, 0); 4624 sigaction (w->signum, &sa, 0);
2743 4625
4626 if (origflags & EVFLAG_NOSIGMASK)
4627 {
2744 sigemptyset (&sa.sa_mask); 4628 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum); 4629 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); 4630 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4631 }
2747#endif 4632#endif
2748 } 4633 }
2749 4634
2750 EV_FREQUENT_CHECK; 4635 EV_FREQUENT_CHECK;
2751} 4636}
2752 4637
2753void noinline 4638ecb_noinline
4639void
2754ev_signal_stop (EV_P_ ev_signal *w) 4640ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2755{ 4641{
2756 clear_pending (EV_A_ (W)w); 4642 clear_pending (EV_A_ (W)w);
2757 if (expect_false (!ev_is_active (w))) 4643 if (ecb_expect_false (!ev_is_active (w)))
2758 return; 4644 return;
2759 4645
2760 EV_FREQUENT_CHECK; 4646 EV_FREQUENT_CHECK;
2761 4647
2762 wlist_del (&signals [w->signum - 1].head, (WL)w); 4648 wlist_del (&signals [w->signum - 1].head, (WL)w);
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */ 4654 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif 4655#endif
2770#if EV_USE_SIGNALFD 4656#if EV_USE_SIGNALFD
2771 if (sigfd >= 0) 4657 if (sigfd >= 0)
2772 { 4658 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D 4659 sigset_t ss;
4660
4661 sigemptyset (&ss);
4662 sigaddset (&ss, w->signum);
2774 sigdelset (&sigfd_set, w->signum); 4663 sigdelset (&sigfd_set, w->signum);
4664
2775 signalfd (sigfd, &sigfd_set, 0); 4665 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D 4666 sigprocmask (SIG_UNBLOCK, &ss, 0);
2777 /*TODO: maybe unblock signal? */
2778 } 4667 }
2779 else 4668 else
2780#endif 4669#endif
2781 signal (w->signum, SIG_DFL); 4670 signal (w->signum, SIG_DFL);
2782 } 4671 }
2783 4672
2784 EV_FREQUENT_CHECK; 4673 EV_FREQUENT_CHECK;
2785} 4674}
2786 4675
4676#endif
4677
4678#if EV_CHILD_ENABLE
4679
2787void 4680void
2788ev_child_start (EV_P_ ev_child *w) 4681ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2789{ 4682{
2790#if EV_MULTIPLICITY 4683#if EV_MULTIPLICITY
2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4684 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2792#endif 4685#endif
2793 if (expect_false (ev_is_active (w))) 4686 if (ecb_expect_false (ev_is_active (w)))
2794 return; 4687 return;
2795 4688
2796 EV_FREQUENT_CHECK; 4689 EV_FREQUENT_CHECK;
2797 4690
2798 ev_start (EV_A_ (W)w, 1); 4691 ev_start (EV_A_ (W)w, 1);
2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4692 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2800 4693
2801 EV_FREQUENT_CHECK; 4694 EV_FREQUENT_CHECK;
2802} 4695}
2803 4696
2804void 4697void
2805ev_child_stop (EV_P_ ev_child *w) 4698ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2806{ 4699{
2807 clear_pending (EV_A_ (W)w); 4700 clear_pending (EV_A_ (W)w);
2808 if (expect_false (!ev_is_active (w))) 4701 if (ecb_expect_false (!ev_is_active (w)))
2809 return; 4702 return;
2810 4703
2811 EV_FREQUENT_CHECK; 4704 EV_FREQUENT_CHECK;
2812 4705
2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4706 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2814 ev_stop (EV_A_ (W)w); 4707 ev_stop (EV_A_ (W)w);
2815 4708
2816 EV_FREQUENT_CHECK; 4709 EV_FREQUENT_CHECK;
2817} 4710}
4711
4712#endif
2818 4713
2819#if EV_STAT_ENABLE 4714#if EV_STAT_ENABLE
2820 4715
2821# ifdef _WIN32 4716# ifdef _WIN32
2822# undef lstat 4717# undef lstat
2825 4720
2826#define DEF_STAT_INTERVAL 5.0074891 4721#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4722#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2828#define MIN_STAT_INTERVAL 0.1074891 4723#define MIN_STAT_INTERVAL 0.1074891
2829 4724
2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4725ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2831 4726
2832#if EV_USE_INOTIFY 4727#if EV_USE_INOTIFY
2833# define EV_INOTIFY_BUFSIZE 8192
2834 4728
2835static void noinline 4729/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4730# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4731
4732ecb_noinline
4733static void
2836infy_add (EV_P_ ev_stat *w) 4734infy_add (EV_P_ ev_stat *w)
2837{ 4735{
2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4736 w->wd = inotify_add_watch (fs_fd, w->path,
4737 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4738 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4739 | IN_DONT_FOLLOW | IN_MASK_ADD);
2839 4740
2840 if (w->wd < 0) 4741 if (w->wd >= 0)
4742 {
4743 struct statfs sfs;
4744
4745 /* now local changes will be tracked by inotify, but remote changes won't */
4746 /* unless the filesystem is known to be local, we therefore still poll */
4747 /* also do poll on <2.6.25, but with normal frequency */
4748
4749 if (!fs_2625)
4750 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4751 else if (!statfs (w->path, &sfs)
4752 && (sfs.f_type == 0x1373 /* devfs */
4753 || sfs.f_type == 0x4006 /* fat */
4754 || sfs.f_type == 0x4d44 /* msdos */
4755 || sfs.f_type == 0xEF53 /* ext2/3 */
4756 || sfs.f_type == 0x72b6 /* jffs2 */
4757 || sfs.f_type == 0x858458f6 /* ramfs */
4758 || sfs.f_type == 0x5346544e /* ntfs */
4759 || sfs.f_type == 0x3153464a /* jfs */
4760 || sfs.f_type == 0x9123683e /* btrfs */
4761 || sfs.f_type == 0x52654973 /* reiser3 */
4762 || sfs.f_type == 0x01021994 /* tmpfs */
4763 || sfs.f_type == 0x58465342 /* xfs */))
4764 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4765 else
4766 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2841 { 4767 }
4768 else
4769 {
4770 /* can't use inotify, continue to stat */
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4771 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2844 4772
2845 /* monitor some parent directory for speedup hints */ 4773 /* if path is not there, monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4774 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */ 4775 /* but an efficiency issue only */
2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4776 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2849 { 4777 {
2850 char path [4096]; 4778 char path [4096];
2860 if (!pend || pend == path) 4788 if (!pend || pend == path)
2861 break; 4789 break;
2862 4790
2863 *pend = 0; 4791 *pend = 0;
2864 w->wd = inotify_add_watch (fs_fd, path, mask); 4792 w->wd = inotify_add_watch (fs_fd, path, mask);
2865 } 4793 }
2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4794 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2867 } 4795 }
2868 } 4796 }
2869 4797
2870 if (w->wd >= 0) 4798 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4799 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2875 4800
2876 /* now local changes will be tracked by inotify, but remote changes won't */ 4801 /* now re-arm timer, if required */
2877 /* unless the filesystem it known to be local, we therefore still poll */ 4802 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer); 4803 ev_timer_again (EV_A_ &w->timer);
2891 } 4804 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2892} 4805}
2893 4806
2894static void noinline 4807ecb_noinline
4808static void
2895infy_del (EV_P_ ev_stat *w) 4809infy_del (EV_P_ ev_stat *w)
2896{ 4810{
2897 int slot; 4811 int slot;
2898 int wd = w->wd; 4812 int wd = w->wd;
2899 4813
2900 if (wd < 0) 4814 if (wd < 0)
2901 return; 4815 return;
2902 4816
2903 w->wd = -2; 4817 w->wd = -2;
2904 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4818 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2905 wlist_del (&fs_hash [slot].head, (WL)w); 4819 wlist_del (&fs_hash [slot].head, (WL)w);
2906 4820
2907 /* remove this watcher, if others are watching it, they will rearm */ 4821 /* remove this watcher, if others are watching it, they will rearm */
2908 inotify_rm_watch (fs_fd, wd); 4822 inotify_rm_watch (fs_fd, wd);
2909} 4823}
2910 4824
2911static void noinline 4825ecb_noinline
4826static void
2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4827infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2913{ 4828{
2914 if (slot < 0) 4829 if (slot < 0)
2915 /* overflow, need to check for all hash slots */ 4830 /* overflow, need to check for all hash slots */
2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4831 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2917 infy_wd (EV_A_ slot, wd, ev); 4832 infy_wd (EV_A_ slot, wd, ev);
2918 else 4833 else
2919 { 4834 {
2920 WL w_; 4835 WL w_;
2921 4836
2922 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4837 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2923 { 4838 {
2924 ev_stat *w = (ev_stat *)w_; 4839 ev_stat *w = (ev_stat *)w_;
2925 w_ = w_->next; /* lets us remove this watcher and all before it */ 4840 w_ = w_->next; /* lets us remove this watcher and all before it */
2926 4841
2927 if (w->wd == wd || wd == -1) 4842 if (w->wd == wd || wd == -1)
2928 { 4843 {
2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4844 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2930 { 4845 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4846 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2932 w->wd = -1; 4847 w->wd = -1;
2933 infy_add (EV_A_ w); /* re-add, no matter what */ 4848 infy_add (EV_A_ w); /* re-add, no matter what */
2934 } 4849 }
2935 4850
2936 stat_timer_cb (EV_A_ &w->timer, 0); 4851 stat_timer_cb (EV_A_ &w->timer, 0);
2941 4856
2942static void 4857static void
2943infy_cb (EV_P_ ev_io *w, int revents) 4858infy_cb (EV_P_ ev_io *w, int revents)
2944{ 4859{
2945 char buf [EV_INOTIFY_BUFSIZE]; 4860 char buf [EV_INOTIFY_BUFSIZE];
2946 struct inotify_event *ev = (struct inotify_event *)buf;
2947 int ofs; 4861 int ofs;
2948 int len = read (fs_fd, buf, sizeof (buf)); 4862 int len = read (fs_fd, buf, sizeof (buf));
2949 4863
2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4864 for (ofs = 0; ofs < len; )
4865 {
4866 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2951 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4867 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4868 ofs += sizeof (struct inotify_event) + ev->len;
4869 }
2952} 4870}
2953 4871
2954inline_size void 4872inline_size ecb_cold
4873void
2955check_2625 (EV_P) 4874ev_check_2625 (EV_P)
2956{ 4875{
2957 /* kernels < 2.6.25 are borked 4876 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4877 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */ 4878 */
2960 struct utsname buf; 4879 if (ev_linux_version () < 0x020619)
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return; 4880 return;
2965 4881
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1; 4882 fs_2625 = 1;
4883}
4884
4885inline_size int
4886infy_newfd (void)
4887{
4888#if defined IN_CLOEXEC && defined IN_NONBLOCK
4889 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4890 if (fd >= 0)
4891 return fd;
4892#endif
4893 return inotify_init ();
2975} 4894}
2976 4895
2977inline_size void 4896inline_size void
2978infy_init (EV_P) 4897infy_init (EV_P)
2979{ 4898{
2980 if (fs_fd != -2) 4899 if (fs_fd != -2)
2981 return; 4900 return;
2982 4901
2983 fs_fd = -1; 4902 fs_fd = -1;
2984 4903
2985 check_2625 (EV_A); 4904 ev_check_2625 (EV_A);
2986 4905
2987 fs_fd = inotify_init (); 4906 fs_fd = infy_newfd ();
2988 4907
2989 if (fs_fd >= 0) 4908 if (fs_fd >= 0)
2990 { 4909 {
4910 fd_intern (fs_fd);
2991 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4911 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2992 ev_set_priority (&fs_w, EV_MAXPRI); 4912 ev_set_priority (&fs_w, EV_MAXPRI);
2993 ev_io_start (EV_A_ &fs_w); 4913 ev_io_start (EV_A_ &fs_w);
4914 ev_unref (EV_A);
2994 } 4915 }
2995} 4916}
2996 4917
2997inline_size void 4918inline_size void
2998infy_fork (EV_P) 4919infy_fork (EV_P)
3000 int slot; 4921 int slot;
3001 4922
3002 if (fs_fd < 0) 4923 if (fs_fd < 0)
3003 return; 4924 return;
3004 4925
4926 ev_ref (EV_A);
4927 ev_io_stop (EV_A_ &fs_w);
3005 close (fs_fd); 4928 close (fs_fd);
3006 fs_fd = inotify_init (); 4929 fs_fd = infy_newfd ();
3007 4930
4931 if (fs_fd >= 0)
4932 {
4933 fd_intern (fs_fd);
4934 ev_io_set (&fs_w, fs_fd, EV_READ);
4935 ev_io_start (EV_A_ &fs_w);
4936 ev_unref (EV_A);
4937 }
4938
3008 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4939 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3009 { 4940 {
3010 WL w_ = fs_hash [slot].head; 4941 WL w_ = fs_hash [slot].head;
3011 fs_hash [slot].head = 0; 4942 fs_hash [slot].head = 0;
3012 4943
3013 while (w_) 4944 while (w_)
3018 w->wd = -1; 4949 w->wd = -1;
3019 4950
3020 if (fs_fd >= 0) 4951 if (fs_fd >= 0)
3021 infy_add (EV_A_ w); /* re-add, no matter what */ 4952 infy_add (EV_A_ w); /* re-add, no matter what */
3022 else 4953 else
4954 {
4955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4956 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3023 ev_timer_again (EV_A_ &w->timer); 4957 ev_timer_again (EV_A_ &w->timer);
4958 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4959 }
3024 } 4960 }
3025 } 4961 }
3026} 4962}
3027 4963
3028#endif 4964#endif
3032#else 4968#else
3033# define EV_LSTAT(p,b) lstat (p, b) 4969# define EV_LSTAT(p,b) lstat (p, b)
3034#endif 4970#endif
3035 4971
3036void 4972void
3037ev_stat_stat (EV_P_ ev_stat *w) 4973ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
3038{ 4974{
3039 if (lstat (w->path, &w->attr) < 0) 4975 if (lstat (w->path, &w->attr) < 0)
3040 w->attr.st_nlink = 0; 4976 w->attr.st_nlink = 0;
3041 else if (!w->attr.st_nlink) 4977 else if (!w->attr.st_nlink)
3042 w->attr.st_nlink = 1; 4978 w->attr.st_nlink = 1;
3043} 4979}
3044 4980
3045static void noinline 4981ecb_noinline
4982static void
3046stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4983stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3047{ 4984{
3048 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4985 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3049 4986
3050 /* we copy this here each the time so that */ 4987 ev_statdata prev = w->attr;
3051 /* prev has the old value when the callback gets invoked */
3052 w->prev = w->attr;
3053 ev_stat_stat (EV_A_ w); 4988 ev_stat_stat (EV_A_ w);
3054 4989
3055 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4990 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3056 if ( 4991 if (
3057 w->prev.st_dev != w->attr.st_dev 4992 prev.st_dev != w->attr.st_dev
3058 || w->prev.st_ino != w->attr.st_ino 4993 || prev.st_ino != w->attr.st_ino
3059 || w->prev.st_mode != w->attr.st_mode 4994 || prev.st_mode != w->attr.st_mode
3060 || w->prev.st_nlink != w->attr.st_nlink 4995 || prev.st_nlink != w->attr.st_nlink
3061 || w->prev.st_uid != w->attr.st_uid 4996 || prev.st_uid != w->attr.st_uid
3062 || w->prev.st_gid != w->attr.st_gid 4997 || prev.st_gid != w->attr.st_gid
3063 || w->prev.st_rdev != w->attr.st_rdev 4998 || prev.st_rdev != w->attr.st_rdev
3064 || w->prev.st_size != w->attr.st_size 4999 || prev.st_size != w->attr.st_size
3065 || w->prev.st_atime != w->attr.st_atime 5000 || prev.st_atime != w->attr.st_atime
3066 || w->prev.st_mtime != w->attr.st_mtime 5001 || prev.st_mtime != w->attr.st_mtime
3067 || w->prev.st_ctime != w->attr.st_ctime 5002 || prev.st_ctime != w->attr.st_ctime
3068 ) { 5003 ) {
5004 /* we only update w->prev on actual differences */
5005 /* in case we test more often than invoke the callback, */
5006 /* to ensure that prev is always different to attr */
5007 w->prev = prev;
5008
3069 #if EV_USE_INOTIFY 5009 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0) 5010 if (fs_fd >= 0)
3071 { 5011 {
3072 infy_del (EV_A_ w); 5012 infy_del (EV_A_ w);
3073 infy_add (EV_A_ w); 5013 infy_add (EV_A_ w);
3078 ev_feed_event (EV_A_ w, EV_STAT); 5018 ev_feed_event (EV_A_ w, EV_STAT);
3079 } 5019 }
3080} 5020}
3081 5021
3082void 5022void
3083ev_stat_start (EV_P_ ev_stat *w) 5023ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
3084{ 5024{
3085 if (expect_false (ev_is_active (w))) 5025 if (ecb_expect_false (ev_is_active (w)))
3086 return; 5026 return;
3087 5027
3088 ev_stat_stat (EV_A_ w); 5028 ev_stat_stat (EV_A_ w);
3089 5029
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval) 5030 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3098 5038
3099 if (fs_fd >= 0) 5039 if (fs_fd >= 0)
3100 infy_add (EV_A_ w); 5040 infy_add (EV_A_ w);
3101 else 5041 else
3102#endif 5042#endif
5043 {
3103 ev_timer_again (EV_A_ &w->timer); 5044 ev_timer_again (EV_A_ &w->timer);
5045 ev_unref (EV_A);
5046 }
3104 5047
3105 ev_start (EV_A_ (W)w, 1); 5048 ev_start (EV_A_ (W)w, 1);
3106 5049
3107 EV_FREQUENT_CHECK; 5050 EV_FREQUENT_CHECK;
3108} 5051}
3109 5052
3110void 5053void
3111ev_stat_stop (EV_P_ ev_stat *w) 5054ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
3112{ 5055{
3113 clear_pending (EV_A_ (W)w); 5056 clear_pending (EV_A_ (W)w);
3114 if (expect_false (!ev_is_active (w))) 5057 if (ecb_expect_false (!ev_is_active (w)))
3115 return; 5058 return;
3116 5059
3117 EV_FREQUENT_CHECK; 5060 EV_FREQUENT_CHECK;
3118 5061
3119#if EV_USE_INOTIFY 5062#if EV_USE_INOTIFY
3120 infy_del (EV_A_ w); 5063 infy_del (EV_A_ w);
3121#endif 5064#endif
5065
5066 if (ev_is_active (&w->timer))
5067 {
5068 ev_ref (EV_A);
3122 ev_timer_stop (EV_A_ &w->timer); 5069 ev_timer_stop (EV_A_ &w->timer);
5070 }
3123 5071
3124 ev_stop (EV_A_ (W)w); 5072 ev_stop (EV_A_ (W)w);
3125 5073
3126 EV_FREQUENT_CHECK; 5074 EV_FREQUENT_CHECK;
3127} 5075}
3128#endif 5076#endif
3129 5077
3130#if EV_IDLE_ENABLE 5078#if EV_IDLE_ENABLE
3131void 5079void
3132ev_idle_start (EV_P_ ev_idle *w) 5080ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
3133{ 5081{
3134 if (expect_false (ev_is_active (w))) 5082 if (ecb_expect_false (ev_is_active (w)))
3135 return; 5083 return;
3136 5084
3137 pri_adjust (EV_A_ (W)w); 5085 pri_adjust (EV_A_ (W)w);
3138 5086
3139 EV_FREQUENT_CHECK; 5087 EV_FREQUENT_CHECK;
3142 int active = ++idlecnt [ABSPRI (w)]; 5090 int active = ++idlecnt [ABSPRI (w)];
3143 5091
3144 ++idleall; 5092 ++idleall;
3145 ev_start (EV_A_ (W)w, active); 5093 ev_start (EV_A_ (W)w, active);
3146 5094
3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5095 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
3148 idles [ABSPRI (w)][active - 1] = w; 5096 idles [ABSPRI (w)][active - 1] = w;
3149 } 5097 }
3150 5098
3151 EV_FREQUENT_CHECK; 5099 EV_FREQUENT_CHECK;
3152} 5100}
3153 5101
3154void 5102void
3155ev_idle_stop (EV_P_ ev_idle *w) 5103ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
3156{ 5104{
3157 clear_pending (EV_A_ (W)w); 5105 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w))) 5106 if (ecb_expect_false (!ev_is_active (w)))
3159 return; 5107 return;
3160 5108
3161 EV_FREQUENT_CHECK; 5109 EV_FREQUENT_CHECK;
3162 5110
3163 { 5111 {
3172 5120
3173 EV_FREQUENT_CHECK; 5121 EV_FREQUENT_CHECK;
3174} 5122}
3175#endif 5123#endif
3176 5124
5125#if EV_PREPARE_ENABLE
3177void 5126void
3178ev_prepare_start (EV_P_ ev_prepare *w) 5127ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
3179{ 5128{
3180 if (expect_false (ev_is_active (w))) 5129 if (ecb_expect_false (ev_is_active (w)))
3181 return; 5130 return;
3182 5131
3183 EV_FREQUENT_CHECK; 5132 EV_FREQUENT_CHECK;
3184 5133
3185 ev_start (EV_A_ (W)w, ++preparecnt); 5134 ev_start (EV_A_ (W)w, ++preparecnt);
3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5135 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
3187 prepares [preparecnt - 1] = w; 5136 prepares [preparecnt - 1] = w;
3188 5137
3189 EV_FREQUENT_CHECK; 5138 EV_FREQUENT_CHECK;
3190} 5139}
3191 5140
3192void 5141void
3193ev_prepare_stop (EV_P_ ev_prepare *w) 5142ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
3194{ 5143{
3195 clear_pending (EV_A_ (W)w); 5144 clear_pending (EV_A_ (W)w);
3196 if (expect_false (!ev_is_active (w))) 5145 if (ecb_expect_false (!ev_is_active (w)))
3197 return; 5146 return;
3198 5147
3199 EV_FREQUENT_CHECK; 5148 EV_FREQUENT_CHECK;
3200 5149
3201 { 5150 {
3207 5156
3208 ev_stop (EV_A_ (W)w); 5157 ev_stop (EV_A_ (W)w);
3209 5158
3210 EV_FREQUENT_CHECK; 5159 EV_FREQUENT_CHECK;
3211} 5160}
5161#endif
3212 5162
5163#if EV_CHECK_ENABLE
3213void 5164void
3214ev_check_start (EV_P_ ev_check *w) 5165ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
3215{ 5166{
3216 if (expect_false (ev_is_active (w))) 5167 if (ecb_expect_false (ev_is_active (w)))
3217 return; 5168 return;
3218 5169
3219 EV_FREQUENT_CHECK; 5170 EV_FREQUENT_CHECK;
3220 5171
3221 ev_start (EV_A_ (W)w, ++checkcnt); 5172 ev_start (EV_A_ (W)w, ++checkcnt);
3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5173 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
3223 checks [checkcnt - 1] = w; 5174 checks [checkcnt - 1] = w;
3224 5175
3225 EV_FREQUENT_CHECK; 5176 EV_FREQUENT_CHECK;
3226} 5177}
3227 5178
3228void 5179void
3229ev_check_stop (EV_P_ ev_check *w) 5180ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
3230{ 5181{
3231 clear_pending (EV_A_ (W)w); 5182 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w))) 5183 if (ecb_expect_false (!ev_is_active (w)))
3233 return; 5184 return;
3234 5185
3235 EV_FREQUENT_CHECK; 5186 EV_FREQUENT_CHECK;
3236 5187
3237 { 5188 {
3243 5194
3244 ev_stop (EV_A_ (W)w); 5195 ev_stop (EV_A_ (W)w);
3245 5196
3246 EV_FREQUENT_CHECK; 5197 EV_FREQUENT_CHECK;
3247} 5198}
5199#endif
3248 5200
3249#if EV_EMBED_ENABLE 5201#if EV_EMBED_ENABLE
3250void noinline 5202ecb_noinline
5203void
3251ev_embed_sweep (EV_P_ ev_embed *w) 5204ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
3252{ 5205{
3253 ev_loop (w->other, EVLOOP_NONBLOCK); 5206 ev_run (w->other, EVRUN_NOWAIT);
3254} 5207}
3255 5208
3256static void 5209static void
3257embed_io_cb (EV_P_ ev_io *io, int revents) 5210embed_io_cb (EV_P_ ev_io *io, int revents)
3258{ 5211{
3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5212 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3260 5213
3261 if (ev_cb (w)) 5214 if (ev_cb (w))
3262 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5215 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3263 else 5216 else
3264 ev_loop (w->other, EVLOOP_NONBLOCK); 5217 ev_run (w->other, EVRUN_NOWAIT);
3265} 5218}
3266 5219
3267static void 5220static void
3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5221embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269{ 5222{
3273 EV_P = w->other; 5226 EV_P = w->other;
3274 5227
3275 while (fdchangecnt) 5228 while (fdchangecnt)
3276 { 5229 {
3277 fd_reify (EV_A); 5230 fd_reify (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5231 ev_run (EV_A_ EVRUN_NOWAIT);
3279 } 5232 }
3280 } 5233 }
3281} 5234}
3282 5235
5236#if EV_FORK_ENABLE
3283static void 5237static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 5238embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{ 5239{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 5240 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287 5241
3289 5243
3290 { 5244 {
3291 EV_P = w->other; 5245 EV_P = w->other;
3292 5246
3293 ev_loop_fork (EV_A); 5247 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5248 ev_run (EV_A_ EVRUN_NOWAIT);
3295 } 5249 }
3296 5250
3297 ev_embed_start (EV_A_ w); 5251 ev_embed_start (EV_A_ w);
3298} 5252}
5253#endif
3299 5254
3300#if 0 5255#if 0
3301static void 5256static void
3302embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5257embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303{ 5258{
3304 ev_idle_stop (EV_A_ idle); 5259 ev_idle_stop (EV_A_ idle);
3305} 5260}
3306#endif 5261#endif
3307 5262
3308void 5263void
3309ev_embed_start (EV_P_ ev_embed *w) 5264ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
3310{ 5265{
3311 if (expect_false (ev_is_active (w))) 5266 if (ecb_expect_false (ev_is_active (w)))
3312 return; 5267 return;
3313 5268
3314 { 5269 {
3315 EV_P = w->other; 5270 EV_P = w->other;
3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5271 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3324 5279
3325 ev_prepare_init (&w->prepare, embed_prepare_cb); 5280 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI); 5281 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare); 5282 ev_prepare_start (EV_A_ &w->prepare);
3328 5283
5284#if EV_FORK_ENABLE
3329 ev_fork_init (&w->fork, embed_fork_cb); 5285 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork); 5286 ev_fork_start (EV_A_ &w->fork);
5287#endif
3331 5288
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333 5290
3334 ev_start (EV_A_ (W)w, 1); 5291 ev_start (EV_A_ (W)w, 1);
3335 5292
3336 EV_FREQUENT_CHECK; 5293 EV_FREQUENT_CHECK;
3337} 5294}
3338 5295
3339void 5296void
3340ev_embed_stop (EV_P_ ev_embed *w) 5297ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
3341{ 5298{
3342 clear_pending (EV_A_ (W)w); 5299 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w))) 5300 if (ecb_expect_false (!ev_is_active (w)))
3344 return; 5301 return;
3345 5302
3346 EV_FREQUENT_CHECK; 5303 EV_FREQUENT_CHECK;
3347 5304
3348 ev_io_stop (EV_A_ &w->io); 5305 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare); 5306 ev_prepare_stop (EV_A_ &w->prepare);
5307#if EV_FORK_ENABLE
3350 ev_fork_stop (EV_A_ &w->fork); 5308 ev_fork_stop (EV_A_ &w->fork);
5309#endif
5310
5311 ev_stop (EV_A_ (W)w);
3351 5312
3352 EV_FREQUENT_CHECK; 5313 EV_FREQUENT_CHECK;
3353} 5314}
3354#endif 5315#endif
3355 5316
3356#if EV_FORK_ENABLE 5317#if EV_FORK_ENABLE
3357void 5318void
3358ev_fork_start (EV_P_ ev_fork *w) 5319ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
3359{ 5320{
3360 if (expect_false (ev_is_active (w))) 5321 if (ecb_expect_false (ev_is_active (w)))
3361 return; 5322 return;
3362 5323
3363 EV_FREQUENT_CHECK; 5324 EV_FREQUENT_CHECK;
3364 5325
3365 ev_start (EV_A_ (W)w, ++forkcnt); 5326 ev_start (EV_A_ (W)w, ++forkcnt);
3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5327 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3367 forks [forkcnt - 1] = w; 5328 forks [forkcnt - 1] = w;
3368 5329
3369 EV_FREQUENT_CHECK; 5330 EV_FREQUENT_CHECK;
3370} 5331}
3371 5332
3372void 5333void
3373ev_fork_stop (EV_P_ ev_fork *w) 5334ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3374{ 5335{
3375 clear_pending (EV_A_ (W)w); 5336 clear_pending (EV_A_ (W)w);
3376 if (expect_false (!ev_is_active (w))) 5337 if (ecb_expect_false (!ev_is_active (w)))
3377 return; 5338 return;
3378 5339
3379 EV_FREQUENT_CHECK; 5340 EV_FREQUENT_CHECK;
3380 5341
3381 { 5342 {
3389 5350
3390 EV_FREQUENT_CHECK; 5351 EV_FREQUENT_CHECK;
3391} 5352}
3392#endif 5353#endif
3393 5354
5355#if EV_CLEANUP_ENABLE
5356void
5357ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5358{
5359 if (ecb_expect_false (ev_is_active (w)))
5360 return;
5361
5362 EV_FREQUENT_CHECK;
5363
5364 ev_start (EV_A_ (W)w, ++cleanupcnt);
5365 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5366 cleanups [cleanupcnt - 1] = w;
5367
5368 /* cleanup watchers should never keep a refcount on the loop */
5369 ev_unref (EV_A);
5370 EV_FREQUENT_CHECK;
5371}
5372
5373void
5374ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5375{
5376 clear_pending (EV_A_ (W)w);
5377 if (ecb_expect_false (!ev_is_active (w)))
5378 return;
5379
5380 EV_FREQUENT_CHECK;
5381 ev_ref (EV_A);
5382
5383 {
5384 int active = ev_active (w);
5385
5386 cleanups [active - 1] = cleanups [--cleanupcnt];
5387 ev_active (cleanups [active - 1]) = active;
5388 }
5389
5390 ev_stop (EV_A_ (W)w);
5391
5392 EV_FREQUENT_CHECK;
5393}
5394#endif
5395
3394#if EV_ASYNC_ENABLE 5396#if EV_ASYNC_ENABLE
3395void 5397void
3396ev_async_start (EV_P_ ev_async *w) 5398ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
3397{ 5399{
3398 if (expect_false (ev_is_active (w))) 5400 if (ecb_expect_false (ev_is_active (w)))
3399 return; 5401 return;
3400 5402
5403 w->sent = 0;
5404
3401 evpipe_init (EV_A); 5405 evpipe_init (EV_A);
3402 5406
3403 EV_FREQUENT_CHECK; 5407 EV_FREQUENT_CHECK;
3404 5408
3405 ev_start (EV_A_ (W)w, ++asynccnt); 5409 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5410 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
3407 asyncs [asynccnt - 1] = w; 5411 asyncs [asynccnt - 1] = w;
3408 5412
3409 EV_FREQUENT_CHECK; 5413 EV_FREQUENT_CHECK;
3410} 5414}
3411 5415
3412void 5416void
3413ev_async_stop (EV_P_ ev_async *w) 5417ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
3414{ 5418{
3415 clear_pending (EV_A_ (W)w); 5419 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w))) 5420 if (ecb_expect_false (!ev_is_active (w)))
3417 return; 5421 return;
3418 5422
3419 EV_FREQUENT_CHECK; 5423 EV_FREQUENT_CHECK;
3420 5424
3421 { 5425 {
3429 5433
3430 EV_FREQUENT_CHECK; 5434 EV_FREQUENT_CHECK;
3431} 5435}
3432 5436
3433void 5437void
3434ev_async_send (EV_P_ ev_async *w) 5438ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3435{ 5439{
3436 w->sent = 1; 5440 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending); 5441 evpipe_write (EV_A_ &async_pending);
3438} 5442}
3439#endif 5443#endif
3476 5480
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5481 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3478} 5482}
3479 5483
3480void 5484void
3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5485ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3482{ 5486{
3483 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5487 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3484
3485 if (expect_false (!once))
3486 {
3487 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3488 return;
3489 }
3490 5488
3491 once->cb = cb; 5489 once->cb = cb;
3492 once->arg = arg; 5490 once->arg = arg;
3493 5491
3494 ev_init (&once->io, once_cb_io); 5492 ev_init (&once->io, once_cb_io);
3507} 5505}
3508 5506
3509/*****************************************************************************/ 5507/*****************************************************************************/
3510 5508
3511#if EV_WALK_ENABLE 5509#if EV_WALK_ENABLE
5510ecb_cold
3512void 5511void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5512ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3514{ 5513{
3515 int i, j; 5514 int i, j;
3516 ev_watcher_list *wl, *wn; 5515 ev_watcher_list *wl, *wn;
3517 5516
3518 if (types & (EV_IO | EV_EMBED)) 5517 if (types & (EV_IO | EV_EMBED))
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5560 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif 5561#endif
3563 5562
3564#if EV_IDLE_ENABLE 5563#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE) 5564 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; ) 5565 for (j = NUMPRI; j--; )
3567 for (i = idlecnt [j]; i--; ) 5566 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]); 5567 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif 5568#endif
3570 5569
3571#if EV_FORK_ENABLE 5570#if EV_FORK_ENABLE
3579 if (types & EV_ASYNC) 5578 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; ) 5579 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]); 5580 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif 5581#endif
3583 5582
5583#if EV_PREPARE_ENABLE
3584 if (types & EV_PREPARE) 5584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; ) 5585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE 5586# if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb) 5587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif 5588# endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]); 5589 cb (EV_A_ EV_PREPARE, prepares [i]);
5590#endif
3590 5591
5592#if EV_CHECK_ENABLE
3591 if (types & EV_CHECK) 5593 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; ) 5594 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]); 5595 cb (EV_A_ EV_CHECK, checks [i]);
5596#endif
3594 5597
5598#if EV_SIGNAL_ENABLE
3595 if (types & EV_SIGNAL) 5599 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i) 5600 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; ) 5601 for (wl = signals [i].head; wl; )
3598 { 5602 {
3599 wn = wl->next; 5603 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl); 5604 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn; 5605 wl = wn;
3602 } 5606 }
5607#endif
3603 5608
5609#if EV_CHILD_ENABLE
3604 if (types & EV_CHILD) 5610 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; ) 5611 for (i = (EV_PID_HASHSIZE); i--; )
3606 for (wl = childs [i]; wl; ) 5612 for (wl = childs [i]; wl; )
3607 { 5613 {
3608 wn = wl->next; 5614 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl); 5615 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn; 5616 wl = wn;
3611 } 5617 }
5618#endif
3612/* EV_STAT 0x00001000 /* stat data changed */ 5619/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5620/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614} 5621}
3615#endif 5622#endif
3616 5623
3617#if EV_MULTIPLICITY 5624#if EV_MULTIPLICITY
3618 #include "ev_wrap.h" 5625 #include "ev_wrap.h"
3619#endif 5626#endif
3620 5627
3621#ifdef __cplusplus
3622}
3623#endif
3624

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines