ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
42
43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
73# endif
74
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
81# endif
82
83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
33#endif 107#endif
34 108
35#include <math.h> 109#include <math.h>
36#include <stdlib.h> 110#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 111#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 112#include <stddef.h>
41 113
42#include <stdio.h> 114#include <stdio.h>
43 115
44#include <assert.h> 116#include <assert.h>
45#include <errno.h> 117#include <errno.h>
46#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
47#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
48# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
49#endif 138# endif
50#include <sys/time.h> 139#endif
51#include <time.h>
52 140
53/**/ 141/**/
54 142
55#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
57#endif 149#endif
58 150
59#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
61#endif 153#endif
62 154
63#ifndef EV_USEV_POLL 155#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
65#endif 161#endif
66 162
67#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
69#endif 165#endif
70 166
71#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
73#endif 169#endif
74 170
75#ifndef EV_USE_REALTIME 171#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
77#endif 193#endif
78 194
79/**/ 195/**/
80 196
81#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
86#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
89#endif 205#endif
90 206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
91/**/ 219/**/
92 220
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97
98#include "ev.h"
99 224
100#if __GNUC__ >= 3 225#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 226# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
102# define inline inline 229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
103#else 235#else
104# define expect(expr,value) (expr) 236# define expect(expr,value) (expr)
237# define inline_speed static
105# define inline static 238# define inline_size static
239# define noinline
106#endif 240#endif
107 241
108#define expect_false(expr) expect ((expr) != 0, 0) 242#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 243#define expect_true(expr) expect ((expr) != 0, 1)
110 244
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 246#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 247
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */
250
114typedef struct ev_watcher *W; 251typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 252typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 253typedef ev_watcher_time *WT;
254
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
256
257#ifdef _WIN32
258# include "ev_win32.c"
259#endif
117 260
118/*****************************************************************************/ 261/*****************************************************************************/
119 262
263static void (*syserr_cb)(const char *msg);
264
265void
266ev_set_syserr_cb (void (*cb)(const char *msg))
267{
268 syserr_cb = cb;
269}
270
271static void noinline
272syserr (const char *msg)
273{
274 if (!msg)
275 msg = "(libev) system error";
276
277 if (syserr_cb)
278 syserr_cb (msg);
279 else
280 {
281 perror (msg);
282 abort ();
283 }
284}
285
286static void *(*alloc)(void *ptr, long size);
287
288void
289ev_set_allocator (void *(*cb)(void *ptr, long size))
290{
291 alloc = cb;
292}
293
294inline_speed void *
295ev_realloc (void *ptr, long size)
296{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298
299 if (!ptr && size)
300 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort ();
303 }
304
305 return ptr;
306}
307
308#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0)
310
311/*****************************************************************************/
312
120typedef struct 313typedef struct
121{ 314{
122 struct ev_watcher_list *head; 315 WL head;
123 unsigned char events; 316 unsigned char events;
124 unsigned char reify; 317 unsigned char reify;
318#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle;
320#endif
125} ANFD; 321} ANFD;
126 322
127typedef struct 323typedef struct
128{ 324{
129 W w; 325 W w;
130 int events; 326 int events;
131} ANPENDING; 327} ANPENDING;
132 328
329#if EV_USE_INOTIFY
330typedef struct
331{
332 WL head;
333} ANFS;
334#endif
335
133#ifdef EV_MULTIPLICITY 336#if EV_MULTIPLICITY
337
134struct ev_loop 338 struct ev_loop
135{ 339 {
340 ev_tstamp ev_rt_now;
341 #define ev_rt_now ((loop)->ev_rt_now)
136# define VAR(name,decl) decl 342 #define VAR(name,decl) decl;
137# include "ev_vars.h" 343 #include "ev_vars.h"
138}; 344 #undef VAR
345 };
346 #include "ev_wrap.h"
347
348 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr;
350
139#else 351#else
352
353 ev_tstamp ev_rt_now;
140# define VAR(name,decl) static decl 354 #define VAR(name,decl) static decl;
141# include "ev_vars.h" 355 #include "ev_vars.h"
142#endif
143#undef VAR 356 #undef VAR
357
358 static int ev_default_loop_ptr;
359
360#endif
144 361
145/*****************************************************************************/ 362/*****************************************************************************/
146 363
147inline ev_tstamp 364ev_tstamp
148ev_time (void) 365ev_time (void)
149{ 366{
150#if EV_USE_REALTIME 367#if EV_USE_REALTIME
151 struct timespec ts; 368 struct timespec ts;
152 clock_gettime (CLOCK_REALTIME, &ts); 369 clock_gettime (CLOCK_REALTIME, &ts);
156 gettimeofday (&tv, 0); 373 gettimeofday (&tv, 0);
157 return tv.tv_sec + tv.tv_usec * 1e-6; 374 return tv.tv_sec + tv.tv_usec * 1e-6;
158#endif 375#endif
159} 376}
160 377
161inline ev_tstamp 378ev_tstamp inline_size
162get_clock (void) 379get_clock (void)
163{ 380{
164#if EV_USE_MONOTONIC 381#if EV_USE_MONOTONIC
165 if (expect_true (have_monotonic)) 382 if (expect_true (have_monotonic))
166 { 383 {
171#endif 388#endif
172 389
173 return ev_time (); 390 return ev_time ();
174} 391}
175 392
393#if EV_MULTIPLICITY
176ev_tstamp 394ev_tstamp
177ev_now (EV_P) 395ev_now (EV_P)
178{ 396{
179 return rt_now; 397 return ev_rt_now;
180} 398}
399#endif
181 400
182#define array_roundsize(base,n) ((n) | 4 & ~3) 401#define array_roundsize(type,n) (((n) | 4) & ~3)
183 402
184#define array_needsize(base,cur,cnt,init) \ 403#define array_needsize(type,base,cur,cnt,init) \
185 if (expect_false ((cnt) > cur)) \ 404 if (expect_false ((cnt) > cur)) \
186 { \ 405 { \
187 int newcnt = cur; \ 406 int newcnt = cur; \
188 do \ 407 do \
189 { \ 408 { \
190 newcnt = array_roundsize (base, newcnt << 1); \ 409 newcnt = array_roundsize (type, newcnt << 1); \
191 } \ 410 } \
192 while ((cnt) > newcnt); \ 411 while ((cnt) > newcnt); \
193 \ 412 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \ 413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
195 init (base + cur, newcnt - cur); \ 414 init (base + cur, newcnt - cur); \
196 cur = newcnt; \ 415 cur = newcnt; \
197 } 416 }
417
418#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 }
425
426#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
198 428
199/*****************************************************************************/ 429/*****************************************************************************/
200 430
201static void 431void noinline
432ev_feed_event (EV_P_ void *w, int revents)
433{
434 W w_ = (W)w;
435
436 if (expect_false (w_->pending))
437 {
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
439 return;
440 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446}
447
448void inline_size
449queue_events (EV_P_ W *events, int eventcnt, int type)
450{
451 int i;
452
453 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type);
455}
456
457/*****************************************************************************/
458
459void inline_size
202anfds_init (ANFD *base, int count) 460anfds_init (ANFD *base, int count)
203{ 461{
204 while (count--) 462 while (count--)
205 { 463 {
206 base->head = 0; 464 base->head = 0;
209 467
210 ++base; 468 ++base;
211 } 469 }
212} 470}
213 471
214static void 472void inline_speed
215event (EV_P_ W w, int events)
216{
217 if (w->pending)
218 {
219 pendings [ABSPRI (w)][w->pending - 1].events |= events;
220 return;
221 }
222
223 w->pending = ++pendingcnt [ABSPRI (w)];
224 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
225 pendings [ABSPRI (w)][w->pending - 1].w = w;
226 pendings [ABSPRI (w)][w->pending - 1].events = events;
227}
228
229static void
230queue_events (EV_P_ W *events, int eventcnt, int type)
231{
232 int i;
233
234 for (i = 0; i < eventcnt; ++i)
235 event (EV_A_ events [i], type);
236}
237
238static void
239fd_event (EV_P_ int fd, int events) 473fd_event (EV_P_ int fd, int revents)
240{ 474{
241 ANFD *anfd = anfds + fd; 475 ANFD *anfd = anfds + fd;
242 struct ev_io *w; 476 ev_io *w;
243 477
244 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
245 { 479 {
246 int ev = w->events & events; 480 int ev = w->events & revents;
247 481
248 if (ev) 482 if (ev)
249 event (EV_A_ (W)w, ev); 483 ev_feed_event (EV_A_ (W)w, ev);
250 } 484 }
251} 485}
252 486
253/*****************************************************************************/ 487void
488ev_feed_fd_event (EV_P_ int fd, int revents)
489{
490 fd_event (EV_A_ fd, revents);
491}
254 492
255static void 493void inline_size
256fd_reify (EV_P) 494fd_reify (EV_P)
257{ 495{
258 int i; 496 int i;
259 497
260 for (i = 0; i < fdchangecnt; ++i) 498 for (i = 0; i < fdchangecnt; ++i)
261 { 499 {
262 int fd = fdchanges [i]; 500 int fd = fdchanges [i];
263 ANFD *anfd = anfds + fd; 501 ANFD *anfd = anfds + fd;
264 struct ev_io *w; 502 ev_io *w;
265 503
266 int events = 0; 504 int events = 0;
267 505
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
269 events |= w->events; 507 events |= w->events;
270 508
509#if EV_SELECT_IS_WINSOCKET
510 if (events)
511 {
512 unsigned long argp;
513 anfd->handle = _get_osfhandle (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 }
516#endif
517
271 anfd->reify = 0; 518 anfd->reify = 0;
272 519
273 if (anfd->events != events)
274 {
275 method_modify (EV_A_ fd, anfd->events, events); 520 backend_modify (EV_A_ fd, anfd->events, events);
276 anfd->events = events; 521 anfd->events = events;
277 }
278 } 522 }
279 523
280 fdchangecnt = 0; 524 fdchangecnt = 0;
281} 525}
282 526
283static void 527void inline_size
284fd_change (EV_P_ int fd) 528fd_change (EV_P_ int fd)
285{ 529{
286 if (anfds [fd].reify || fdchangecnt < 0) 530 if (expect_false (anfds [fd].reify))
287 return; 531 return;
288 532
289 anfds [fd].reify = 1; 533 anfds [fd].reify = 1;
290 534
291 ++fdchangecnt; 535 ++fdchangecnt;
292 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
293 fdchanges [fdchangecnt - 1] = fd; 537 fdchanges [fdchangecnt - 1] = fd;
294} 538}
295 539
296static void 540void inline_speed
297fd_kill (EV_P_ int fd) 541fd_kill (EV_P_ int fd)
298{ 542{
299 struct ev_io *w; 543 ev_io *w;
300 544
301 while ((w = (struct ev_io *)anfds [fd].head)) 545 while ((w = (ev_io *)anfds [fd].head))
302 { 546 {
303 ev_io_stop (EV_A_ w); 547 ev_io_stop (EV_A_ w);
304 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 549 }
550}
551
552int inline_size
553fd_valid (int fd)
554{
555#ifdef _WIN32
556 return _get_osfhandle (fd) != -1;
557#else
558 return fcntl (fd, F_GETFD) != -1;
559#endif
306} 560}
307 561
308/* called on EBADF to verify fds */ 562/* called on EBADF to verify fds */
309static void 563static void noinline
310fd_ebadf (EV_P) 564fd_ebadf (EV_P)
311{ 565{
312 int fd; 566 int fd;
313 567
314 for (fd = 0; fd < anfdmax; ++fd) 568 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 569 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 570 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (EV_A_ fd); 571 fd_kill (EV_A_ fd);
318} 572}
319 573
320/* called on ENOMEM in select/poll to kill some fds and retry */ 574/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 575static void noinline
322fd_enomem (EV_P) 576fd_enomem (EV_P)
323{ 577{
324 int fd = anfdmax; 578 int fd;
325 579
326 while (fd--) 580 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 581 if (anfds [fd].events)
328 { 582 {
329 close (fd);
330 fd_kill (EV_A_ fd); 583 fd_kill (EV_A_ fd);
331 return; 584 return;
332 } 585 }
333} 586}
334 587
588/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline
590fd_rearm_all (EV_P)
591{
592 int fd;
593
594 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events)
596 {
597 anfds [fd].events = 0;
598 fd_change (EV_A_ fd);
599 }
600}
601
335/*****************************************************************************/ 602/*****************************************************************************/
336 603
337static void 604void inline_speed
338upheap (WT *timers, int k) 605upheap (WT *heap, int k)
339{ 606{
340 WT w = timers [k]; 607 WT w = heap [k];
341 608
342 while (k && timers [k >> 1]->at > w->at) 609 while (k && heap [k >> 1]->at > w->at)
343 { 610 {
344 timers [k] = timers [k >> 1]; 611 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 612 ((W)heap [k])->active = k + 1;
346 k >>= 1; 613 k >>= 1;
347 } 614 }
348 615
349 timers [k] = w; 616 heap [k] = w;
350 timers [k]->active = k + 1; 617 ((W)heap [k])->active = k + 1;
351 618
352} 619}
353 620
354static void 621void inline_speed
355downheap (WT *timers, int N, int k) 622downheap (WT *heap, int N, int k)
356{ 623{
357 WT w = timers [k]; 624 WT w = heap [k];
358 625
359 while (k < (N >> 1)) 626 while (k < (N >> 1))
360 { 627 {
361 int j = k << 1; 628 int j = k << 1;
362 629
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 631 ++j;
365 632
366 if (w->at <= timers [j]->at) 633 if (w->at <= heap [j]->at)
367 break; 634 break;
368 635
369 timers [k] = timers [j]; 636 heap [k] = heap [j];
370 timers [k]->active = k + 1; 637 ((W)heap [k])->active = k + 1;
371 k = j; 638 k = j;
372 } 639 }
373 640
374 timers [k] = w; 641 heap [k] = w;
375 timers [k]->active = k + 1; 642 ((W)heap [k])->active = k + 1;
643}
644
645void inline_size
646adjustheap (WT *heap, int N, int k)
647{
648 upheap (heap, k);
649 downheap (heap, N, k);
376} 650}
377 651
378/*****************************************************************************/ 652/*****************************************************************************/
379 653
380typedef struct 654typedef struct
381{ 655{
382 struct ev_watcher_list *head; 656 WL head;
383 sig_atomic_t volatile gotsig; 657 sig_atomic_t volatile gotsig;
384} ANSIG; 658} ANSIG;
385 659
386static ANSIG *signals; 660static ANSIG *signals;
387static int signalmax; 661static int signalmax;
388 662
389static int sigpipe [2]; 663static int sigpipe [2];
390static sig_atomic_t volatile gotsig; 664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
391 666
392static void 667void inline_size
393signals_init (ANSIG *base, int count) 668signals_init (ANSIG *base, int count)
394{ 669{
395 while (count--) 670 while (count--)
396 { 671 {
397 base->head = 0; 672 base->head = 0;
402} 677}
403 678
404static void 679static void
405sighandler (int signum) 680sighandler (int signum)
406{ 681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685
407 signals [signum - 1].gotsig = 1; 686 signals [signum - 1].gotsig = 1;
408 687
409 if (!gotsig) 688 if (!gotsig)
410 { 689 {
411 int old_errno = errno; 690 int old_errno = errno;
413 write (sigpipe [1], &signum, 1); 692 write (sigpipe [1], &signum, 1);
414 errno = old_errno; 693 errno = old_errno;
415 } 694 }
416} 695}
417 696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
418static void 717static void
419sigcb (EV_P_ struct ev_io *iow, int revents) 718sigcb (EV_P_ ev_io *iow, int revents)
420{ 719{
421 struct ev_watcher_list *w;
422 int signum; 720 int signum;
423 721
424 read (sigpipe [0], &revents, 1); 722 read (sigpipe [0], &revents, 1);
425 gotsig = 0; 723 gotsig = 0;
426 724
427 for (signum = signalmax; signum--; ) 725 for (signum = signalmax; signum--; )
428 if (signals [signum].gotsig) 726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size
731fd_intern (int fd)
732{
733#ifdef _WIN32
734 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
736#else
737 fcntl (fd, F_SETFD, FD_CLOEXEC);
738 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif
740}
741
742static void noinline
743siginit (EV_P)
744{
745 fd_intern (sigpipe [0]);
746 fd_intern (sigpipe [1]);
747
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */
751}
752
753/*****************************************************************************/
754
755static ev_child *childs [EV_PID_HASHSIZE];
756
757#ifndef _WIN32
758
759static ev_signal childev;
760
761void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
763{
764 ev_child *w;
765
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid)
429 { 768 {
430 signals [signum].gotsig = 0; 769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
431 770 w->rpid = pid;
432 for (w = signals [signum].head; w; w = w->next) 771 w->rstatus = status;
433 event (EV_A_ (W)w, EV_SIGNAL); 772 ev_feed_event (EV_A_ (W)w, EV_CHILD);
434 } 773 }
435} 774}
436
437static void
438siginit (EV_P)
439{
440#ifndef WIN32
441 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
442 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
443
444 /* rather than sort out wether we really need nb, set it */
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif
448
449 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */
452}
453
454/*****************************************************************************/
455
456#ifndef WIN32
457 775
458#ifndef WCONTINUED 776#ifndef WCONTINUED
459# define WCONTINUED 0 777# define WCONTINUED 0
460#endif 778#endif
461 779
462static void 780static void
463child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
464{
465 struct ev_child *w;
466
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid)
469 {
470 w->priority = sw->priority; /* need to do it *now* */
471 w->rpid = pid;
472 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD);
474 }
475}
476
477static void
478childcb (EV_P_ struct ev_signal *sw, int revents) 781childcb (EV_P_ ev_signal *sw, int revents)
479{ 782{
480 int pid, status; 783 int pid, status;
481 784
785 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
482 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 786 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483 { 787 if (!WCONTINUED
788 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return;
791
484 /* make sure we are called again until all childs have been reaped */ 792 /* make sure we are called again until all childs have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */
485 event (EV_A_ (W)sw, EV_SIGNAL); 794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
486 795
487 child_reap (EV_A_ sw, pid, pid, status); 796 child_reap (EV_A_ sw, pid, pid, status);
797 if (EV_PID_HASHSIZE > 1)
488 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
489 }
490} 799}
491 800
492#endif 801#endif
493 802
494/*****************************************************************************/ 803/*****************************************************************************/
495 804
805#if EV_USE_PORT
806# include "ev_port.c"
807#endif
496#if EV_USE_KQUEUE 808#if EV_USE_KQUEUE
497# include "ev_kqueue.c" 809# include "ev_kqueue.c"
498#endif 810#endif
499#if EV_USE_EPOLL 811#if EV_USE_EPOLL
500# include "ev_epoll.c" 812# include "ev_epoll.c"
501#endif 813#endif
502#if EV_USEV_POLL 814#if EV_USE_POLL
503# include "ev_poll.c" 815# include "ev_poll.c"
504#endif 816#endif
505#if EV_USE_SELECT 817#if EV_USE_SELECT
506# include "ev_select.c" 818# include "ev_select.c"
507#endif 819#endif
517{ 829{
518 return EV_VERSION_MINOR; 830 return EV_VERSION_MINOR;
519} 831}
520 832
521/* return true if we are running with elevated privileges and should ignore env variables */ 833/* return true if we are running with elevated privileges and should ignore env variables */
522static int 834int inline_size
523enable_secure (void) 835enable_secure (void)
524{ 836{
525#ifdef WIN32 837#ifdef _WIN32
526 return 0; 838 return 0;
527#else 839#else
528 return getuid () != geteuid () 840 return getuid () != geteuid ()
529 || getgid () != getegid (); 841 || getgid () != getegid ();
530#endif 842#endif
531} 843}
532 844
533int 845unsigned int
534ev_method (EV_P) 846ev_supported_backends (void)
535{ 847{
536 return method; 848 unsigned int flags = 0;
537}
538 849
539int 850 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
540ev_init (EV_P_ int methods) 851 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
541{ 852 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
542#ifdef EV_MULTIPLICITY 853 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
543 memset (loop, 0, sizeof (struct ev_loop)); 854 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
544#endif 855
856 return flags;
857}
545 858
546 if (!method) 859unsigned int
860ev_recommended_backends (void)
861{
862 unsigned int flags = ev_supported_backends ();
863
864#ifndef __NetBSD__
865 /* kqueue is borked on everything but netbsd apparently */
866 /* it usually doesn't work correctly on anything but sockets and pipes */
867 flags &= ~EVBACKEND_KQUEUE;
868#endif
869#ifdef __APPLE__
870 // flags &= ~EVBACKEND_KQUEUE; for documentation
871 flags &= ~EVBACKEND_POLL;
872#endif
873
874 return flags;
875}
876
877unsigned int
878ev_embeddable_backends (void)
879{
880 return EVBACKEND_EPOLL
881 | EVBACKEND_KQUEUE
882 | EVBACKEND_PORT;
883}
884
885unsigned int
886ev_backend (EV_P)
887{
888 return backend;
889}
890
891static void noinline
892loop_init (EV_P_ unsigned int flags)
893{
894 if (!backend)
547 { 895 {
548#if EV_USE_MONOTONIC 896#if EV_USE_MONOTONIC
549 { 897 {
550 struct timespec ts; 898 struct timespec ts;
551 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 899 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552 have_monotonic = 1; 900 have_monotonic = 1;
553 } 901 }
554#endif 902#endif
555 903
556 rt_now = ev_time (); 904 ev_rt_now = ev_time ();
557 mn_now = get_clock (); 905 mn_now = get_clock ();
558 now_floor = mn_now; 906 now_floor = mn_now;
559 diff = rt_now - mn_now; 907 rtmn_diff = ev_rt_now - mn_now;
560 908
561 if (pipe (sigpipe)) 909 if (!(flags & EVFLAG_NOENV)
562 return 0; 910 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS"));
563 913
564 if (methods == EVMETHOD_AUTO) 914 if (!(flags & 0x0000ffffUL))
565 if (!enable_secure () && getenv ("LIBmethodS")) 915 flags |= ev_recommended_backends ();
566 methods = atoi (getenv ("LIBmethodS"));
567 else
568 methods = EVMETHOD_ANY;
569 916
570 method = 0; 917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922
923#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif
571#if EV_USE_KQUEUE 926#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
573#endif 928#endif
574#if EV_USE_EPOLL 929#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 930 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
576#endif 931#endif
577#if EV_USEV_POLL 932#if EV_USE_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 933 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
579#endif 934#endif
580#if EV_USE_SELECT 935#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
582#endif 937#endif
583 938
584 if (method) 939 ev_init (&sigev, sigcb);
940 ev_set_priority (&sigev, EV_MAXPRI);
941 }
942}
943
944static void noinline
945loop_destroy (EV_P)
946{
947 int i;
948
949#if EV_USE_INOTIFY
950 if (fs_fd >= 0)
951 close (fs_fd);
952#endif
953
954 if (backend_fd >= 0)
955 close (backend_fd);
956
957#if EV_USE_PORT
958 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
959#endif
960#if EV_USE_KQUEUE
961 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
962#endif
963#if EV_USE_EPOLL
964 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
965#endif
966#if EV_USE_POLL
967 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
968#endif
969#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif
972
973 for (i = NUMPRI; i--; )
974 array_free (pending, [i]);
975
976 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0);
978 array_free (timer, EMPTY0);
979#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0);
981#endif
982 array_free (idle, EMPTY0);
983 array_free (prepare, EMPTY0);
984 array_free (check, EMPTY0);
985
986 backend = 0;
987}
988
989void inline_size infy_fork (EV_P);
990
991void inline_size
992loop_fork (EV_P)
993{
994#if EV_USE_PORT
995 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
996#endif
997#if EV_USE_KQUEUE
998 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
999#endif
1000#if EV_USE_EPOLL
1001 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1002#endif
1003#if EV_USE_INOTIFY
1004 infy_fork (EV_A);
1005#endif
1006
1007 if (ev_is_active (&sigev))
1008 {
1009 /* default loop */
1010
1011 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev);
1013 close (sigpipe [0]);
1014 close (sigpipe [1]);
1015
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A);
1020 }
1021
1022 postfork = 0;
1023}
1024
1025#if EV_MULTIPLICITY
1026struct ev_loop *
1027ev_loop_new (unsigned int flags)
1028{
1029 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1030
1031 memset (loop, 0, sizeof (struct ev_loop));
1032
1033 loop_init (EV_A_ flags);
1034
1035 if (ev_backend (EV_A))
1036 return loop;
1037
1038 return 0;
1039}
1040
1041void
1042ev_loop_destroy (EV_P)
1043{
1044 loop_destroy (EV_A);
1045 ev_free (loop);
1046}
1047
1048void
1049ev_loop_fork (EV_P)
1050{
1051 postfork = 1;
1052}
1053
1054#endif
1055
1056#if EV_MULTIPLICITY
1057struct ev_loop *
1058ev_default_loop_init (unsigned int flags)
1059#else
1060int
1061ev_default_loop (unsigned int flags)
1062#endif
1063{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr)
1069 {
1070#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else
1073 ev_default_loop_ptr = 1;
1074#endif
1075
1076 loop_init (EV_A_ flags);
1077
1078 if (ev_backend (EV_A))
585 { 1079 {
586 ev_watcher_init (&sigev, sigcb);
587 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A); 1080 siginit (EV_A);
589 1081
590#ifndef WIN32 1082#ifndef _WIN32
591 ev_signal_init (&childev, childcb, SIGCHLD); 1083 ev_signal_init (&childev, childcb, SIGCHLD);
592 ev_set_priority (&childev, EV_MAXPRI); 1084 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 1085 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1086 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 1087#endif
596 } 1088 }
1089 else
1090 ev_default_loop_ptr = 0;
597 } 1091 }
598 1092
599 return method; 1093 return ev_default_loop_ptr;
1094}
1095
1096void
1097ev_default_destroy (void)
1098{
1099#if EV_MULTIPLICITY
1100 struct ev_loop *loop = ev_default_loop_ptr;
1101#endif
1102
1103#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev);
1106#endif
1107
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A);
1115}
1116
1117void
1118ev_default_fork (void)
1119{
1120#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif
1123
1124 if (backend)
1125 postfork = 1;
600} 1126}
601 1127
602/*****************************************************************************/ 1128/*****************************************************************************/
603 1129
604void 1130int inline_size
605ev_fork_prepare (void) 1131any_pending (EV_P)
606{ 1132{
607 /* nop */ 1133 int pri;
608}
609 1134
610void 1135 for (pri = NUMPRI; pri--; )
611ev_fork_parent (void) 1136 if (pendingcnt [pri])
612{ 1137 return 1;
613 /* nop */
614}
615 1138
616void 1139 return 0;
617ev_fork_child (void)
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif
623
624 ev_io_stop (&sigev);
625 close (sigpipe [0]);
626 close (sigpipe [1]);
627 pipe (sigpipe);
628 siginit ();
629} 1140}
630 1141
631/*****************************************************************************/ 1142void inline_speed
632
633static void
634call_pending (EV_P) 1143call_pending (EV_P)
635{ 1144{
636 int pri; 1145 int pri;
637 1146
638 for (pri = NUMPRI; pri--; ) 1147 for (pri = NUMPRI; pri--; )
639 while (pendingcnt [pri]) 1148 while (pendingcnt [pri])
640 { 1149 {
641 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1150 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642 1151
643 if (p->w) 1152 if (expect_true (p->w))
644 { 1153 {
1154 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1155
645 p->w->pending = 0; 1156 p->w->pending = 0;
646 p->w->cb (EV_A_ p->w, p->events); 1157 EV_CB_INVOKE (p->w, p->events);
647 } 1158 }
648 } 1159 }
649} 1160}
650 1161
651static void 1162void inline_size
652timers_reify (EV_P) 1163timers_reify (EV_P)
653{ 1164{
654 while (timercnt && timers [0]->at <= mn_now) 1165 while (timercnt && ((WT)timers [0])->at <= mn_now)
655 { 1166 {
656 struct ev_timer *w = timers [0]; 1167 ev_timer *w = timers [0];
1168
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
657 1170
658 /* first reschedule or stop timer */ 1171 /* first reschedule or stop timer */
659 if (w->repeat) 1172 if (w->repeat)
660 { 1173 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1174 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1175
662 w->at = mn_now + w->repeat; 1176 ((WT)w)->at += w->repeat;
1177 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now;
1179
663 downheap ((WT *)timers, timercnt, 0); 1180 downheap ((WT *)timers, timercnt, 0);
664 } 1181 }
665 else 1182 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 1184
668 event ((W)w, EV_TIMEOUT); 1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
669 } 1186 }
670} 1187}
671 1188
672static void 1189#if EV_PERIODIC_ENABLE
1190void inline_size
673periodics_reify (EV_P) 1191periodics_reify (EV_P)
674{ 1192{
675 while (periodiccnt && periodics [0]->at <= rt_now) 1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
676 { 1194 {
677 struct ev_periodic *w = periodics [0]; 1195 ev_periodic *w = periodics [0];
1196
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
678 1198
679 /* first reschedule or stop timer */ 1199 /* first reschedule or stop timer */
680 if (w->interval) 1200 if (w->reschedule_cb)
681 { 1201 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1204 downheap ((WT *)periodics, periodiccnt, 0);
1205 }
1206 else if (w->interval)
1207 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0); 1210 downheap ((WT *)periodics, periodiccnt, 0);
685 } 1211 }
686 else 1212 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688 1214
689 event (EV_A_ (W)w, EV_PERIODIC); 1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
690 } 1216 }
691} 1217}
692 1218
693static void 1219static void noinline
694periodics_reschedule (EV_P_ ev_tstamp diff) 1220periodics_reschedule (EV_P)
695{ 1221{
696 int i; 1222 int i;
697 1223
698 /* adjust periodics after time jump */ 1224 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i) 1225 for (i = 0; i < periodiccnt; ++i)
700 { 1226 {
701 struct ev_periodic *w = periodics [i]; 1227 ev_periodic *w = periodics [i];
702 1228
1229 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
703 if (w->interval) 1231 else if (w->interval)
704 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
706
707 if (fabs (diff) >= 1e-4)
708 {
709 ev_periodic_stop (EV_A_ w);
710 ev_periodic_start (EV_A_ w);
711
712 i = 0; /* restart loop, inefficient, but time jumps should be rare */
713 }
714 }
715 } 1233 }
716}
717 1234
718inline int 1235 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i);
1238}
1239#endif
1240
1241int inline_size
719time_update_monotonic (EV_P) 1242time_update_monotonic (EV_P)
720{ 1243{
721 mn_now = get_clock (); 1244 mn_now = get_clock ();
722 1245
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
724 { 1247 {
725 rt_now = mn_now + diff; 1248 ev_rt_now = rtmn_diff + mn_now;
726 return 0; 1249 return 0;
727 } 1250 }
728 else 1251 else
729 { 1252 {
730 now_floor = mn_now; 1253 now_floor = mn_now;
731 rt_now = ev_time (); 1254 ev_rt_now = ev_time ();
732 return 1; 1255 return 1;
733 } 1256 }
734} 1257}
735 1258
736static void 1259void inline_size
737time_update (EV_P) 1260time_update (EV_P)
738{ 1261{
739 int i; 1262 int i;
740 1263
741#if EV_USE_MONOTONIC 1264#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 1265 if (expect_true (have_monotonic))
743 { 1266 {
744 if (time_update_monotonic (EV_A)) 1267 if (time_update_monotonic (EV_A))
745 { 1268 {
746 ev_tstamp odiff = diff; 1269 ev_tstamp odiff = rtmn_diff;
747 1270
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
749 { 1280 {
750 diff = rt_now - mn_now; 1281 rtmn_diff = ev_rt_now - mn_now;
751 1282
752 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
753 return; /* all is well */ 1284 return; /* all is well */
754 1285
755 rt_now = ev_time (); 1286 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 1287 mn_now = get_clock ();
757 now_floor = mn_now; 1288 now_floor = mn_now;
758 } 1289 }
759 1290
1291# if EV_PERIODIC_ENABLE
760 periodics_reschedule (EV_A_ diff - odiff); 1292 periodics_reschedule (EV_A);
1293# endif
761 /* no timer adjustment, as the monotonic clock doesn't jump */ 1294 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
762 } 1296 }
763 } 1297 }
764 else 1298 else
765#endif 1299#endif
766 { 1300 {
767 rt_now = ev_time (); 1301 ev_rt_now = ev_time ();
768 1302
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
770 { 1304 {
1305#if EV_PERIODIC_ENABLE
771 periodics_reschedule (EV_A_ rt_now - mn_now); 1306 periodics_reschedule (EV_A);
1307#endif
772 1308
773 /* adjust timers. this is easy, as the offset is the same for all */ 1309 /* adjust timers. this is easy, as the offset is the same for all of them */
774 for (i = 0; i < timercnt; ++i) 1310 for (i = 0; i < timercnt; ++i)
775 timers [i]->at += diff; 1311 ((WT)timers [i])->at += ev_rt_now - mn_now;
776 } 1312 }
777 1313
778 mn_now = rt_now; 1314 mn_now = ev_rt_now;
779 } 1315 }
780} 1316}
781 1317
782void 1318void
783ev_ref (EV_P) 1319ev_ref (EV_P)
794static int loop_done; 1330static int loop_done;
795 1331
796void 1332void
797ev_loop (EV_P_ int flags) 1333ev_loop (EV_P_ int flags)
798{ 1334{
799 double block;
800 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
801 1338
802 do 1339 while (activecnt)
803 { 1340 {
1341#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork))
1344 if (forkcnt)
1345 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A);
1348 }
1349#endif
1350
804 /* queue check watchers (and execute them) */ 1351 /* queue check watchers (and execute them) */
805 if (expect_false (preparecnt)) 1352 if (expect_false (preparecnt))
806 { 1353 {
807 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808 call_pending (EV_A); 1355 call_pending (EV_A);
809 } 1356 }
810 1357
1358 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork))
1360 loop_fork (EV_A);
1361
811 /* update fd-related kernel structures */ 1362 /* update fd-related kernel structures */
812 fd_reify (EV_A); 1363 fd_reify (EV_A);
813 1364
814 /* calculate blocking time */ 1365 /* calculate blocking time */
1366 {
1367 ev_tstamp block;
815 1368
816 /* we only need this for !monotonic clockor timers, but as we basically 1369 if (flags & EVLOOP_NONBLOCK || idlecnt)
817 always have timers, we just calculate it always */ 1370 block = 0.; /* do not block at all */
1371 else
1372 {
1373 /* update time to cancel out callback processing overhead */
818#if EV_USE_MONOTONIC 1374#if EV_USE_MONOTONIC
819 if (expect_true (have_monotonic)) 1375 if (expect_true (have_monotonic))
820 time_update_monotonic (EV_A); 1376 time_update_monotonic (EV_A);
821 else 1377 else
822#endif 1378#endif
823 { 1379 {
824 rt_now = ev_time (); 1380 ev_rt_now = ev_time ();
825 mn_now = rt_now; 1381 mn_now = ev_rt_now;
826 } 1382 }
827 1383
828 if (flags & EVLOOP_NONBLOCK || idlecnt)
829 block = 0.;
830 else
831 {
832 block = MAX_BLOCKTIME; 1384 block = MAX_BLOCKTIME;
833 1385
834 if (timercnt) 1386 if (timercnt)
835 { 1387 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
837 if (block > to) block = to; 1389 if (block > to) block = to;
838 } 1390 }
839 1391
1392#if EV_PERIODIC_ENABLE
840 if (periodiccnt) 1393 if (periodiccnt)
841 { 1394 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
843 if (block > to) block = to; 1396 if (block > to) block = to;
844 } 1397 }
1398#endif
845 1399
846 if (block < 0.) block = 0.; 1400 if (expect_false (block < 0.)) block = 0.;
847 } 1401 }
848 1402
849 method_poll (EV_A_ block); 1403 backend_poll (EV_A_ block);
1404 }
850 1405
851 /* update rt_now, do magic */ 1406 /* update ev_rt_now, do magic */
852 time_update (EV_A); 1407 time_update (EV_A);
853 1408
854 /* queue pending timers and reschedule them */ 1409 /* queue pending timers and reschedule them */
855 timers_reify (EV_A); /* relative timers called last */ 1410 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE
856 periodics_reify (EV_A); /* absolute timers called first */ 1412 periodics_reify (EV_A); /* absolute timers called first */
1413#endif
857 1414
858 /* queue idle watchers unless io or timers are pending */ 1415 /* queue idle watchers unless other events are pending */
859 if (!pendingcnt) 1416 if (idlecnt && !any_pending (EV_A))
860 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
861 1418
862 /* queue check watchers, to be executed first */ 1419 /* queue check watchers, to be executed first */
863 if (checkcnt) 1420 if (expect_false (checkcnt))
864 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
865 1422
866 call_pending (EV_A); 1423 call_pending (EV_A);
867 }
868 while (activecnt && !loop_done);
869 1424
870 if (loop_done != 2) 1425 if (expect_false (loop_done))
871 loop_done = 0; 1426 break;
1427 }
1428
1429 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL;
872} 1431}
873 1432
874void 1433void
875ev_unloop (EV_P_ int how) 1434ev_unloop (EV_P_ int how)
876{ 1435{
877 loop_done = how; 1436 loop_done = how;
878} 1437}
879 1438
880/*****************************************************************************/ 1439/*****************************************************************************/
881 1440
882inline void 1441void inline_size
883wlist_add (WL *head, WL elem) 1442wlist_add (WL *head, WL elem)
884{ 1443{
885 elem->next = *head; 1444 elem->next = *head;
886 *head = elem; 1445 *head = elem;
887} 1446}
888 1447
889inline void 1448void inline_size
890wlist_del (WL *head, WL elem) 1449wlist_del (WL *head, WL elem)
891{ 1450{
892 while (*head) 1451 while (*head)
893 { 1452 {
894 if (*head == elem) 1453 if (*head == elem)
899 1458
900 head = &(*head)->next; 1459 head = &(*head)->next;
901 } 1460 }
902} 1461}
903 1462
904inline void 1463void inline_speed
905ev_clear_pending (EV_P_ W w) 1464ev_clear_pending (EV_P_ W w)
906{ 1465{
907 if (w->pending) 1466 if (w->pending)
908 { 1467 {
909 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1468 pendings [ABSPRI (w)][w->pending - 1].w = 0;
910 w->pending = 0; 1469 w->pending = 0;
911 } 1470 }
912} 1471}
913 1472
914inline void 1473void inline_speed
915ev_start (EV_P_ W w, int active) 1474ev_start (EV_P_ W w, int active)
916{ 1475{
917 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
918 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
919 1478
920 w->active = active; 1479 w->active = active;
921 ev_ref (EV_A); 1480 ev_ref (EV_A);
922} 1481}
923 1482
924inline void 1483void inline_size
925ev_stop (EV_P_ W w) 1484ev_stop (EV_P_ W w)
926{ 1485{
927 ev_unref (EV_A); 1486 ev_unref (EV_A);
928 w->active = 0; 1487 w->active = 0;
929} 1488}
930 1489
931/*****************************************************************************/ 1490/*****************************************************************************/
932 1491
933void 1492void
934ev_io_start (EV_P_ struct ev_io *w) 1493ev_io_start (EV_P_ ev_io *w)
935{ 1494{
936 int fd = w->fd; 1495 int fd = w->fd;
937 1496
938 if (ev_is_active (w)) 1497 if (expect_false (ev_is_active (w)))
939 return; 1498 return;
940 1499
941 assert (("ev_io_start called with negative fd", fd >= 0)); 1500 assert (("ev_io_start called with negative fd", fd >= 0));
942 1501
943 ev_start (EV_A_ (W)w, 1); 1502 ev_start (EV_A_ (W)w, 1);
944 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
945 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1504 wlist_add ((WL *)&anfds[fd].head, (WL)w);
946 1505
947 fd_change (EV_A_ fd); 1506 fd_change (EV_A_ fd);
948} 1507}
949 1508
950void 1509void
951ev_io_stop (EV_P_ struct ev_io *w) 1510ev_io_stop (EV_P_ ev_io *w)
952{ 1511{
953 ev_clear_pending (EV_A_ (W)w); 1512 ev_clear_pending (EV_A_ (W)w);
954 if (!ev_is_active (w)) 1513 if (expect_false (!ev_is_active (w)))
955 return; 1514 return;
1515
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
956 1517
957 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
958 ev_stop (EV_A_ (W)w); 1519 ev_stop (EV_A_ (W)w);
959 1520
960 fd_change (EV_A_ w->fd); 1521 fd_change (EV_A_ w->fd);
961} 1522}
962 1523
963void 1524void
964ev_timer_start (EV_P_ struct ev_timer *w) 1525ev_timer_start (EV_P_ ev_timer *w)
965{ 1526{
966 if (ev_is_active (w)) 1527 if (expect_false (ev_is_active (w)))
967 return; 1528 return;
968 1529
969 w->at += mn_now; 1530 ((WT)w)->at += mn_now;
970 1531
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 1533
973 ev_start (EV_A_ (W)w, ++timercnt); 1534 ev_start (EV_A_ (W)w, ++timercnt);
974 array_needsize (timers, timermax, timercnt, ); 1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
975 timers [timercnt - 1] = w; 1536 timers [timercnt - 1] = w;
976 upheap ((WT *)timers, timercnt - 1); 1537 upheap ((WT *)timers, timercnt - 1);
977}
978 1538
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1540}
1541
979void 1542void
980ev_timer_stop (EV_P_ struct ev_timer *w) 1543ev_timer_stop (EV_P_ ev_timer *w)
981{ 1544{
982 ev_clear_pending (EV_A_ (W)w); 1545 ev_clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 1546 if (expect_false (!ev_is_active (w)))
984 return; 1547 return;
985 1548
986 if (w->active < timercnt--) 1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1550
1551 {
1552 int active = ((W)w)->active;
1553
1554 if (expect_true (--active < --timercnt))
987 { 1555 {
988 timers [w->active - 1] = timers [timercnt]; 1556 timers [active] = timers [timercnt];
989 downheap ((WT *)timers, timercnt, w->active - 1); 1557 adjustheap ((WT *)timers, timercnt, active);
990 } 1558 }
1559 }
991 1560
992 w->at = w->repeat; 1561 ((WT)w)->at -= mn_now;
993 1562
994 ev_stop (EV_A_ (W)w); 1563 ev_stop (EV_A_ (W)w);
995} 1564}
996 1565
997void 1566void
998ev_timer_again (EV_P_ struct ev_timer *w) 1567ev_timer_again (EV_P_ ev_timer *w)
999{ 1568{
1000 if (ev_is_active (w)) 1569 if (ev_is_active (w))
1001 { 1570 {
1002 if (w->repeat) 1571 if (w->repeat)
1003 { 1572 {
1004 w->at = mn_now + w->repeat; 1573 ((WT)w)->at = mn_now + w->repeat;
1005 downheap ((WT *)timers, timercnt, w->active - 1); 1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1006 } 1575 }
1007 else 1576 else
1008 ev_timer_stop (EV_A_ w); 1577 ev_timer_stop (EV_A_ w);
1009 } 1578 }
1010 else if (w->repeat) 1579 else if (w->repeat)
1580 {
1581 w->at = w->repeat;
1011 ev_timer_start (EV_A_ w); 1582 ev_timer_start (EV_A_ w);
1583 }
1012} 1584}
1013 1585
1586#if EV_PERIODIC_ENABLE
1014void 1587void
1015ev_periodic_start (EV_P_ struct ev_periodic *w) 1588ev_periodic_start (EV_P_ ev_periodic *w)
1016{ 1589{
1017 if (ev_is_active (w)) 1590 if (expect_false (ev_is_active (w)))
1018 return; 1591 return;
1019 1592
1593 if (w->reschedule_cb)
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval)
1596 {
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1021
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 1598 /* this formula differs from the one in periodic_reify because we do not always round up */
1023 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1600 }
1025 1601
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 1602 ev_start (EV_A_ (W)w, ++periodiccnt);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1028 periodics [periodiccnt - 1] = w; 1604 periodics [periodiccnt - 1] = w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 1605 upheap ((WT *)periodics, periodiccnt - 1);
1030}
1031 1606
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1608}
1609
1032void 1610void
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 1611ev_periodic_stop (EV_P_ ev_periodic *w)
1034{ 1612{
1035 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1037 return; 1615 return;
1038 1616
1039 if (w->active < periodiccnt--) 1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1618
1619 {
1620 int active = ((W)w)->active;
1621
1622 if (expect_true (--active < --periodiccnt))
1040 { 1623 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 1624 periodics [active] = periodics [periodiccnt];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1625 adjustheap ((WT *)periodics, periodiccnt, active);
1043 } 1626 }
1627 }
1044 1628
1045 ev_stop (EV_A_ (W)w); 1629 ev_stop (EV_A_ (W)w);
1046} 1630}
1631
1632void
1633ev_periodic_again (EV_P_ ev_periodic *w)
1634{
1635 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w);
1638}
1639#endif
1047 1640
1048#ifndef SA_RESTART 1641#ifndef SA_RESTART
1049# define SA_RESTART 0 1642# define SA_RESTART 0
1050#endif 1643#endif
1051 1644
1052void 1645void
1053ev_signal_start (EV_P_ struct ev_signal *w) 1646ev_signal_start (EV_P_ ev_signal *w)
1054{ 1647{
1648#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif
1055 if (ev_is_active (w)) 1651 if (expect_false (ev_is_active (w)))
1056 return; 1652 return;
1057 1653
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1059 1655
1060 ev_start (EV_A_ (W)w, 1); 1656 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init); 1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1063 1659
1064 if (!w->next) 1660 if (!((WL)w)->next)
1065 { 1661 {
1662#if _WIN32
1663 signal (w->signum, sighandler);
1664#else
1066 struct sigaction sa; 1665 struct sigaction sa;
1067 sa.sa_handler = sighandler; 1666 sa.sa_handler = sighandler;
1068 sigfillset (&sa.sa_mask); 1667 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 1669 sigaction (w->signum, &sa, 0);
1670#endif
1071 } 1671 }
1072} 1672}
1073 1673
1074void 1674void
1075ev_signal_stop (EV_P_ struct ev_signal *w) 1675ev_signal_stop (EV_P_ ev_signal *w)
1076{ 1676{
1077 ev_clear_pending (EV_A_ (W)w); 1677 ev_clear_pending (EV_A_ (W)w);
1078 if (!ev_is_active (w)) 1678 if (expect_false (!ev_is_active (w)))
1079 return; 1679 return;
1080 1680
1081 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1082 ev_stop (EV_A_ (W)w); 1682 ev_stop (EV_A_ (W)w);
1083 1683
1084 if (!signals [w->signum - 1].head) 1684 if (!signals [w->signum - 1].head)
1085 signal (w->signum, SIG_DFL); 1685 signal (w->signum, SIG_DFL);
1086} 1686}
1087 1687
1088void 1688void
1689ev_child_start (EV_P_ ev_child *w)
1690{
1691#if EV_MULTIPLICITY
1692 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1693#endif
1694 if (expect_false (ev_is_active (w)))
1695 return;
1696
1697 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1699}
1700
1701void
1702ev_child_stop (EV_P_ ev_child *w)
1703{
1704 ev_clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w)))
1706 return;
1707
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w);
1710}
1711
1712#if EV_STAT_ENABLE
1713
1714# ifdef _WIN32
1715# undef lstat
1716# define lstat(a,b) _stati64 (a,b)
1717# endif
1718
1719#define DEF_STAT_INTERVAL 5.0074891
1720#define MIN_STAT_INTERVAL 0.1074891
1721
1722static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1723
1724#if EV_USE_INOTIFY
1725# define EV_INOTIFY_BUFSIZE 8192
1726
1727static void noinline
1728infy_add (EV_P_ ev_stat *w)
1729{
1730 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1731
1732 if (w->wd < 0)
1733 {
1734 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1735
1736 /* monitor some parent directory for speedup hints */
1737 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1738 {
1739 char path [4096];
1740 strcpy (path, w->path);
1741
1742 do
1743 {
1744 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1745 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1746
1747 char *pend = strrchr (path, '/');
1748
1749 if (!pend)
1750 break; /* whoops, no '/', complain to your admin */
1751
1752 *pend = 0;
1753 w->wd = inotify_add_watch (fs_fd, path, mask);
1754 }
1755 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1756 }
1757 }
1758 else
1759 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1760
1761 if (w->wd >= 0)
1762 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1763}
1764
1765static void noinline
1766infy_del (EV_P_ ev_stat *w)
1767{
1768 int slot;
1769 int wd = w->wd;
1770
1771 if (wd < 0)
1772 return;
1773
1774 w->wd = -2;
1775 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1776 wlist_del (&fs_hash [slot].head, (WL)w);
1777
1778 /* remove this watcher, if others are watching it, they will rearm */
1779 inotify_rm_watch (fs_fd, wd);
1780}
1781
1782static void noinline
1783infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1784{
1785 if (slot < 0)
1786 /* overflow, need to check for all hahs slots */
1787 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1788 infy_wd (EV_A_ slot, wd, ev);
1789 else
1790 {
1791 WL w_;
1792
1793 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1794 {
1795 ev_stat *w = (ev_stat *)w_;
1796 w_ = w_->next; /* lets us remove this watcher and all before it */
1797
1798 if (w->wd == wd || wd == -1)
1799 {
1800 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1801 {
1802 w->wd = -1;
1803 infy_add (EV_A_ w); /* re-add, no matter what */
1804 }
1805
1806 stat_timer_cb (EV_A_ &w->timer, 0);
1807 }
1808 }
1809 }
1810}
1811
1812static void
1813infy_cb (EV_P_ ev_io *w, int revents)
1814{
1815 char buf [EV_INOTIFY_BUFSIZE];
1816 struct inotify_event *ev = (struct inotify_event *)buf;
1817 int ofs;
1818 int len = read (fs_fd, buf, sizeof (buf));
1819
1820 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1821 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1822}
1823
1824void inline_size
1825infy_init (EV_P)
1826{
1827 if (fs_fd != -2)
1828 return;
1829
1830 fs_fd = inotify_init ();
1831
1832 if (fs_fd >= 0)
1833 {
1834 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1835 ev_set_priority (&fs_w, EV_MAXPRI);
1836 ev_io_start (EV_A_ &fs_w);
1837 }
1838}
1839
1840void inline_size
1841infy_fork (EV_P)
1842{
1843 int slot;
1844
1845 if (fs_fd < 0)
1846 return;
1847
1848 close (fs_fd);
1849 fs_fd = inotify_init ();
1850
1851 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1852 {
1853 WL w_ = fs_hash [slot].head;
1854 fs_hash [slot].head = 0;
1855
1856 while (w_)
1857 {
1858 ev_stat *w = (ev_stat *)w_;
1859 w_ = w_->next; /* lets us add this watcher */
1860
1861 w->wd = -1;
1862
1863 if (fs_fd >= 0)
1864 infy_add (EV_A_ w); /* re-add, no matter what */
1865 else
1866 ev_timer_start (EV_A_ &w->timer);
1867 }
1868
1869 }
1870}
1871
1872#endif
1873
1874void
1875ev_stat_stat (EV_P_ ev_stat *w)
1876{
1877 if (lstat (w->path, &w->attr) < 0)
1878 w->attr.st_nlink = 0;
1879 else if (!w->attr.st_nlink)
1880 w->attr.st_nlink = 1;
1881}
1882
1883static void noinline
1884stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1885{
1886 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1887
1888 /* we copy this here each the time so that */
1889 /* prev has the old value when the callback gets invoked */
1890 w->prev = w->attr;
1891 ev_stat_stat (EV_A_ w);
1892
1893 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1894 if (
1895 w->prev.st_dev != w->attr.st_dev
1896 || w->prev.st_ino != w->attr.st_ino
1897 || w->prev.st_mode != w->attr.st_mode
1898 || w->prev.st_nlink != w->attr.st_nlink
1899 || w->prev.st_uid != w->attr.st_uid
1900 || w->prev.st_gid != w->attr.st_gid
1901 || w->prev.st_rdev != w->attr.st_rdev
1902 || w->prev.st_size != w->attr.st_size
1903 || w->prev.st_atime != w->attr.st_atime
1904 || w->prev.st_mtime != w->attr.st_mtime
1905 || w->prev.st_ctime != w->attr.st_ctime
1906 ) {
1907 #if EV_USE_INOTIFY
1908 infy_del (EV_A_ w);
1909 infy_add (EV_A_ w);
1910 ev_stat_stat (EV_A_ w); /* avoid race... */
1911 #endif
1912
1913 ev_feed_event (EV_A_ w, EV_STAT);
1914 }
1915}
1916
1917void
1918ev_stat_start (EV_P_ ev_stat *w)
1919{
1920 if (expect_false (ev_is_active (w)))
1921 return;
1922
1923 /* since we use memcmp, we need to clear any padding data etc. */
1924 memset (&w->prev, 0, sizeof (ev_statdata));
1925 memset (&w->attr, 0, sizeof (ev_statdata));
1926
1927 ev_stat_stat (EV_A_ w);
1928
1929 if (w->interval < MIN_STAT_INTERVAL)
1930 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1931
1932 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1933 ev_set_priority (&w->timer, ev_priority (w));
1934
1935#if EV_USE_INOTIFY
1936 infy_init (EV_A);
1937
1938 if (fs_fd >= 0)
1939 infy_add (EV_A_ w);
1940 else
1941#endif
1942 ev_timer_start (EV_A_ &w->timer);
1943
1944 ev_start (EV_A_ (W)w, 1);
1945}
1946
1947void
1948ev_stat_stop (EV_P_ ev_stat *w)
1949{
1950 ev_clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w)))
1952 return;
1953
1954#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w);
1956#endif
1957 ev_timer_stop (EV_A_ &w->timer);
1958
1959 ev_stop (EV_A_ (W)w);
1960}
1961#endif
1962
1963void
1089ev_idle_start (EV_P_ struct ev_idle *w) 1964ev_idle_start (EV_P_ ev_idle *w)
1090{ 1965{
1091 if (ev_is_active (w)) 1966 if (expect_false (ev_is_active (w)))
1092 return; 1967 return;
1093 1968
1094 ev_start (EV_A_ (W)w, ++idlecnt); 1969 ev_start (EV_A_ (W)w, ++idlecnt);
1095 array_needsize (idles, idlemax, idlecnt, ); 1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1096 idles [idlecnt - 1] = w; 1971 idles [idlecnt - 1] = w;
1097} 1972}
1098 1973
1099void 1974void
1100ev_idle_stop (EV_P_ struct ev_idle *w) 1975ev_idle_stop (EV_P_ ev_idle *w)
1101{ 1976{
1102 ev_clear_pending (EV_A_ (W)w); 1977 ev_clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
1104 return; 1979 return;
1105 1980
1981 {
1982 int active = ((W)w)->active;
1106 idles [w->active - 1] = idles [--idlecnt]; 1983 idles [active - 1] = idles [--idlecnt];
1984 ((W)idles [active - 1])->active = active;
1985 }
1986
1107 ev_stop (EV_A_ (W)w); 1987 ev_stop (EV_A_ (W)w);
1108} 1988}
1109 1989
1110void 1990void
1111ev_prepare_start (EV_P_ struct ev_prepare *w) 1991ev_prepare_start (EV_P_ ev_prepare *w)
1112{ 1992{
1113 if (ev_is_active (w)) 1993 if (expect_false (ev_is_active (w)))
1114 return; 1994 return;
1115 1995
1116 ev_start (EV_A_ (W)w, ++preparecnt); 1996 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, ); 1997 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1118 prepares [preparecnt - 1] = w; 1998 prepares [preparecnt - 1] = w;
1119} 1999}
1120 2000
1121void 2001void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w) 2002ev_prepare_stop (EV_P_ ev_prepare *w)
1123{ 2003{
1124 ev_clear_pending (EV_A_ (W)w); 2004 ev_clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w)) 2005 if (expect_false (!ev_is_active (w)))
1126 return; 2006 return;
1127 2007
2008 {
2009 int active = ((W)w)->active;
1128 prepares [w->active - 1] = prepares [--preparecnt]; 2010 prepares [active - 1] = prepares [--preparecnt];
2011 ((W)prepares [active - 1])->active = active;
2012 }
2013
1129 ev_stop (EV_A_ (W)w); 2014 ev_stop (EV_A_ (W)w);
1130} 2015}
1131 2016
1132void 2017void
1133ev_check_start (EV_P_ struct ev_check *w) 2018ev_check_start (EV_P_ ev_check *w)
1134{ 2019{
1135 if (ev_is_active (w)) 2020 if (expect_false (ev_is_active (w)))
1136 return; 2021 return;
1137 2022
1138 ev_start (EV_A_ (W)w, ++checkcnt); 2023 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, ); 2024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1140 checks [checkcnt - 1] = w; 2025 checks [checkcnt - 1] = w;
1141} 2026}
1142 2027
1143void 2028void
1144ev_check_stop (EV_P_ struct ev_check *w) 2029ev_check_stop (EV_P_ ev_check *w)
1145{ 2030{
1146 ev_clear_pending (EV_A_ (W)w); 2031 ev_clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w)) 2032 if (expect_false (!ev_is_active (w)))
1148 return; 2033 return;
1149 2034
2035 {
2036 int active = ((W)w)->active;
1150 checks [w->active - 1] = checks [--checkcnt]; 2037 checks [active - 1] = checks [--checkcnt];
2038 ((W)checks [active - 1])->active = active;
2039 }
2040
1151 ev_stop (EV_A_ (W)w); 2041 ev_stop (EV_A_ (W)w);
1152} 2042}
1153 2043
1154void 2044#if EV_EMBED_ENABLE
1155ev_child_start (EV_P_ struct ev_child *w) 2045void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w)
1156{ 2047{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK);
2049}
2050
2051static void
2052embed_cb (EV_P_ ev_io *io, int revents)
2053{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055
1157 if (ev_is_active (w)) 2056 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else
2059 ev_embed_sweep (loop, w);
2060}
2061
2062void
2063ev_embed_start (EV_P_ ev_embed *w)
2064{
2065 if (expect_false (ev_is_active (w)))
1158 return; 2066 return;
2067
2068 {
2069 struct ev_loop *loop = w->loop;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2072 }
2073
2074 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io);
1159 2076
1160 ev_start (EV_A_ (W)w, 1); 2077 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1162} 2078}
1163 2079
1164void 2080void
1165ev_child_stop (EV_P_ struct ev_child *w) 2081ev_embed_stop (EV_P_ ev_embed *w)
1166{ 2082{
1167 ev_clear_pending (EV_A_ (W)w); 2083 ev_clear_pending (EV_A_ (W)w);
1168 if (ev_is_active (w)) 2084 if (expect_false (!ev_is_active (w)))
1169 return; 2085 return;
1170 2086
1171 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2087 ev_io_stop (EV_A_ &w->io);
2088
1172 ev_stop (EV_A_ (W)w); 2089 ev_stop (EV_A_ (W)w);
1173} 2090}
2091#endif
2092
2093#if EV_FORK_ENABLE
2094void
2095ev_fork_start (EV_P_ ev_fork *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++forkcnt);
2101 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2102 forks [forkcnt - 1] = w;
2103}
2104
2105void
2106ev_fork_stop (EV_P_ ev_fork *w)
2107{
2108 ev_clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 forks [active - 1] = forks [--forkcnt];
2115 ((W)forks [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120#endif
1174 2121
1175/*****************************************************************************/ 2122/*****************************************************************************/
1176 2123
1177struct ev_once 2124struct ev_once
1178{ 2125{
1179 struct ev_io io; 2126 ev_io io;
1180 struct ev_timer to; 2127 ev_timer to;
1181 void (*cb)(int revents, void *arg); 2128 void (*cb)(int revents, void *arg);
1182 void *arg; 2129 void *arg;
1183}; 2130};
1184 2131
1185static void 2132static void
1188 void (*cb)(int revents, void *arg) = once->cb; 2135 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 2136 void *arg = once->arg;
1190 2137
1191 ev_io_stop (EV_A_ &once->io); 2138 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 2139 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 2140 ev_free (once);
1194 2141
1195 cb (revents, arg); 2142 cb (revents, arg);
1196} 2143}
1197 2144
1198static void 2145static void
1199once_cb_io (EV_P_ struct ev_io *w, int revents) 2146once_cb_io (EV_P_ ev_io *w, int revents)
1200{ 2147{
1201 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2148 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1202} 2149}
1203 2150
1204static void 2151static void
1205once_cb_to (EV_P_ struct ev_timer *w, int revents) 2152once_cb_to (EV_P_ ev_timer *w, int revents)
1206{ 2153{
1207 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2154 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1208} 2155}
1209 2156
1210void 2157void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2158ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 2159{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 2160 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1214 2161
1215 if (!once) 2162 if (expect_false (!once))
2163 {
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2164 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1217 else 2165 return;
1218 { 2166 }
2167
1219 once->cb = cb; 2168 once->cb = cb;
1220 once->arg = arg; 2169 once->arg = arg;
1221 2170
1222 ev_watcher_init (&once->io, once_cb_io); 2171 ev_init (&once->io, once_cb_io);
1223 if (fd >= 0) 2172 if (fd >= 0)
1224 { 2173 {
1225 ev_io_set (&once->io, fd, events); 2174 ev_io_set (&once->io, fd, events);
1226 ev_io_start (EV_A_ &once->io); 2175 ev_io_start (EV_A_ &once->io);
1227 } 2176 }
1228 2177
1229 ev_watcher_init (&once->to, once_cb_to); 2178 ev_init (&once->to, once_cb_to);
1230 if (timeout >= 0.) 2179 if (timeout >= 0.)
1231 { 2180 {
1232 ev_timer_set (&once->to, timeout, 0.); 2181 ev_timer_set (&once->to, timeout, 0.);
1233 ev_timer_start (EV_A_ &once->to); 2182 ev_timer_start (EV_A_ &once->to);
1234 }
1235 }
1236}
1237
1238/*****************************************************************************/
1239
1240#if 0
1241
1242struct ev_io wio;
1243
1244static void
1245sin_cb (struct ev_io *w, int revents)
1246{
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1248}
1249
1250static void
1251ocb (struct ev_timer *w, int revents)
1252{
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1254 ev_timer_stop (w);
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 { 2183 }
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif
1294
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314} 2184}
1315 2185
2186#ifdef __cplusplus
2187}
1316#endif 2188#endif
1317 2189
1318
1319
1320

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines