ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.364 by root, Sun Oct 24 21:51:03 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
76# endif
77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
103# endif
104
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
112# endif
113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
33#endif 159#endif
34 160
35#include <math.h> 161#include <math.h>
36#include <stdlib.h> 162#include <stdlib.h>
37#include <unistd.h> 163#include <string.h>
38#include <fcntl.h> 164#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 165#include <stddef.h>
41 166
42#include <stdio.h> 167#include <stdio.h>
43 168
44#include <assert.h> 169#include <assert.h>
45#include <errno.h> 170#include <errno.h>
46#include <sys/types.h> 171#include <sys/types.h>
172#include <time.h>
173#include <limits.h>
174
175#include <signal.h>
176
177#ifdef EV_H
178# include EV_H
179#else
180# include "ev.h"
181#endif
182
183EV_CPP(extern "C" {)
184
47#ifndef WIN32 185#ifndef _WIN32
186# include <sys/time.h>
48# include <sys/wait.h> 187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
49#endif 195# endif
50#include <sys/time.h> 196# undef EV_AVOID_STDIO
51#include <time.h> 197#endif
52 198
53/**/ 199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
54 244
55#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
56# define EV_USE_MONOTONIC 1 249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
57#endif 263#endif
58 264
59#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 267#endif
62 268
63#ifndef EV_USEV_POLL 269#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
65#endif 275#endif
66 276
67#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
68# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
69#endif 283#endif
70 284
71#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
73#endif 287#endif
74 288
75#ifndef EV_USE_REALTIME 289#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
77#endif 298# endif
299#endif
78 300
79/**/ 301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
80 364
81#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
84#endif 368#endif
86#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
89#endif 373#endif
90 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
91/**/ 438/**/
92 439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 458
98#include "ev.h" 459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 461
100#if __GNUC__ >= 3 462#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 464# define noinline __attribute__ ((noinline))
103#else 465#else
104# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
105# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
106#endif 471#endif
107 472
108#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
110 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
113 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
114typedef struct ev_watcher *W; 494typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
522# include "ev_win32.c"
523#endif
117 524
118/*****************************************************************************/ 525/*****************************************************************************/
119 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
577static void (*syserr_cb)(const char *msg);
578
579void
580ev_set_syserr_cb (void (*cb)(const char *msg))
581{
582 syserr_cb = cb;
583}
584
585static void noinline
586ev_syserr (const char *msg)
587{
588 if (!msg)
589 msg = "(libev) system error";
590
591 if (syserr_cb)
592 syserr_cb (msg);
593 else
594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
603 perror (msg);
604#endif
605 abort ();
606 }
607}
608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
629
630void
631ev_set_allocator (void *(*cb)(void *ptr, long size))
632{
633 alloc = cb;
634}
635
636inline_speed void *
637ev_realloc (void *ptr, long size)
638{
639 ptr = alloc (ptr, size);
640
641 if (!ptr && size)
642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
648 abort ();
649 }
650
651 return ptr;
652}
653
654#define ev_malloc(size) ev_realloc (0, (size))
655#define ev_free(ptr) ev_realloc ((ptr), 0)
656
657/*****************************************************************************/
658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
120typedef struct 663typedef struct
121{ 664{
122 struct ev_watcher_list *head; 665 WL head;
123 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
124 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
125} ANFD; 679} ANFD;
126 680
681/* stores the pending event set for a given watcher */
127typedef struct 682typedef struct
128{ 683{
129 W w; 684 W w;
130 int events; 685 int events; /* the pending event set for the given watcher */
131} ANPENDING; 686} ANPENDING;
132 687
133#ifdef EV_MULTIPLICITY 688#if EV_USE_INOTIFY
134struct ev_loop 689/* hash table entry per inotify-id */
690typedef struct
135{ 691{
136# define VAR(name,decl) decl 692 WL head;
137# include "ev_vars.h" 693} ANFS;
138}; 694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
139#else 707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
715
716#if EV_MULTIPLICITY
717
718 struct ev_loop
719 {
720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
722 #define VAR(name,decl) decl;
723 #include "ev_vars.h"
724 #undef VAR
725 };
726 #include "ev_wrap.h"
727
728 static struct ev_loop default_loop_struct;
729 struct ev_loop *ev_default_loop_ptr;
730
731#else
732
733 ev_tstamp ev_rt_now;
140# define VAR(name,decl) static decl 734 #define VAR(name,decl) static decl;
141# include "ev_vars.h" 735 #include "ev_vars.h"
142#endif
143#undef VAR 736 #undef VAR
737
738 static int ev_default_loop_ptr;
739
740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
144 753
145/*****************************************************************************/ 754/*****************************************************************************/
146 755
147inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
148ev_time (void) 758ev_time (void)
149{ 759{
150#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
151 struct timespec ts; 763 struct timespec ts;
152 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
153 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
154#else 766 }
767#endif
768
155 struct timeval tv; 769 struct timeval tv;
156 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
157 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
158#endif
159} 772}
773#endif
160 774
161inline ev_tstamp 775inline_size ev_tstamp
162get_clock (void) 776get_clock (void)
163{ 777{
164#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
165 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
166 { 780 {
171#endif 785#endif
172 786
173 return ev_time (); 787 return ev_time ();
174} 788}
175 789
790#if EV_MULTIPLICITY
176ev_tstamp 791ev_tstamp
177ev_now (EV_P) 792ev_now (EV_P)
178{ 793{
179 return rt_now; 794 return ev_rt_now;
180} 795}
796#endif
181 797
182#define array_roundsize(base,n) ((n) | 4 & ~3) 798void
183 799ev_sleep (ev_tstamp delay)
184#define array_needsize(base,cur,cnt,init) \ 800{
185 if (expect_false ((cnt) > cur)) \ 801 if (delay > 0.)
186 { \
187 int newcnt = cur; \
188 do \
189 { \
190 newcnt = array_roundsize (base, newcnt << 1); \
191 } \
192 while ((cnt) > newcnt); \
193 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \
195 init (base + cur, newcnt - cur); \
196 cur = newcnt; \
197 } 802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
198 821
199/*****************************************************************************/ 822/*****************************************************************************/
200 823
201static void 824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
202anfds_init (ANFD *base, int count)
203{
204 while (count--)
205 {
206 base->head = 0;
207 base->events = EV_NONE;
208 base->reify = 0;
209 825
210 ++base; 826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
211 } 839 {
212} 840 ncur *= elem;
213 841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
214static void 842 ncur = ncur - sizeof (void *) * 4;
215event (EV_P_ W w, int events) 843 ncur /= elem;
216{
217 if (w->pending)
218 { 844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
858
859#define array_needsize(type,base,cur,cnt,init) \
860 if (expect_false ((cnt) > (cur))) \
861 { \
862 int ocur_ = (cur); \
863 (base) = (type *)array_realloc \
864 (sizeof (type), (base), &(cur), (cnt)); \
865 init ((base) + (ocur_), (cur) - ocur_); \
866 }
867
868#if 0
869#define array_slim(type,stem) \
870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
871 { \
872 stem ## max = array_roundsize (stem ## cnt >> 1); \
873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
875 }
876#endif
877
878#define array_free(stem, idx) \
879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
880
881/*****************************************************************************/
882
883/* dummy callback for pending events */
884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
886{
887}
888
889void noinline
890ev_feed_event (EV_P_ void *w, int revents)
891{
892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
894
895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
219 pendings [ABSPRI (w)][w->pending - 1].events |= events; 902 pendings [pri][w_->pending - 1].events = revents;
220 return;
221 } 903 }
222
223 w->pending = ++pendingcnt [ABSPRI (w)];
224 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
225 pendings [ABSPRI (w)][w->pending - 1].w = w;
226 pendings [ABSPRI (w)][w->pending - 1].events = events;
227} 904}
228 905
229static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
230queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
231{ 923{
232 int i; 924 int i;
233 925
234 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
235 event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
236} 928}
237 929
238static void 930/*****************************************************************************/
931
932inline_speed void
239fd_event (EV_P_ int fd, int events) 933fd_event_nocheck (EV_P_ int fd, int revents)
240{ 934{
241 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
242 struct ev_io *w; 936 ev_io *w;
243 937
244 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
245 { 939 {
246 int ev = w->events & events; 940 int ev = w->events & revents;
247 941
248 if (ev) 942 if (ev)
249 event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
250 } 944 }
251} 945}
252 946
253/*****************************************************************************/ 947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
254 953
255static void 954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
958void
959ev_feed_fd_event (EV_P_ int fd, int revents)
960{
961 if (fd >= 0 && fd < anfdmax)
962 fd_event_nocheck (EV_A_ fd, revents);
963}
964
965/* make sure the external fd watch events are in-sync */
966/* with the kernel/libev internal state */
967inline_size void
256fd_reify (EV_P) 968fd_reify (EV_P)
257{ 969{
258 int i; 970 int i;
259 971
260 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
261 { 973 {
262 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
263 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
264 struct ev_io *w; 976 ev_io *w;
265 977
266 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
267 980
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269 events |= w->events;
270
271 anfd->reify = 0; 981 anfd->reify = 0;
272 982
273 if (anfd->events != events) 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
274 { 985 {
275 method_modify (EV_A_ fd, anfd->events, events); 986 unsigned long arg;
276 anfd->events = events; 987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
277 } 990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
278 } 1006 }
279 1007
280 fdchangecnt = 0; 1008 fdchangecnt = 0;
281} 1009}
282 1010
283static void 1011/* something about the given fd changed */
1012inline_size void
284fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
285{ 1014{
286 if (anfds [fd].reify || fdchangecnt < 0) 1015 unsigned char reify = anfds [fd].reify;
287 return;
288
289 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
290 1017
1018 if (expect_true (!reify))
1019 {
291 ++fdchangecnt; 1020 ++fdchangecnt;
292 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
293 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
294} 1024}
295 1025
296static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
297fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
298{ 1029{
299 struct ev_io *w; 1030 ev_io *w;
300 1031
301 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
302 { 1033 {
303 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
304 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 1036 }
1037}
1038
1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
1041fd_valid (int fd)
1042{
1043#ifdef _WIN32
1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1045#else
1046 return fcntl (fd, F_GETFD) != -1;
1047#endif
306} 1048}
307 1049
308/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
309static void 1051static void noinline
310fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
311{ 1053{
312 int fd; 1054 int fd;
313 1055
314 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 1057 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
317 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
318} 1060}
319 1061
320/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 1063static void noinline
322fd_enomem (EV_P) 1064fd_enomem (EV_P)
323{ 1065{
324 int fd = anfdmax; 1066 int fd;
325 1067
326 while (fd--) 1068 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 1069 if (anfds [fd].events)
328 { 1070 {
329 close (fd);
330 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
331 return; 1072 break;
332 } 1073 }
333} 1074}
334 1075
1076/* usually called after fork if backend needs to re-arm all fds from scratch */
1077static void noinline
1078fd_rearm_all (EV_P)
1079{
1080 int fd;
1081
1082 for (fd = 0; fd < anfdmax; ++fd)
1083 if (anfds [fd].events)
1084 {
1085 anfds [fd].events = 0;
1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1088 }
1089}
1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
335/*****************************************************************************/ 1105/*****************************************************************************/
336 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
337static void 1331static void
338upheap (WT *timers, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
339{ 1333{
340 WT w = timers [k]; 1334 int i;
341 1335
342 while (k && timers [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
343 { 1337 if (evfd >= 0)
344 timers [k] = timers [k >> 1];
345 timers [k]->active = k + 1;
346 k >>= 1;
347 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
348 1349
349 timers [k] = w; 1350 if (sig_pending)
350 timers [k]->active = k + 1; 1351 {
1352 sig_pending = 0;
351 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
352} 1372}
1373
1374/*****************************************************************************/
353 1375
354static void 1376static void
355downheap (WT *timers, int N, int k) 1377ev_sighandler (int signum)
356{ 1378{
357 WT w = timers [k]; 1379#if EV_MULTIPLICITY
1380 EV_P = signals [signum - 1].loop;
1381#endif
358 1382
359 while (k < (N >> 1)) 1383#ifdef _WIN32
360 { 1384 signal (signum, ev_sighandler);
361 int j = k << 1; 1385#endif
362 1386
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1387 signals [signum - 1].pending = 1;
364 ++j; 1388 evpipe_write (EV_A_ &sig_pending);
1389}
365 1390
366 if (w->at <= timers [j]->at) 1391void noinline
1392ev_feed_signal_event (EV_P_ int signum)
1393{
1394 WL w;
1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
1401#if EV_MULTIPLICITY
1402 /* it is permissible to try to feed a signal to the wrong loop */
1403 /* or, likely more useful, feeding a signal nobody is waiting for */
1404
1405 if (expect_false (signals [signum].loop != EV_A))
1406 return;
1407#endif
1408
1409 signals [signum].pending = 0;
1410
1411 for (w = signals [signum].head; w; w = w->next)
1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1413}
1414
1415#if EV_USE_SIGNALFD
1416static void
1417sigfdcb (EV_P_ ev_io *iow, int revents)
1418{
1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1420
1421 for (;;)
1422 {
1423 ssize_t res = read (sigfd, si, sizeof (si));
1424
1425 /* not ISO-C, as res might be -1, but works with SuS */
1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1428
1429 if (res < (ssize_t)sizeof (si))
367 break; 1430 break;
368
369 timers [k] = timers [j];
370 timers [k]->active = k + 1;
371 k = j;
372 } 1431 }
373
374 timers [k] = w;
375 timers [k]->active = k + 1;
376} 1432}
1433#endif
1434
1435#endif
377 1436
378/*****************************************************************************/ 1437/*****************************************************************************/
379 1438
380typedef struct 1439#if EV_CHILD_ENABLE
381{ 1440static WL childs [EV_PID_HASHSIZE];
382 struct ev_watcher_list *head;
383 sig_atomic_t volatile gotsig;
384} ANSIG;
385 1441
386static ANSIG *signals; 1442static ev_signal childev;
387static int signalmax;
388 1443
389static int sigpipe [2]; 1444#ifndef WIFCONTINUED
390static sig_atomic_t volatile gotsig; 1445# define WIFCONTINUED(status) 0
1446#endif
391 1447
392static void 1448/* handle a single child status event */
393signals_init (ANSIG *base, int count) 1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
394{ 1451{
395 while (count--) 1452 ev_child *w;
396 { 1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
397 base->head = 0;
398 base->gotsig = 0;
399 1454
400 ++base; 1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
401 } 1456 {
402} 1457 if ((w->pid == pid || !w->pid)
403 1458 && (!traced || (w->flags & 1)))
404static void
405sighandler (int signum)
406{
407 signals [signum - 1].gotsig = 1;
408
409 if (!gotsig)
410 {
411 int old_errno = errno;
412 gotsig = 1;
413 write (sigpipe [1], &signum, 1);
414 errno = old_errno;
415 }
416}
417
418static void
419sigcb (EV_P_ struct ev_io *iow, int revents)
420{
421 struct ev_watcher_list *w;
422 int signum;
423
424 read (sigpipe [0], &revents, 1);
425 gotsig = 0;
426
427 for (signum = signalmax; signum--; )
428 if (signals [signum].gotsig)
429 { 1459 {
430 signals [signum].gotsig = 0; 1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
431 1461 w->rpid = pid;
432 for (w = signals [signum].head; w; w = w->next) 1462 w->rstatus = status;
433 event (EV_A_ (W)w, EV_SIGNAL); 1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
434 } 1464 }
1465 }
435} 1466}
436
437static void
438siginit (EV_P)
439{
440#ifndef WIN32
441 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
442 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
443
444 /* rather than sort out wether we really need nb, set it */
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif
448
449 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */
452}
453
454/*****************************************************************************/
455
456#ifndef WIN32
457 1467
458#ifndef WCONTINUED 1468#ifndef WCONTINUED
459# define WCONTINUED 0 1469# define WCONTINUED 0
460#endif 1470#endif
461 1471
1472/* called on sigchld etc., calls waitpid */
462static void 1473static void
463child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
464{
465 struct ev_child *w;
466
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid)
469 {
470 w->priority = sw->priority; /* need to do it *now* */
471 w->rpid = pid;
472 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD);
474 }
475}
476
477static void
478childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
479{ 1475{
480 int pid, status; 1476 int pid, status;
481 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
482 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
484 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
485 event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
486 1488
487 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
488 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
489 }
490} 1492}
491 1493
492#endif 1494#endif
493 1495
494/*****************************************************************************/ 1496/*****************************************************************************/
495 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
496#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
497# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
498#endif 1506#endif
499#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
500# include "ev_epoll.c" 1508# include "ev_epoll.c"
501#endif 1509#endif
502#if EV_USEV_POLL 1510#if EV_USE_POLL
503# include "ev_poll.c" 1511# include "ev_poll.c"
504#endif 1512#endif
505#if EV_USE_SELECT 1513#if EV_USE_SELECT
506# include "ev_select.c" 1514# include "ev_select.c"
507#endif 1515#endif
517{ 1525{
518 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
519} 1527}
520 1528
521/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
522static int 1530int inline_size
523enable_secure (void) 1531enable_secure (void)
524{ 1532{
525#ifdef WIN32 1533#ifdef _WIN32
526 return 0; 1534 return 0;
527#else 1535#else
528 return getuid () != geteuid () 1536 return getuid () != geteuid ()
529 || getgid () != getegid (); 1537 || getgid () != getegid ();
530#endif 1538#endif
531} 1539}
532 1540
1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
1603ev_depth (EV_P)
1604{
1605 return loop_depth;
1606}
1607
1608void
1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1610{
1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_MULTIPLICITY
1742 /* mimic free (0) */
1743 if (!EV_A)
1744 return;
1745#endif
1746
1747#if EV_CLEANUP_ENABLE
1748 /* queue cleanup watchers (and execute them) */
1749 if (expect_false (cleanupcnt))
1750 {
1751 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1752 EV_INVOKE_PENDING;
1753 }
1754#endif
1755
1756#if EV_CHILD_ENABLE
1757 if (ev_is_active (&childev))
1758 {
1759 ev_ref (EV_A); /* child watcher */
1760 ev_signal_stop (EV_A_ &childev);
1761 }
1762#endif
1763
1764 if (ev_is_active (&pipe_w))
1765 {
1766 /*ev_ref (EV_A);*/
1767 /*ev_io_stop (EV_A_ &pipe_w);*/
1768
1769#if EV_USE_EVENTFD
1770 if (evfd >= 0)
1771 close (evfd);
1772#endif
1773
1774 if (evpipe [0] >= 0)
1775 {
1776 EV_WIN32_CLOSE_FD (evpipe [0]);
1777 EV_WIN32_CLOSE_FD (evpipe [1]);
1778 }
1779 }
1780
1781#if EV_USE_SIGNALFD
1782 if (ev_is_active (&sigfd_w))
1783 close (sigfd);
1784#endif
1785
1786#if EV_USE_INOTIFY
1787 if (fs_fd >= 0)
1788 close (fs_fd);
1789#endif
1790
1791 if (backend_fd >= 0)
1792 close (backend_fd);
1793
1794#if EV_USE_IOCP
1795 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1796#endif
1797#if EV_USE_PORT
1798 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1799#endif
1800#if EV_USE_KQUEUE
1801 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1802#endif
1803#if EV_USE_EPOLL
1804 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1805#endif
1806#if EV_USE_POLL
1807 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1808#endif
1809#if EV_USE_SELECT
1810 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1811#endif
1812
1813 for (i = NUMPRI; i--; )
1814 {
1815 array_free (pending, [i]);
1816#if EV_IDLE_ENABLE
1817 array_free (idle, [i]);
1818#endif
1819 }
1820
1821 ev_free (anfds); anfds = 0; anfdmax = 0;
1822
1823 /* have to use the microsoft-never-gets-it-right macro */
1824 array_free (rfeed, EMPTY);
1825 array_free (fdchange, EMPTY);
1826 array_free (timer, EMPTY);
1827#if EV_PERIODIC_ENABLE
1828 array_free (periodic, EMPTY);
1829#endif
1830#if EV_FORK_ENABLE
1831 array_free (fork, EMPTY);
1832#endif
1833#if EV_CLEANUP_ENABLE
1834 array_free (cleanup, EMPTY);
1835#endif
1836 array_free (prepare, EMPTY);
1837 array_free (check, EMPTY);
1838#if EV_ASYNC_ENABLE
1839 array_free (async, EMPTY);
1840#endif
1841
1842 backend = 0;
1843
1844#if EV_MULTIPLICITY
1845 if (ev_is_default_loop (EV_A))
1846#endif
1847 ev_default_loop_ptr = 0;
1848#if EV_MULTIPLICITY
1849 else
1850 ev_free (EV_A);
1851#endif
1852}
1853
1854#if EV_USE_INOTIFY
1855inline_size void infy_fork (EV_P);
1856#endif
1857
1858inline_size void
1859loop_fork (EV_P)
1860{
1861#if EV_USE_PORT
1862 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1863#endif
1864#if EV_USE_KQUEUE
1865 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1866#endif
1867#if EV_USE_EPOLL
1868 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1869#endif
1870#if EV_USE_INOTIFY
1871 infy_fork (EV_A);
1872#endif
1873
1874 if (ev_is_active (&pipe_w))
1875 {
1876 /* this "locks" the handlers against writing to the pipe */
1877 /* while we modify the fd vars */
1878 sig_pending = 1;
1879#if EV_ASYNC_ENABLE
1880 async_pending = 1;
1881#endif
1882
1883 ev_ref (EV_A);
1884 ev_io_stop (EV_A_ &pipe_w);
1885
1886#if EV_USE_EVENTFD
1887 if (evfd >= 0)
1888 close (evfd);
1889#endif
1890
1891 if (evpipe [0] >= 0)
1892 {
1893 EV_WIN32_CLOSE_FD (evpipe [0]);
1894 EV_WIN32_CLOSE_FD (evpipe [1]);
1895 }
1896
1897#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1898 evpipe_init (EV_A);
1899 /* now iterate over everything, in case we missed something */
1900 pipecb (EV_A_ &pipe_w, EV_READ);
1901#endif
1902 }
1903
1904 postfork = 0;
1905}
1906
1907#if EV_MULTIPLICITY
1908
1909struct ev_loop *
1910ev_loop_new (unsigned int flags)
1911{
1912 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1913
1914 memset (EV_A, 0, sizeof (struct ev_loop));
1915 loop_init (EV_A_ flags);
1916
1917 if (ev_backend (EV_A))
1918 return EV_A;
1919
1920 ev_free (EV_A);
1921 return 0;
1922}
1923
1924#endif /* multiplicity */
1925
1926#if EV_VERIFY
1927static void noinline
1928verify_watcher (EV_P_ W w)
1929{
1930 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1931
1932 if (w->pending)
1933 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1934}
1935
1936static void noinline
1937verify_heap (EV_P_ ANHE *heap, int N)
1938{
1939 int i;
1940
1941 for (i = HEAP0; i < N + HEAP0; ++i)
1942 {
1943 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1944 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1945 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1946
1947 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1948 }
1949}
1950
1951static void noinline
1952array_verify (EV_P_ W *ws, int cnt)
1953{
1954 while (cnt--)
1955 {
1956 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1957 verify_watcher (EV_A_ ws [cnt]);
1958 }
1959}
1960#endif
1961
1962#if EV_FEATURE_API
1963void
1964ev_verify (EV_P)
1965{
1966#if EV_VERIFY
1967 int i;
1968 WL w;
1969
1970 assert (activecnt >= -1);
1971
1972 assert (fdchangemax >= fdchangecnt);
1973 for (i = 0; i < fdchangecnt; ++i)
1974 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1975
1976 assert (anfdmax >= 0);
1977 for (i = 0; i < anfdmax; ++i)
1978 for (w = anfds [i].head; w; w = w->next)
1979 {
1980 verify_watcher (EV_A_ (W)w);
1981 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1982 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1983 }
1984
1985 assert (timermax >= timercnt);
1986 verify_heap (EV_A_ timers, timercnt);
1987
1988#if EV_PERIODIC_ENABLE
1989 assert (periodicmax >= periodiccnt);
1990 verify_heap (EV_A_ periodics, periodiccnt);
1991#endif
1992
1993 for (i = NUMPRI; i--; )
1994 {
1995 assert (pendingmax [i] >= pendingcnt [i]);
1996#if EV_IDLE_ENABLE
1997 assert (idleall >= 0);
1998 assert (idlemax [i] >= idlecnt [i]);
1999 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2000#endif
2001 }
2002
2003#if EV_FORK_ENABLE
2004 assert (forkmax >= forkcnt);
2005 array_verify (EV_A_ (W *)forks, forkcnt);
2006#endif
2007
2008#if EV_CLEANUP_ENABLE
2009 assert (cleanupmax >= cleanupcnt);
2010 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2011#endif
2012
2013#if EV_ASYNC_ENABLE
2014 assert (asyncmax >= asynccnt);
2015 array_verify (EV_A_ (W *)asyncs, asynccnt);
2016#endif
2017
2018#if EV_PREPARE_ENABLE
2019 assert (preparemax >= preparecnt);
2020 array_verify (EV_A_ (W *)prepares, preparecnt);
2021#endif
2022
2023#if EV_CHECK_ENABLE
2024 assert (checkmax >= checkcnt);
2025 array_verify (EV_A_ (W *)checks, checkcnt);
2026#endif
2027
2028# if 0
2029#if EV_CHILD_ENABLE
2030 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2031 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2032#endif
2033# endif
2034#endif
2035}
2036#endif
2037
2038#if EV_MULTIPLICITY
2039struct ev_loop *
2040#else
533int 2041int
534ev_method (EV_P) 2042#endif
2043ev_default_loop (unsigned int flags)
535{ 2044{
536 return method; 2045 if (!ev_default_loop_ptr)
537} 2046 {
538
539int
540ev_init (EV_P_ int methods)
541{
542#ifdef EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
543 memset (loop, 0, sizeof (struct ev_loop)); 2048 EV_P = ev_default_loop_ptr = &default_loop_struct;
2049#else
2050 ev_default_loop_ptr = 1;
544#endif 2051#endif
545 2052
546 if (!method) 2053 loop_init (EV_A_ flags);
547 {
548#if EV_USE_MONOTONIC
549 {
550 struct timespec ts;
551 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552 have_monotonic = 1;
553 }
554#endif
555 2054
556 rt_now = ev_time (); 2055 if (ev_backend (EV_A))
557 mn_now = get_clock ();
558 now_floor = mn_now;
559 diff = rt_now - mn_now;
560
561 if (pipe (sigpipe))
562 return 0;
563
564 if (methods == EVMETHOD_AUTO)
565 if (!enable_secure () && getenv ("LIBmethodS"))
566 methods = atoi (getenv ("LIBmethodS"));
567 else
568 methods = EVMETHOD_ANY;
569
570 method = 0;
571#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573#endif
574#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
576#endif
577#if EV_USEV_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
579#endif
580#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582#endif
583
584 if (method)
585 { 2056 {
586 ev_watcher_init (&sigev, sigcb); 2057#if EV_CHILD_ENABLE
587 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A);
589
590#ifndef WIN32
591 ev_signal_init (&childev, childcb, SIGCHLD); 2058 ev_signal_init (&childev, childcb, SIGCHLD);
592 ev_set_priority (&childev, EV_MAXPRI); 2059 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 2060 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2061 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 2062#endif
596 } 2063 }
2064 else
2065 ev_default_loop_ptr = 0;
597 } 2066 }
598 2067
599 return method; 2068 return ev_default_loop_ptr;
2069}
2070
2071void
2072ev_loop_fork (EV_P)
2073{
2074 postfork = 1; /* must be in line with ev_default_fork */
600} 2075}
601 2076
602/*****************************************************************************/ 2077/*****************************************************************************/
603 2078
604void 2079void
605ev_fork_prepare (void) 2080ev_invoke (EV_P_ void *w, int revents)
606{ 2081{
607 /* nop */ 2082 EV_CB_INVOKE ((W)w, revents);
608} 2083}
609 2084
610void 2085unsigned int
611ev_fork_parent (void) 2086ev_pending_count (EV_P)
612{ 2087{
613 /* nop */ 2088 int pri;
614} 2089 unsigned int count = 0;
615 2090
616void 2091 for (pri = NUMPRI; pri--; )
617ev_fork_child (void) 2092 count += pendingcnt [pri];
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif
623 2093
624 ev_io_stop (&sigev); 2094 return count;
625 close (sigpipe [0]);
626 close (sigpipe [1]);
627 pipe (sigpipe);
628 siginit ();
629} 2095}
630 2096
631/*****************************************************************************/ 2097void noinline
632 2098ev_invoke_pending (EV_P)
633static void
634call_pending (EV_P)
635{ 2099{
636 int pri; 2100 int pri;
637 2101
638 for (pri = NUMPRI; pri--; ) 2102 for (pri = NUMPRI; pri--; )
639 while (pendingcnt [pri]) 2103 while (pendingcnt [pri])
640 { 2104 {
641 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2105 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642 2106
643 if (p->w) 2107 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
644 { 2108 /* ^ this is no longer true, as pending_w could be here */
2109
645 p->w->pending = 0; 2110 p->w->pending = 0;
646 p->w->cb (EV_A_ p->w, p->events); 2111 EV_CB_INVOKE (p->w, p->events);
647 } 2112 EV_FREQUENT_CHECK;
648 } 2113 }
649} 2114}
650 2115
651static void 2116#if EV_IDLE_ENABLE
2117/* make idle watchers pending. this handles the "call-idle */
2118/* only when higher priorities are idle" logic */
2119inline_size void
652timers_reify (EV_P) 2120idle_reify (EV_P)
653{ 2121{
654 while (timercnt && timers [0]->at <= mn_now) 2122 if (expect_false (idleall))
655 { 2123 {
656 struct ev_timer *w = timers [0]; 2124 int pri;
657 2125
658 /* first reschedule or stop timer */ 2126 for (pri = NUMPRI; pri--; )
659 if (w->repeat)
660 { 2127 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2128 if (pendingcnt [pri])
662 w->at = mn_now + w->repeat; 2129 break;
663 downheap ((WT *)timers, timercnt, 0);
664 }
665 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 2130
668 event ((W)w, EV_TIMEOUT); 2131 if (idlecnt [pri])
669 }
670}
671
672static void
673periodics_reify (EV_P)
674{
675 while (periodiccnt && periodics [0]->at <= rt_now)
676 {
677 struct ev_periodic *w = periodics [0];
678
679 /* first reschedule or stop timer */
680 if (w->interval)
681 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0);
685 }
686 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688
689 event (EV_A_ (W)w, EV_PERIODIC);
690 }
691}
692
693static void
694periodics_reschedule (EV_P_ ev_tstamp diff)
695{
696 int i;
697
698 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i)
700 {
701 struct ev_periodic *w = periodics [i];
702
703 if (w->interval)
704 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
706
707 if (fabs (diff) >= 1e-4)
708 { 2132 {
709 ev_periodic_stop (EV_A_ w); 2133 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
710 ev_periodic_start (EV_A_ w); 2134 break;
711
712 i = 0; /* restart loop, inefficient, but time jumps should be rare */
713 } 2135 }
714 } 2136 }
715 } 2137 }
716} 2138}
2139#endif
717 2140
718inline int 2141/* make timers pending */
719time_update_monotonic (EV_P) 2142inline_size void
2143timers_reify (EV_P)
720{ 2144{
721 mn_now = get_clock (); 2145 EV_FREQUENT_CHECK;
722 2146
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2147 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
724 {
725 rt_now = mn_now + diff;
726 return 0;
727 } 2148 {
728 else 2149 do
2150 {
2151 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2152
2153 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2154
2155 /* first reschedule or stop timer */
2156 if (w->repeat)
2157 {
2158 ev_at (w) += w->repeat;
2159 if (ev_at (w) < mn_now)
2160 ev_at (w) = mn_now;
2161
2162 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2163
2164 ANHE_at_cache (timers [HEAP0]);
2165 downheap (timers, timercnt, HEAP0);
2166 }
2167 else
2168 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2169
2170 EV_FREQUENT_CHECK;
2171 feed_reverse (EV_A_ (W)w);
2172 }
2173 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2174
2175 feed_reverse_done (EV_A_ EV_TIMER);
729 { 2176 }
730 now_floor = mn_now; 2177}
731 rt_now = ev_time (); 2178
732 return 1; 2179#if EV_PERIODIC_ENABLE
2180/* make periodics pending */
2181inline_size void
2182periodics_reify (EV_P)
2183{
2184 EV_FREQUENT_CHECK;
2185
2186 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
733 } 2187 {
734} 2188 int feed_count = 0;
735 2189
736static void 2190 do
737time_update (EV_P) 2191 {
2192 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2193
2194 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2195
2196 /* first reschedule or stop timer */
2197 if (w->reschedule_cb)
2198 {
2199 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2200
2201 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2202
2203 ANHE_at_cache (periodics [HEAP0]);
2204 downheap (periodics, periodiccnt, HEAP0);
2205 }
2206 else if (w->interval)
2207 {
2208 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2209 /* if next trigger time is not sufficiently in the future, put it there */
2210 /* this might happen because of floating point inexactness */
2211 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2212 {
2213 ev_at (w) += w->interval;
2214
2215 /* if interval is unreasonably low we might still have a time in the past */
2216 /* so correct this. this will make the periodic very inexact, but the user */
2217 /* has effectively asked to get triggered more often than possible */
2218 if (ev_at (w) < ev_rt_now)
2219 ev_at (w) = ev_rt_now;
2220 }
2221
2222 ANHE_at_cache (periodics [HEAP0]);
2223 downheap (periodics, periodiccnt, HEAP0);
2224 }
2225 else
2226 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2227
2228 EV_FREQUENT_CHECK;
2229 feed_reverse (EV_A_ (W)w);
2230 }
2231 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2232
2233 feed_reverse_done (EV_A_ EV_PERIODIC);
2234 }
2235}
2236
2237/* simply recalculate all periodics */
2238/* TODO: maybe ensure that at least one event happens when jumping forward? */
2239static void noinline
2240periodics_reschedule (EV_P)
738{ 2241{
739 int i; 2242 int i;
740 2243
2244 /* adjust periodics after time jump */
2245 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2246 {
2247 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2248
2249 if (w->reschedule_cb)
2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2251 else if (w->interval)
2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253
2254 ANHE_at_cache (periodics [i]);
2255 }
2256
2257 reheap (periodics, periodiccnt);
2258}
2259#endif
2260
2261/* adjust all timers by a given offset */
2262static void noinline
2263timers_reschedule (EV_P_ ev_tstamp adjust)
2264{
2265 int i;
2266
2267 for (i = 0; i < timercnt; ++i)
2268 {
2269 ANHE *he = timers + i + HEAP0;
2270 ANHE_w (*he)->at += adjust;
2271 ANHE_at_cache (*he);
2272 }
2273}
2274
2275/* fetch new monotonic and realtime times from the kernel */
2276/* also detect if there was a timejump, and act accordingly */
2277inline_speed void
2278time_update (EV_P_ ev_tstamp max_block)
2279{
741#if EV_USE_MONOTONIC 2280#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 2281 if (expect_true (have_monotonic))
743 { 2282 {
744 if (time_update_monotonic (EV_A)) 2283 int i;
2284 ev_tstamp odiff = rtmn_diff;
2285
2286 mn_now = get_clock ();
2287
2288 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2289 /* interpolate in the meantime */
2290 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
745 { 2291 {
746 ev_tstamp odiff = diff; 2292 ev_rt_now = rtmn_diff + mn_now;
747 2293 return;
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */
749 {
750 diff = rt_now - mn_now;
751
752 if (fabs (odiff - diff) < MIN_TIMEJUMP)
753 return; /* all is well */
754
755 rt_now = ev_time ();
756 mn_now = get_clock ();
757 now_floor = mn_now;
758 }
759
760 periodics_reschedule (EV_A_ diff - odiff);
761 /* no timer adjustment, as the monotonic clock doesn't jump */
762 } 2294 }
2295
2296 now_floor = mn_now;
2297 ev_rt_now = ev_time ();
2298
2299 /* loop a few times, before making important decisions.
2300 * on the choice of "4": one iteration isn't enough,
2301 * in case we get preempted during the calls to
2302 * ev_time and get_clock. a second call is almost guaranteed
2303 * to succeed in that case, though. and looping a few more times
2304 * doesn't hurt either as we only do this on time-jumps or
2305 * in the unlikely event of having been preempted here.
2306 */
2307 for (i = 4; --i; )
2308 {
2309 rtmn_diff = ev_rt_now - mn_now;
2310
2311 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2312 return; /* all is well */
2313
2314 ev_rt_now = ev_time ();
2315 mn_now = get_clock ();
2316 now_floor = mn_now;
2317 }
2318
2319 /* no timer adjustment, as the monotonic clock doesn't jump */
2320 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2321# if EV_PERIODIC_ENABLE
2322 periodics_reschedule (EV_A);
2323# endif
763 } 2324 }
764 else 2325 else
765#endif 2326#endif
766 { 2327 {
767 rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
768 2329
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2330 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
770 { 2331 {
771 periodics_reschedule (EV_A_ rt_now - mn_now);
772
773 /* adjust timers. this is easy, as the offset is the same for all */ 2332 /* adjust timers. this is easy, as the offset is the same for all of them */
774 for (i = 0; i < timercnt; ++i) 2333 timers_reschedule (EV_A_ ev_rt_now - mn_now);
775 timers [i]->at += diff; 2334#if EV_PERIODIC_ENABLE
2335 periodics_reschedule (EV_A);
2336#endif
776 } 2337 }
777 2338
778 mn_now = rt_now; 2339 mn_now = ev_rt_now;
779 } 2340 }
780} 2341}
781 2342
782void 2343void
783ev_ref (EV_P)
784{
785 ++activecnt;
786}
787
788void
789ev_unref (EV_P)
790{
791 --activecnt;
792}
793
794static int loop_done;
795
796void
797ev_loop (EV_P_ int flags) 2344ev_run (EV_P_ int flags)
798{ 2345{
799 double block; 2346#if EV_FEATURE_API
800 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2347 ++loop_depth;
2348#endif
2349
2350 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2351
2352 loop_done = EVBREAK_CANCEL;
2353
2354 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
801 2355
802 do 2356 do
803 { 2357 {
2358#if EV_VERIFY >= 2
2359 ev_verify (EV_A);
2360#endif
2361
2362#ifndef _WIN32
2363 if (expect_false (curpid)) /* penalise the forking check even more */
2364 if (expect_false (getpid () != curpid))
2365 {
2366 curpid = getpid ();
2367 postfork = 1;
2368 }
2369#endif
2370
2371#if EV_FORK_ENABLE
2372 /* we might have forked, so queue fork handlers */
2373 if (expect_false (postfork))
2374 if (forkcnt)
2375 {
2376 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2377 EV_INVOKE_PENDING;
2378 }
2379#endif
2380
2381#if EV_PREPARE_ENABLE
804 /* queue check watchers (and execute them) */ 2382 /* queue prepare watchers (and execute them) */
805 if (expect_false (preparecnt)) 2383 if (expect_false (preparecnt))
806 { 2384 {
807 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2385 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808 call_pending (EV_A); 2386 EV_INVOKE_PENDING;
809 } 2387 }
2388#endif
2389
2390 if (expect_false (loop_done))
2391 break;
2392
2393 /* we might have forked, so reify kernel state if necessary */
2394 if (expect_false (postfork))
2395 loop_fork (EV_A);
810 2396
811 /* update fd-related kernel structures */ 2397 /* update fd-related kernel structures */
812 fd_reify (EV_A); 2398 fd_reify (EV_A);
813 2399
814 /* calculate blocking time */ 2400 /* calculate blocking time */
2401 {
2402 ev_tstamp waittime = 0.;
2403 ev_tstamp sleeptime = 0.;
815 2404
816 /* we only need this for !monotonic clockor timers, but as we basically 2405 /* remember old timestamp for io_blocktime calculation */
817 always have timers, we just calculate it always */ 2406 ev_tstamp prev_mn_now = mn_now;
818#if EV_USE_MONOTONIC 2407
819 if (expect_true (have_monotonic)) 2408 /* update time to cancel out callback processing overhead */
820 time_update_monotonic (EV_A); 2409 time_update (EV_A_ 1e100);
821 else 2410
822#endif 2411 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
823 { 2412 {
824 rt_now = ev_time ();
825 mn_now = rt_now;
826 }
827
828 if (flags & EVLOOP_NONBLOCK || idlecnt)
829 block = 0.;
830 else
831 {
832 block = MAX_BLOCKTIME; 2413 waittime = MAX_BLOCKTIME;
833 2414
834 if (timercnt) 2415 if (timercnt)
835 { 2416 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2417 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
837 if (block > to) block = to; 2418 if (waittime > to) waittime = to;
838 } 2419 }
839 2420
2421#if EV_PERIODIC_ENABLE
840 if (periodiccnt) 2422 if (periodiccnt)
841 { 2423 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2424 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
843 if (block > to) block = to; 2425 if (waittime > to) waittime = to;
844 } 2426 }
2427#endif
845 2428
846 if (block < 0.) block = 0.; 2429 /* don't let timeouts decrease the waittime below timeout_blocktime */
2430 if (expect_false (waittime < timeout_blocktime))
2431 waittime = timeout_blocktime;
2432
2433 /* extra check because io_blocktime is commonly 0 */
2434 if (expect_false (io_blocktime))
2435 {
2436 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2437
2438 if (sleeptime > waittime - backend_fudge)
2439 sleeptime = waittime - backend_fudge;
2440
2441 if (expect_true (sleeptime > 0.))
2442 {
2443 ev_sleep (sleeptime);
2444 waittime -= sleeptime;
2445 }
2446 }
847 } 2447 }
848 2448
849 method_poll (EV_A_ block); 2449#if EV_FEATURE_API
2450 ++loop_count;
2451#endif
2452 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2453 backend_poll (EV_A_ waittime);
2454 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
850 2455
851 /* update rt_now, do magic */ 2456 /* update ev_rt_now, do magic */
852 time_update (EV_A); 2457 time_update (EV_A_ waittime + sleeptime);
2458 }
853 2459
854 /* queue pending timers and reschedule them */ 2460 /* queue pending timers and reschedule them */
855 timers_reify (EV_A); /* relative timers called last */ 2461 timers_reify (EV_A); /* relative timers called last */
2462#if EV_PERIODIC_ENABLE
856 periodics_reify (EV_A); /* absolute timers called first */ 2463 periodics_reify (EV_A); /* absolute timers called first */
2464#endif
857 2465
2466#if EV_IDLE_ENABLE
858 /* queue idle watchers unless io or timers are pending */ 2467 /* queue idle watchers unless other events are pending */
859 if (!pendingcnt) 2468 idle_reify (EV_A);
860 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2469#endif
861 2470
2471#if EV_CHECK_ENABLE
862 /* queue check watchers, to be executed first */ 2472 /* queue check watchers, to be executed first */
863 if (checkcnt) 2473 if (expect_false (checkcnt))
864 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2474 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2475#endif
865 2476
866 call_pending (EV_A); 2477 EV_INVOKE_PENDING;
867 } 2478 }
868 while (activecnt && !loop_done); 2479 while (expect_true (
2480 activecnt
2481 && !loop_done
2482 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2483 ));
869 2484
870 if (loop_done != 2) 2485 if (loop_done == EVBREAK_ONE)
871 loop_done = 0; 2486 loop_done = EVBREAK_CANCEL;
872}
873 2487
2488#if EV_FEATURE_API
2489 --loop_depth;
2490#endif
2491}
2492
874void 2493void
875ev_unloop (EV_P_ int how) 2494ev_break (EV_P_ int how)
876{ 2495{
877 loop_done = how; 2496 loop_done = how;
878} 2497}
879 2498
2499void
2500ev_ref (EV_P)
2501{
2502 ++activecnt;
2503}
2504
2505void
2506ev_unref (EV_P)
2507{
2508 --activecnt;
2509}
2510
2511void
2512ev_now_update (EV_P)
2513{
2514 time_update (EV_A_ 1e100);
2515}
2516
2517void
2518ev_suspend (EV_P)
2519{
2520 ev_now_update (EV_A);
2521}
2522
2523void
2524ev_resume (EV_P)
2525{
2526 ev_tstamp mn_prev = mn_now;
2527
2528 ev_now_update (EV_A);
2529 timers_reschedule (EV_A_ mn_now - mn_prev);
2530#if EV_PERIODIC_ENABLE
2531 /* TODO: really do this? */
2532 periodics_reschedule (EV_A);
2533#endif
2534}
2535
880/*****************************************************************************/ 2536/*****************************************************************************/
2537/* singly-linked list management, used when the expected list length is short */
881 2538
882inline void 2539inline_size void
883wlist_add (WL *head, WL elem) 2540wlist_add (WL *head, WL elem)
884{ 2541{
885 elem->next = *head; 2542 elem->next = *head;
886 *head = elem; 2543 *head = elem;
887} 2544}
888 2545
889inline void 2546inline_size void
890wlist_del (WL *head, WL elem) 2547wlist_del (WL *head, WL elem)
891{ 2548{
892 while (*head) 2549 while (*head)
893 { 2550 {
894 if (*head == elem) 2551 if (expect_true (*head == elem))
895 { 2552 {
896 *head = elem->next; 2553 *head = elem->next;
897 return; 2554 break;
898 } 2555 }
899 2556
900 head = &(*head)->next; 2557 head = &(*head)->next;
901 } 2558 }
902} 2559}
903 2560
2561/* internal, faster, version of ev_clear_pending */
904inline void 2562inline_speed void
905ev_clear_pending (EV_P_ W w) 2563clear_pending (EV_P_ W w)
906{ 2564{
907 if (w->pending) 2565 if (w->pending)
908 { 2566 {
909 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2567 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
910 w->pending = 0; 2568 w->pending = 0;
911 } 2569 }
912} 2570}
913 2571
2572int
2573ev_clear_pending (EV_P_ void *w)
2574{
2575 W w_ = (W)w;
2576 int pending = w_->pending;
2577
2578 if (expect_true (pending))
2579 {
2580 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2581 p->w = (W)&pending_w;
2582 w_->pending = 0;
2583 return p->events;
2584 }
2585 else
2586 return 0;
2587}
2588
914inline void 2589inline_size void
2590pri_adjust (EV_P_ W w)
2591{
2592 int pri = ev_priority (w);
2593 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2594 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2595 ev_set_priority (w, pri);
2596}
2597
2598inline_speed void
915ev_start (EV_P_ W w, int active) 2599ev_start (EV_P_ W w, int active)
916{ 2600{
917 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2601 pri_adjust (EV_A_ w);
918 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
919
920 w->active = active; 2602 w->active = active;
921 ev_ref (EV_A); 2603 ev_ref (EV_A);
922} 2604}
923 2605
924inline void 2606inline_size void
925ev_stop (EV_P_ W w) 2607ev_stop (EV_P_ W w)
926{ 2608{
927 ev_unref (EV_A); 2609 ev_unref (EV_A);
928 w->active = 0; 2610 w->active = 0;
929} 2611}
930 2612
931/*****************************************************************************/ 2613/*****************************************************************************/
932 2614
933void 2615void noinline
934ev_io_start (EV_P_ struct ev_io *w) 2616ev_io_start (EV_P_ ev_io *w)
935{ 2617{
936 int fd = w->fd; 2618 int fd = w->fd;
937 2619
938 if (ev_is_active (w)) 2620 if (expect_false (ev_is_active (w)))
939 return; 2621 return;
940 2622
941 assert (("ev_io_start called with negative fd", fd >= 0)); 2623 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2624 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2625
2626 EV_FREQUENT_CHECK;
942 2627
943 ev_start (EV_A_ (W)w, 1); 2628 ev_start (EV_A_ (W)w, 1);
944 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2629 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
945 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2630 wlist_add (&anfds[fd].head, (WL)w);
946 2631
947 fd_change (EV_A_ fd); 2632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
948} 2633 w->events &= ~EV__IOFDSET;
949 2634
950void 2635 EV_FREQUENT_CHECK;
2636}
2637
2638void noinline
951ev_io_stop (EV_P_ struct ev_io *w) 2639ev_io_stop (EV_P_ ev_io *w)
952{ 2640{
953 ev_clear_pending (EV_A_ (W)w); 2641 clear_pending (EV_A_ (W)w);
954 if (!ev_is_active (w)) 2642 if (expect_false (!ev_is_active (w)))
955 return; 2643 return;
956 2644
2645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2646
2647 EV_FREQUENT_CHECK;
2648
957 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2649 wlist_del (&anfds[w->fd].head, (WL)w);
958 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
959 2651
960 fd_change (EV_A_ w->fd); 2652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
961}
962 2653
963void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
964ev_timer_start (EV_P_ struct ev_timer *w) 2658ev_timer_start (EV_P_ ev_timer *w)
965{ 2659{
966 if (ev_is_active (w)) 2660 if (expect_false (ev_is_active (w)))
967 return; 2661 return;
968 2662
969 w->at += mn_now; 2663 ev_at (w) += mn_now;
970 2664
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 2666
2667 EV_FREQUENT_CHECK;
2668
2669 ++timercnt;
973 ev_start (EV_A_ (W)w, ++timercnt); 2670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
974 array_needsize (timers, timermax, timercnt, ); 2671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
975 timers [timercnt - 1] = w; 2672 ANHE_w (timers [ev_active (w)]) = (WT)w;
976 upheap ((WT *)timers, timercnt - 1); 2673 ANHE_at_cache (timers [ev_active (w)]);
977} 2674 upheap (timers, ev_active (w));
978 2675
979void 2676 EV_FREQUENT_CHECK;
2677
2678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2679}
2680
2681void noinline
980ev_timer_stop (EV_P_ struct ev_timer *w) 2682ev_timer_stop (EV_P_ ev_timer *w)
981{ 2683{
982 ev_clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 2685 if (expect_false (!ev_is_active (w)))
984 return; 2686 return;
985 2687
986 if (w->active < timercnt--) 2688 EV_FREQUENT_CHECK;
2689
2690 {
2691 int active = ev_active (w);
2692
2693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2694
2695 --timercnt;
2696
2697 if (expect_true (active < timercnt + HEAP0))
987 { 2698 {
988 timers [w->active - 1] = timers [timercnt]; 2699 timers [active] = timers [timercnt + HEAP0];
989 downheap ((WT *)timers, timercnt, w->active - 1); 2700 adjustheap (timers, timercnt, active);
990 } 2701 }
2702 }
991 2703
992 w->at = w->repeat; 2704 ev_at (w) -= mn_now;
993 2705
994 ev_stop (EV_A_ (W)w); 2706 ev_stop (EV_A_ (W)w);
995}
996 2707
997void 2708 EV_FREQUENT_CHECK;
2709}
2710
2711void noinline
998ev_timer_again (EV_P_ struct ev_timer *w) 2712ev_timer_again (EV_P_ ev_timer *w)
999{ 2713{
2714 EV_FREQUENT_CHECK;
2715
1000 if (ev_is_active (w)) 2716 if (ev_is_active (w))
1001 { 2717 {
1002 if (w->repeat) 2718 if (w->repeat)
1003 { 2719 {
1004 w->at = mn_now + w->repeat; 2720 ev_at (w) = mn_now + w->repeat;
2721 ANHE_at_cache (timers [ev_active (w)]);
1005 downheap ((WT *)timers, timercnt, w->active - 1); 2722 adjustheap (timers, timercnt, ev_active (w));
1006 } 2723 }
1007 else 2724 else
1008 ev_timer_stop (EV_A_ w); 2725 ev_timer_stop (EV_A_ w);
1009 } 2726 }
1010 else if (w->repeat) 2727 else if (w->repeat)
2728 {
2729 ev_at (w) = w->repeat;
1011 ev_timer_start (EV_A_ w); 2730 ev_timer_start (EV_A_ w);
1012} 2731 }
1013 2732
1014void 2733 EV_FREQUENT_CHECK;
2734}
2735
2736ev_tstamp
2737ev_timer_remaining (EV_P_ ev_timer *w)
2738{
2739 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2740}
2741
2742#if EV_PERIODIC_ENABLE
2743void noinline
1015ev_periodic_start (EV_P_ struct ev_periodic *w) 2744ev_periodic_start (EV_P_ ev_periodic *w)
1016{ 2745{
1017 if (ev_is_active (w)) 2746 if (expect_false (ev_is_active (w)))
1018 return; 2747 return;
1019 2748
2749 if (w->reschedule_cb)
2750 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2751 else if (w->interval)
2752 {
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2753 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1021
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 2754 /* this formula differs from the one in periodic_reify because we do not always round up */
1023 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2755 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2756 }
2757 else
2758 ev_at (w) = w->offset;
1025 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++periodiccnt;
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 2763 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 2764 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1028 periodics [periodiccnt - 1] = w; 2765 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 2766 ANHE_at_cache (periodics [ev_active (w)]);
1030} 2767 upheap (periodics, ev_active (w));
1031 2768
1032void 2769 EV_FREQUENT_CHECK;
2770
2771 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2772}
2773
2774void noinline
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 2775ev_periodic_stop (EV_P_ ev_periodic *w)
1034{ 2776{
1035 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 2778 if (expect_false (!ev_is_active (w)))
1037 return; 2779 return;
1038 2780
1039 if (w->active < periodiccnt--) 2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2787
2788 --periodiccnt;
2789
2790 if (expect_true (active < periodiccnt + HEAP0))
1040 { 2791 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 2792 periodics [active] = periodics [periodiccnt + HEAP0];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2793 adjustheap (periodics, periodiccnt, active);
1043 } 2794 }
2795 }
1044 2796
1045 ev_stop (EV_A_ (W)w); 2797 ev_stop (EV_A_ (W)w);
2798
2799 EV_FREQUENT_CHECK;
1046} 2800}
2801
2802void noinline
2803ev_periodic_again (EV_P_ ev_periodic *w)
2804{
2805 /* TODO: use adjustheap and recalculation */
2806 ev_periodic_stop (EV_A_ w);
2807 ev_periodic_start (EV_A_ w);
2808}
2809#endif
1047 2810
1048#ifndef SA_RESTART 2811#ifndef SA_RESTART
1049# define SA_RESTART 0 2812# define SA_RESTART 0
1050#endif 2813#endif
1051 2814
1052void 2815#if EV_SIGNAL_ENABLE
2816
2817void noinline
1053ev_signal_start (EV_P_ struct ev_signal *w) 2818ev_signal_start (EV_P_ ev_signal *w)
1054{ 2819{
1055 if (ev_is_active (w)) 2820 if (expect_false (ev_is_active (w)))
1056 return; 2821 return;
1057 2822
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2823 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2824
2825#if EV_MULTIPLICITY
2826 assert (("libev: a signal must not be attached to two different loops",
2827 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2828
2829 signals [w->signum - 1].loop = EV_A;
2830#endif
2831
2832 EV_FREQUENT_CHECK;
2833
2834#if EV_USE_SIGNALFD
2835 if (sigfd == -2)
2836 {
2837 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2838 if (sigfd < 0 && errno == EINVAL)
2839 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2840
2841 if (sigfd >= 0)
2842 {
2843 fd_intern (sigfd); /* doing it twice will not hurt */
2844
2845 sigemptyset (&sigfd_set);
2846
2847 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2848 ev_set_priority (&sigfd_w, EV_MAXPRI);
2849 ev_io_start (EV_A_ &sigfd_w);
2850 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2851 }
2852 }
2853
2854 if (sigfd >= 0)
2855 {
2856 /* TODO: check .head */
2857 sigaddset (&sigfd_set, w->signum);
2858 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2859
2860 signalfd (sigfd, &sigfd_set, 0);
2861 }
2862#endif
1059 2863
1060 ev_start (EV_A_ (W)w, 1); 2864 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2865 wlist_add (&signals [w->signum - 1].head, (WL)w);
1063 2866
1064 if (!w->next) 2867 if (!((WL)w)->next)
2868# if EV_USE_SIGNALFD
2869 if (sigfd < 0) /*TODO*/
2870# endif
1065 { 2871 {
2872# ifdef _WIN32
2873 evpipe_init (EV_A);
2874
2875 signal (w->signum, ev_sighandler);
2876# else
1066 struct sigaction sa; 2877 struct sigaction sa;
2878
2879 evpipe_init (EV_A);
2880
1067 sa.sa_handler = sighandler; 2881 sa.sa_handler = ev_sighandler;
1068 sigfillset (&sa.sa_mask); 2882 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2883 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 2884 sigaction (w->signum, &sa, 0);
2885
2886 sigemptyset (&sa.sa_mask);
2887 sigaddset (&sa.sa_mask, w->signum);
2888 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2889#endif
1071 } 2890 }
1072}
1073 2891
1074void 2892 EV_FREQUENT_CHECK;
2893}
2894
2895void noinline
1075ev_signal_stop (EV_P_ struct ev_signal *w) 2896ev_signal_stop (EV_P_ ev_signal *w)
1076{ 2897{
1077 ev_clear_pending (EV_A_ (W)w); 2898 clear_pending (EV_A_ (W)w);
1078 if (!ev_is_active (w)) 2899 if (expect_false (!ev_is_active (w)))
1079 return; 2900 return;
1080 2901
2902 EV_FREQUENT_CHECK;
2903
1081 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2904 wlist_del (&signals [w->signum - 1].head, (WL)w);
1082 ev_stop (EV_A_ (W)w); 2905 ev_stop (EV_A_ (W)w);
1083 2906
1084 if (!signals [w->signum - 1].head) 2907 if (!signals [w->signum - 1].head)
2908 {
2909#if EV_MULTIPLICITY
2910 signals [w->signum - 1].loop = 0; /* unattach from signal */
2911#endif
2912#if EV_USE_SIGNALFD
2913 if (sigfd >= 0)
2914 {
2915 sigset_t ss;
2916
2917 sigemptyset (&ss);
2918 sigaddset (&ss, w->signum);
2919 sigdelset (&sigfd_set, w->signum);
2920
2921 signalfd (sigfd, &sigfd_set, 0);
2922 sigprocmask (SIG_UNBLOCK, &ss, 0);
2923 }
2924 else
2925#endif
1085 signal (w->signum, SIG_DFL); 2926 signal (w->signum, SIG_DFL);
1086} 2927 }
1087 2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932#endif
2933
2934#if EV_CHILD_ENABLE
2935
1088void 2936void
1089ev_idle_start (EV_P_ struct ev_idle *w) 2937ev_child_start (EV_P_ ev_child *w)
1090{ 2938{
2939#if EV_MULTIPLICITY
2940 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2941#endif
1091 if (ev_is_active (w)) 2942 if (expect_false (ev_is_active (w)))
1092 return; 2943 return;
1093 2944
2945 EV_FREQUENT_CHECK;
2946
1094 ev_start (EV_A_ (W)w, ++idlecnt); 2947 ev_start (EV_A_ (W)w, 1);
1095 array_needsize (idles, idlemax, idlecnt, ); 2948 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1096 idles [idlecnt - 1] = w;
1097}
1098 2949
2950 EV_FREQUENT_CHECK;
2951}
2952
1099void 2953void
1100ev_idle_stop (EV_P_ struct ev_idle *w) 2954ev_child_stop (EV_P_ ev_child *w)
1101{ 2955{
1102 ev_clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w)) 2957 if (expect_false (!ev_is_active (w)))
1104 return; 2958 return;
1105 2959
1106 idles [w->active - 1] = idles [--idlecnt]; 2960 EV_FREQUENT_CHECK;
2961
2962 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1107 ev_stop (EV_A_ (W)w); 2963 ev_stop (EV_A_ (W)w);
1108}
1109 2964
1110void 2965 EV_FREQUENT_CHECK;
1111ev_prepare_start (EV_P_ struct ev_prepare *w) 2966}
2967
2968#endif
2969
2970#if EV_STAT_ENABLE
2971
2972# ifdef _WIN32
2973# undef lstat
2974# define lstat(a,b) _stati64 (a,b)
2975# endif
2976
2977#define DEF_STAT_INTERVAL 5.0074891
2978#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2979#define MIN_STAT_INTERVAL 0.1074891
2980
2981static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2982
2983#if EV_USE_INOTIFY
2984
2985/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2986# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2987
2988static void noinline
2989infy_add (EV_P_ ev_stat *w)
1112{ 2990{
1113 if (ev_is_active (w)) 2991 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2992
2993 if (w->wd >= 0)
2994 {
2995 struct statfs sfs;
2996
2997 /* now local changes will be tracked by inotify, but remote changes won't */
2998 /* unless the filesystem is known to be local, we therefore still poll */
2999 /* also do poll on <2.6.25, but with normal frequency */
3000
3001 if (!fs_2625)
3002 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3003 else if (!statfs (w->path, &sfs)
3004 && (sfs.f_type == 0x1373 /* devfs */
3005 || sfs.f_type == 0xEF53 /* ext2/3 */
3006 || sfs.f_type == 0x3153464a /* jfs */
3007 || sfs.f_type == 0x52654973 /* reiser3 */
3008 || sfs.f_type == 0x01021994 /* tempfs */
3009 || sfs.f_type == 0x58465342 /* xfs */))
3010 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3011 else
3012 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3013 }
3014 else
3015 {
3016 /* can't use inotify, continue to stat */
3017 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3018
3019 /* if path is not there, monitor some parent directory for speedup hints */
3020 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3021 /* but an efficiency issue only */
3022 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3023 {
3024 char path [4096];
3025 strcpy (path, w->path);
3026
3027 do
3028 {
3029 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3030 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3031
3032 char *pend = strrchr (path, '/');
3033
3034 if (!pend || pend == path)
3035 break;
3036
3037 *pend = 0;
3038 w->wd = inotify_add_watch (fs_fd, path, mask);
3039 }
3040 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3041 }
3042 }
3043
3044 if (w->wd >= 0)
3045 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3046
3047 /* now re-arm timer, if required */
3048 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3049 ev_timer_again (EV_A_ &w->timer);
3050 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3051}
3052
3053static void noinline
3054infy_del (EV_P_ ev_stat *w)
3055{
3056 int slot;
3057 int wd = w->wd;
3058
3059 if (wd < 0)
1114 return; 3060 return;
1115 3061
3062 w->wd = -2;
3063 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3064 wlist_del (&fs_hash [slot].head, (WL)w);
3065
3066 /* remove this watcher, if others are watching it, they will rearm */
3067 inotify_rm_watch (fs_fd, wd);
3068}
3069
3070static void noinline
3071infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3072{
3073 if (slot < 0)
3074 /* overflow, need to check for all hash slots */
3075 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3076 infy_wd (EV_A_ slot, wd, ev);
3077 else
3078 {
3079 WL w_;
3080
3081 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3082 {
3083 ev_stat *w = (ev_stat *)w_;
3084 w_ = w_->next; /* lets us remove this watcher and all before it */
3085
3086 if (w->wd == wd || wd == -1)
3087 {
3088 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3089 {
3090 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3091 w->wd = -1;
3092 infy_add (EV_A_ w); /* re-add, no matter what */
3093 }
3094
3095 stat_timer_cb (EV_A_ &w->timer, 0);
3096 }
3097 }
3098 }
3099}
3100
3101static void
3102infy_cb (EV_P_ ev_io *w, int revents)
3103{
3104 char buf [EV_INOTIFY_BUFSIZE];
3105 int ofs;
3106 int len = read (fs_fd, buf, sizeof (buf));
3107
3108 for (ofs = 0; ofs < len; )
3109 {
3110 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3111 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3112 ofs += sizeof (struct inotify_event) + ev->len;
3113 }
3114}
3115
3116inline_size void
3117ev_check_2625 (EV_P)
3118{
3119 /* kernels < 2.6.25 are borked
3120 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3121 */
3122 if (ev_linux_version () < 0x020619)
3123 return;
3124
3125 fs_2625 = 1;
3126}
3127
3128inline_size int
3129infy_newfd (void)
3130{
3131#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3132 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3133 if (fd >= 0)
3134 return fd;
3135#endif
3136 return inotify_init ();
3137}
3138
3139inline_size void
3140infy_init (EV_P)
3141{
3142 if (fs_fd != -2)
3143 return;
3144
3145 fs_fd = -1;
3146
3147 ev_check_2625 (EV_A);
3148
3149 fs_fd = infy_newfd ();
3150
3151 if (fs_fd >= 0)
3152 {
3153 fd_intern (fs_fd);
3154 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3155 ev_set_priority (&fs_w, EV_MAXPRI);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159}
3160
3161inline_size void
3162infy_fork (EV_P)
3163{
3164 int slot;
3165
3166 if (fs_fd < 0)
3167 return;
3168
3169 ev_ref (EV_A);
3170 ev_io_stop (EV_A_ &fs_w);
3171 close (fs_fd);
3172 fs_fd = infy_newfd ();
3173
3174 if (fs_fd >= 0)
3175 {
3176 fd_intern (fs_fd);
3177 ev_io_set (&fs_w, fs_fd, EV_READ);
3178 ev_io_start (EV_A_ &fs_w);
3179 ev_unref (EV_A);
3180 }
3181
3182 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3183 {
3184 WL w_ = fs_hash [slot].head;
3185 fs_hash [slot].head = 0;
3186
3187 while (w_)
3188 {
3189 ev_stat *w = (ev_stat *)w_;
3190 w_ = w_->next; /* lets us add this watcher */
3191
3192 w->wd = -1;
3193
3194 if (fs_fd >= 0)
3195 infy_add (EV_A_ w); /* re-add, no matter what */
3196 else
3197 {
3198 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3199 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3200 ev_timer_again (EV_A_ &w->timer);
3201 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3202 }
3203 }
3204 }
3205}
3206
3207#endif
3208
3209#ifdef _WIN32
3210# define EV_LSTAT(p,b) _stati64 (p, b)
3211#else
3212# define EV_LSTAT(p,b) lstat (p, b)
3213#endif
3214
3215void
3216ev_stat_stat (EV_P_ ev_stat *w)
3217{
3218 if (lstat (w->path, &w->attr) < 0)
3219 w->attr.st_nlink = 0;
3220 else if (!w->attr.st_nlink)
3221 w->attr.st_nlink = 1;
3222}
3223
3224static void noinline
3225stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3226{
3227 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3228
3229 ev_statdata prev = w->attr;
3230 ev_stat_stat (EV_A_ w);
3231
3232 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3233 if (
3234 prev.st_dev != w->attr.st_dev
3235 || prev.st_ino != w->attr.st_ino
3236 || prev.st_mode != w->attr.st_mode
3237 || prev.st_nlink != w->attr.st_nlink
3238 || prev.st_uid != w->attr.st_uid
3239 || prev.st_gid != w->attr.st_gid
3240 || prev.st_rdev != w->attr.st_rdev
3241 || prev.st_size != w->attr.st_size
3242 || prev.st_atime != w->attr.st_atime
3243 || prev.st_mtime != w->attr.st_mtime
3244 || prev.st_ctime != w->attr.st_ctime
3245 ) {
3246 /* we only update w->prev on actual differences */
3247 /* in case we test more often than invoke the callback, */
3248 /* to ensure that prev is always different to attr */
3249 w->prev = prev;
3250
3251 #if EV_USE_INOTIFY
3252 if (fs_fd >= 0)
3253 {
3254 infy_del (EV_A_ w);
3255 infy_add (EV_A_ w);
3256 ev_stat_stat (EV_A_ w); /* avoid race... */
3257 }
3258 #endif
3259
3260 ev_feed_event (EV_A_ w, EV_STAT);
3261 }
3262}
3263
3264void
3265ev_stat_start (EV_P_ ev_stat *w)
3266{
3267 if (expect_false (ev_is_active (w)))
3268 return;
3269
3270 ev_stat_stat (EV_A_ w);
3271
3272 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3273 w->interval = MIN_STAT_INTERVAL;
3274
3275 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3276 ev_set_priority (&w->timer, ev_priority (w));
3277
3278#if EV_USE_INOTIFY
3279 infy_init (EV_A);
3280
3281 if (fs_fd >= 0)
3282 infy_add (EV_A_ w);
3283 else
3284#endif
3285 {
3286 ev_timer_again (EV_A_ &w->timer);
3287 ev_unref (EV_A);
3288 }
3289
3290 ev_start (EV_A_ (W)w, 1);
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_stat_stop (EV_P_ ev_stat *w)
3297{
3298 clear_pending (EV_A_ (W)w);
3299 if (expect_false (!ev_is_active (w)))
3300 return;
3301
3302 EV_FREQUENT_CHECK;
3303
3304#if EV_USE_INOTIFY
3305 infy_del (EV_A_ w);
3306#endif
3307
3308 if (ev_is_active (&w->timer))
3309 {
3310 ev_ref (EV_A);
3311 ev_timer_stop (EV_A_ &w->timer);
3312 }
3313
3314 ev_stop (EV_A_ (W)w);
3315
3316 EV_FREQUENT_CHECK;
3317}
3318#endif
3319
3320#if EV_IDLE_ENABLE
3321void
3322ev_idle_start (EV_P_ ev_idle *w)
3323{
3324 if (expect_false (ev_is_active (w)))
3325 return;
3326
3327 pri_adjust (EV_A_ (W)w);
3328
3329 EV_FREQUENT_CHECK;
3330
3331 {
3332 int active = ++idlecnt [ABSPRI (w)];
3333
3334 ++idleall;
3335 ev_start (EV_A_ (W)w, active);
3336
3337 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3338 idles [ABSPRI (w)][active - 1] = w;
3339 }
3340
3341 EV_FREQUENT_CHECK;
3342}
3343
3344void
3345ev_idle_stop (EV_P_ ev_idle *w)
3346{
3347 clear_pending (EV_A_ (W)w);
3348 if (expect_false (!ev_is_active (w)))
3349 return;
3350
3351 EV_FREQUENT_CHECK;
3352
3353 {
3354 int active = ev_active (w);
3355
3356 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3357 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3358
3359 ev_stop (EV_A_ (W)w);
3360 --idleall;
3361 }
3362
3363 EV_FREQUENT_CHECK;
3364}
3365#endif
3366
3367#if EV_PREPARE_ENABLE
3368void
3369ev_prepare_start (EV_P_ ev_prepare *w)
3370{
3371 if (expect_false (ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
1116 ev_start (EV_A_ (W)w, ++preparecnt); 3376 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, ); 3377 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1118 prepares [preparecnt - 1] = w; 3378 prepares [preparecnt - 1] = w;
1119}
1120 3379
3380 EV_FREQUENT_CHECK;
3381}
3382
1121void 3383void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w) 3384ev_prepare_stop (EV_P_ ev_prepare *w)
1123{ 3385{
1124 ev_clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w)) 3387 if (expect_false (!ev_is_active (w)))
1126 return; 3388 return;
1127 3389
3390 EV_FREQUENT_CHECK;
3391
3392 {
3393 int active = ev_active (w);
3394
1128 prepares [w->active - 1] = prepares [--preparecnt]; 3395 prepares [active - 1] = prepares [--preparecnt];
3396 ev_active (prepares [active - 1]) = active;
3397 }
3398
1129 ev_stop (EV_A_ (W)w); 3399 ev_stop (EV_A_ (W)w);
1130}
1131 3400
3401 EV_FREQUENT_CHECK;
3402}
3403#endif
3404
3405#if EV_CHECK_ENABLE
1132void 3406void
1133ev_check_start (EV_P_ struct ev_check *w) 3407ev_check_start (EV_P_ ev_check *w)
1134{ 3408{
1135 if (ev_is_active (w)) 3409 if (expect_false (ev_is_active (w)))
1136 return; 3410 return;
1137 3411
3412 EV_FREQUENT_CHECK;
3413
1138 ev_start (EV_A_ (W)w, ++checkcnt); 3414 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, ); 3415 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1140 checks [checkcnt - 1] = w; 3416 checks [checkcnt - 1] = w;
1141}
1142 3417
3418 EV_FREQUENT_CHECK;
3419}
3420
1143void 3421void
1144ev_check_stop (EV_P_ struct ev_check *w) 3422ev_check_stop (EV_P_ ev_check *w)
1145{ 3423{
1146 ev_clear_pending (EV_A_ (W)w); 3424 clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w)) 3425 if (expect_false (!ev_is_active (w)))
1148 return; 3426 return;
1149 3427
3428 EV_FREQUENT_CHECK;
3429
3430 {
3431 int active = ev_active (w);
3432
1150 checks [w->active - 1] = checks [--checkcnt]; 3433 checks [active - 1] = checks [--checkcnt];
3434 ev_active (checks [active - 1]) = active;
3435 }
3436
1151 ev_stop (EV_A_ (W)w); 3437 ev_stop (EV_A_ (W)w);
1152}
1153 3438
1154void 3439 EV_FREQUENT_CHECK;
1155ev_child_start (EV_P_ struct ev_child *w) 3440}
3441#endif
3442
3443#if EV_EMBED_ENABLE
3444void noinline
3445ev_embed_sweep (EV_P_ ev_embed *w)
1156{ 3446{
3447 ev_run (w->other, EVRUN_NOWAIT);
3448}
3449
3450static void
3451embed_io_cb (EV_P_ ev_io *io, int revents)
3452{
3453 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3454
1157 if (ev_is_active (w)) 3455 if (ev_cb (w))
3456 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3457 else
3458 ev_run (w->other, EVRUN_NOWAIT);
3459}
3460
3461static void
3462embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3463{
3464 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3465
3466 {
3467 EV_P = w->other;
3468
3469 while (fdchangecnt)
3470 {
3471 fd_reify (EV_A);
3472 ev_run (EV_A_ EVRUN_NOWAIT);
3473 }
3474 }
3475}
3476
3477static void
3478embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3479{
3480 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3481
3482 ev_embed_stop (EV_A_ w);
3483
3484 {
3485 EV_P = w->other;
3486
3487 ev_loop_fork (EV_A);
3488 ev_run (EV_A_ EVRUN_NOWAIT);
3489 }
3490
3491 ev_embed_start (EV_A_ w);
3492}
3493
3494#if 0
3495static void
3496embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3497{
3498 ev_idle_stop (EV_A_ idle);
3499}
3500#endif
3501
3502void
3503ev_embed_start (EV_P_ ev_embed *w)
3504{
3505 if (expect_false (ev_is_active (w)))
1158 return; 3506 return;
1159 3507
3508 {
3509 EV_P = w->other;
3510 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3511 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3512 }
3513
3514 EV_FREQUENT_CHECK;
3515
3516 ev_set_priority (&w->io, ev_priority (w));
3517 ev_io_start (EV_A_ &w->io);
3518
3519 ev_prepare_init (&w->prepare, embed_prepare_cb);
3520 ev_set_priority (&w->prepare, EV_MINPRI);
3521 ev_prepare_start (EV_A_ &w->prepare);
3522
3523 ev_fork_init (&w->fork, embed_fork_cb);
3524 ev_fork_start (EV_A_ &w->fork);
3525
3526 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3527
1160 ev_start (EV_A_ (W)w, 1); 3528 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1162}
1163 3529
3530 EV_FREQUENT_CHECK;
3531}
3532
1164void 3533void
1165ev_child_stop (EV_P_ struct ev_child *w) 3534ev_embed_stop (EV_P_ ev_embed *w)
1166{ 3535{
1167 ev_clear_pending (EV_A_ (W)w); 3536 clear_pending (EV_A_ (W)w);
1168 if (ev_is_active (w)) 3537 if (expect_false (!ev_is_active (w)))
1169 return; 3538 return;
1170 3539
1171 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3540 EV_FREQUENT_CHECK;
3541
3542 ev_io_stop (EV_A_ &w->io);
3543 ev_prepare_stop (EV_A_ &w->prepare);
3544 ev_fork_stop (EV_A_ &w->fork);
3545
1172 ev_stop (EV_A_ (W)w); 3546 ev_stop (EV_A_ (W)w);
3547
3548 EV_FREQUENT_CHECK;
1173} 3549}
3550#endif
3551
3552#if EV_FORK_ENABLE
3553void
3554ev_fork_start (EV_P_ ev_fork *w)
3555{
3556 if (expect_false (ev_is_active (w)))
3557 return;
3558
3559 EV_FREQUENT_CHECK;
3560
3561 ev_start (EV_A_ (W)w, ++forkcnt);
3562 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3563 forks [forkcnt - 1] = w;
3564
3565 EV_FREQUENT_CHECK;
3566}
3567
3568void
3569ev_fork_stop (EV_P_ ev_fork *w)
3570{
3571 clear_pending (EV_A_ (W)w);
3572 if (expect_false (!ev_is_active (w)))
3573 return;
3574
3575 EV_FREQUENT_CHECK;
3576
3577 {
3578 int active = ev_active (w);
3579
3580 forks [active - 1] = forks [--forkcnt];
3581 ev_active (forks [active - 1]) = active;
3582 }
3583
3584 ev_stop (EV_A_ (W)w);
3585
3586 EV_FREQUENT_CHECK;
3587}
3588#endif
3589
3590#if EV_CLEANUP_ENABLE
3591void
3592ev_cleanup_start (EV_P_ ev_cleanup *w)
3593{
3594 if (expect_false (ev_is_active (w)))
3595 return;
3596
3597 EV_FREQUENT_CHECK;
3598
3599 ev_start (EV_A_ (W)w, ++cleanupcnt);
3600 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3601 cleanups [cleanupcnt - 1] = w;
3602
3603 /* cleanup watchers should never keep a refcount on the loop */
3604 ev_unref (EV_A);
3605 EV_FREQUENT_CHECK;
3606}
3607
3608void
3609ev_cleanup_stop (EV_P_ ev_cleanup *w)
3610{
3611 clear_pending (EV_A_ (W)w);
3612 if (expect_false (!ev_is_active (w)))
3613 return;
3614
3615 EV_FREQUENT_CHECK;
3616 ev_ref (EV_A);
3617
3618 {
3619 int active = ev_active (w);
3620
3621 cleanups [active - 1] = cleanups [--cleanupcnt];
3622 ev_active (cleanups [active - 1]) = active;
3623 }
3624
3625 ev_stop (EV_A_ (W)w);
3626
3627 EV_FREQUENT_CHECK;
3628}
3629#endif
3630
3631#if EV_ASYNC_ENABLE
3632void
3633ev_async_start (EV_P_ ev_async *w)
3634{
3635 if (expect_false (ev_is_active (w)))
3636 return;
3637
3638 w->sent = 0;
3639
3640 evpipe_init (EV_A);
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++asynccnt);
3645 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3646 asyncs [asynccnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_async_stop (EV_P_ ev_async *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 asyncs [active - 1] = asyncs [--asynccnt];
3664 ev_active (asyncs [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671
3672void
3673ev_async_send (EV_P_ ev_async *w)
3674{
3675 w->sent = 1;
3676 evpipe_write (EV_A_ &async_pending);
3677}
3678#endif
1174 3679
1175/*****************************************************************************/ 3680/*****************************************************************************/
1176 3681
1177struct ev_once 3682struct ev_once
1178{ 3683{
1179 struct ev_io io; 3684 ev_io io;
1180 struct ev_timer to; 3685 ev_timer to;
1181 void (*cb)(int revents, void *arg); 3686 void (*cb)(int revents, void *arg);
1182 void *arg; 3687 void *arg;
1183}; 3688};
1184 3689
1185static void 3690static void
1186once_cb (EV_P_ struct ev_once *once, int revents) 3691once_cb (EV_P_ struct ev_once *once, int revents)
1187{ 3692{
1188 void (*cb)(int revents, void *arg) = once->cb; 3693 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 3694 void *arg = once->arg;
1190 3695
1191 ev_io_stop (EV_A_ &once->io); 3696 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 3697 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 3698 ev_free (once);
1194 3699
1195 cb (revents, arg); 3700 cb (revents, arg);
1196} 3701}
1197 3702
1198static void 3703static void
1199once_cb_io (EV_P_ struct ev_io *w, int revents) 3704once_cb_io (EV_P_ ev_io *w, int revents)
1200{ 3705{
1201 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3706 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3707
3708 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1202} 3709}
1203 3710
1204static void 3711static void
1205once_cb_to (EV_P_ struct ev_timer *w, int revents) 3712once_cb_to (EV_P_ ev_timer *w, int revents)
1206{ 3713{
1207 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3714 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3715
3716 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1208} 3717}
1209 3718
1210void 3719void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3720ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 3721{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 3722 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1214 3723
1215 if (!once) 3724 if (expect_false (!once))
3725 {
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3726 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1217 else 3727 return;
1218 { 3728 }
3729
1219 once->cb = cb; 3730 once->cb = cb;
1220 once->arg = arg; 3731 once->arg = arg;
1221 3732
1222 ev_watcher_init (&once->io, once_cb_io); 3733 ev_init (&once->io, once_cb_io);
1223 if (fd >= 0) 3734 if (fd >= 0)
3735 {
3736 ev_io_set (&once->io, fd, events);
3737 ev_io_start (EV_A_ &once->io);
3738 }
3739
3740 ev_init (&once->to, once_cb_to);
3741 if (timeout >= 0.)
3742 {
3743 ev_timer_set (&once->to, timeout, 0.);
3744 ev_timer_start (EV_A_ &once->to);
3745 }
3746}
3747
3748/*****************************************************************************/
3749
3750#if EV_WALK_ENABLE
3751void
3752ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3753{
3754 int i, j;
3755 ev_watcher_list *wl, *wn;
3756
3757 if (types & (EV_IO | EV_EMBED))
3758 for (i = 0; i < anfdmax; ++i)
3759 for (wl = anfds [i].head; wl; )
1224 { 3760 {
1225 ev_io_set (&once->io, fd, events); 3761 wn = wl->next;
1226 ev_io_start (EV_A_ &once->io); 3762
3763#if EV_EMBED_ENABLE
3764 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3765 {
3766 if (types & EV_EMBED)
3767 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3768 }
3769 else
3770#endif
3771#if EV_USE_INOTIFY
3772 if (ev_cb ((ev_io *)wl) == infy_cb)
3773 ;
3774 else
3775#endif
3776 if ((ev_io *)wl != &pipe_w)
3777 if (types & EV_IO)
3778 cb (EV_A_ EV_IO, wl);
3779
3780 wl = wn;
1227 } 3781 }
1228 3782
1229 ev_watcher_init (&once->to, once_cb_to); 3783 if (types & (EV_TIMER | EV_STAT))
1230 if (timeout >= 0.) 3784 for (i = timercnt + HEAP0; i-- > HEAP0; )
3785#if EV_STAT_ENABLE
3786 /*TODO: timer is not always active*/
3787 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1231 { 3788 {
1232 ev_timer_set (&once->to, timeout, 0.); 3789 if (types & EV_STAT)
1233 ev_timer_start (EV_A_ &once->to); 3790 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1234 } 3791 }
1235 } 3792 else
1236} 3793#endif
3794 if (types & EV_TIMER)
3795 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1237 3796
1238/*****************************************************************************/ 3797#if EV_PERIODIC_ENABLE
3798 if (types & EV_PERIODIC)
3799 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3800 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3801#endif
1239 3802
1240#if 0 3803#if EV_IDLE_ENABLE
3804 if (types & EV_IDLE)
3805 for (j = NUMPRI; i--; )
3806 for (i = idlecnt [j]; i--; )
3807 cb (EV_A_ EV_IDLE, idles [j][i]);
3808#endif
1241 3809
1242struct ev_io wio; 3810#if EV_FORK_ENABLE
3811 if (types & EV_FORK)
3812 for (i = forkcnt; i--; )
3813 if (ev_cb (forks [i]) != embed_fork_cb)
3814 cb (EV_A_ EV_FORK, forks [i]);
3815#endif
1243 3816
1244static void 3817#if EV_ASYNC_ENABLE
1245sin_cb (struct ev_io *w, int revents) 3818 if (types & EV_ASYNC)
1246{ 3819 for (i = asynccnt; i--; )
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3820 cb (EV_A_ EV_ASYNC, asyncs [i]);
1248} 3821#endif
1249 3822
1250static void 3823#if EV_PREPARE_ENABLE
1251ocb (struct ev_timer *w, int revents) 3824 if (types & EV_PREPARE)
1252{ 3825 for (i = preparecnt; i--; )
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3826# if EV_EMBED_ENABLE
1254 ev_timer_stop (w); 3827 if (ev_cb (prepares [i]) != embed_prepare_cb)
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 {
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif 3828# endif
1294 3829 cb (EV_A_ EV_PREPARE, prepares [i]);
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314}
1315
1316#endif 3830#endif
1317 3831
3832#if EV_CHECK_ENABLE
3833 if (types & EV_CHECK)
3834 for (i = checkcnt; i--; )
3835 cb (EV_A_ EV_CHECK, checks [i]);
3836#endif
1318 3837
3838#if EV_SIGNAL_ENABLE
3839 if (types & EV_SIGNAL)
3840 for (i = 0; i < EV_NSIG - 1; ++i)
3841 for (wl = signals [i].head; wl; )
3842 {
3843 wn = wl->next;
3844 cb (EV_A_ EV_SIGNAL, wl);
3845 wl = wn;
3846 }
3847#endif
1319 3848
3849#if EV_CHILD_ENABLE
3850 if (types & EV_CHILD)
3851 for (i = (EV_PID_HASHSIZE); i--; )
3852 for (wl = childs [i]; wl; )
3853 {
3854 wn = wl->next;
3855 cb (EV_A_ EV_CHILD, wl);
3856 wl = wn;
3857 }
3858#endif
3859/* EV_STAT 0x00001000 /* stat data changed */
3860/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3861}
3862#endif
1320 3863
3864#if EV_MULTIPLICITY
3865 #include "ev_wrap.h"
3866#endif
3867
3868EV_CPP(})
3869

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines