ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.375 by root, Sat Jun 4 05:25:03 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
47#ifndef WIN32 190#ifndef _WIN32
191# include <sys/time.h>
48# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
49#endif 200# endif
50#include <sys/time.h> 201# undef EV_AVOID_STDIO
51#include <time.h> 202#endif
52 203
53/**/ 204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
54 253
55#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
56# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
57#endif 272#endif
58 273
59#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 276#endif
62 277
63#ifndef EV_USEV_POLL 278#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
65#endif 284#endif
66 285
67#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
68# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
69#endif 292#endif
70 293
71#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
73#endif 296#endif
74 297
75#ifndef EV_USE_REALTIME 298#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 299# define EV_USE_PORT 0
300#endif
301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
77#endif 307# endif
308#endif
78 309
79/**/ 310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
80 373
81#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
84#endif 377#endif
86#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
89#endif 382#endif
90 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
91/**/ 448/**/
92 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 465
98#include "ev.h" 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
99 468
100#if __GNUC__ >= 3 469#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 471# define noinline __attribute__ ((noinline))
103#else 472#else
104# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
105# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
106#endif 478#endif
107 479
108#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
110 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
113 497
498#define EMPTY /* required for microsofts broken pseudo-c compiler */
499#define EMPTY2(a,b) /* used to suppress some warnings */
500
114typedef struct ev_watcher *W; 501typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
527
528#ifdef _WIN32
529# include "ev_win32.c"
530#endif
117 531
118/*****************************************************************************/ 532/*****************************************************************************/
119 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
632static void (*syserr_cb)(const char *msg);
633
634void
635ev_set_syserr_cb (void (*cb)(const char *msg))
636{
637 syserr_cb = cb;
638}
639
640static void noinline
641ev_syserr (const char *msg)
642{
643 if (!msg)
644 msg = "(libev) system error";
645
646 if (syserr_cb)
647 syserr_cb (msg);
648 else
649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
656 perror (msg);
657#endif
658 abort ();
659 }
660}
661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
682
683void
684ev_set_allocator (void *(*cb)(void *ptr, long size))
685{
686 alloc = cb;
687}
688
689inline_speed void *
690ev_realloc (void *ptr, long size)
691{
692 ptr = alloc (ptr, size);
693
694 if (!ptr && size)
695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
701 abort ();
702 }
703
704 return ptr;
705}
706
707#define ev_malloc(size) ev_realloc (0, (size))
708#define ev_free(ptr) ev_realloc ((ptr), 0)
709
710/*****************************************************************************/
711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
120typedef struct 716typedef struct
121{ 717{
122 struct ev_watcher_list *head; 718 WL head;
123 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
124 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 SOCKET handle;
728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
125} ANFD; 732} ANFD;
126 733
734/* stores the pending event set for a given watcher */
127typedef struct 735typedef struct
128{ 736{
129 W w; 737 W w;
130 int events; 738 int events; /* the pending event set for the given watcher */
131} ANPENDING; 739} ANPENDING;
132 740
133#ifdef EV_MULTIPLICITY 741#if EV_USE_INOTIFY
134struct ev_loop 742/* hash table entry per inotify-id */
743typedef struct
135{ 744{
136# define VAR(name,decl) decl 745 WL head;
137# include "ev_vars.h" 746} ANFS;
138}; 747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
139#else 760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
768
769#if EV_MULTIPLICITY
770
771 struct ev_loop
772 {
773 ev_tstamp ev_rt_now;
774 #define ev_rt_now ((loop)->ev_rt_now)
775 #define VAR(name,decl) decl;
776 #include "ev_vars.h"
777 #undef VAR
778 };
779 #include "ev_wrap.h"
780
781 static struct ev_loop default_loop_struct;
782 struct ev_loop *ev_default_loop_ptr;
783
784#else
785
786 ev_tstamp ev_rt_now;
140# define VAR(name,decl) static decl 787 #define VAR(name,decl) static decl;
141# include "ev_vars.h" 788 #include "ev_vars.h"
142#endif
143#undef VAR 789 #undef VAR
790
791 static int ev_default_loop_ptr;
792
793#endif
794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
144 806
145/*****************************************************************************/ 807/*****************************************************************************/
146 808
147inline ev_tstamp 809#ifndef EV_HAVE_EV_TIME
810ev_tstamp
148ev_time (void) 811ev_time (void)
149{ 812{
150#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
151 struct timespec ts; 816 struct timespec ts;
152 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
153 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
154#else 819 }
820#endif
821
155 struct timeval tv; 822 struct timeval tv;
156 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
157 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
158#endif
159} 825}
826#endif
160 827
161inline ev_tstamp 828inline_size ev_tstamp
162get_clock (void) 829get_clock (void)
163{ 830{
164#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
165 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
166 { 833 {
171#endif 838#endif
172 839
173 return ev_time (); 840 return ev_time ();
174} 841}
175 842
843#if EV_MULTIPLICITY
176ev_tstamp 844ev_tstamp
177ev_now (EV_P) 845ev_now (EV_P)
178{ 846{
179 return rt_now; 847 return ev_rt_now;
180} 848}
849#endif
181 850
182#define array_roundsize(base,n) ((n) | 4 & ~3) 851void
183 852ev_sleep (ev_tstamp delay)
184#define array_needsize(base,cur,cnt,init) \ 853{
185 if (expect_false ((cnt) > cur)) \ 854 if (delay > 0.)
186 { \
187 int newcnt = cur; \
188 do \
189 { \
190 newcnt = array_roundsize (base, newcnt << 1); \
191 } \
192 while ((cnt) > newcnt); \
193 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \
195 init (base + cur, newcnt - cur); \
196 cur = newcnt; \
197 } 855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
198 874
199/*****************************************************************************/ 875/*****************************************************************************/
200 876
201static void 877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
202anfds_init (ANFD *base, int count)
203{
204 while (count--)
205 {
206 base->head = 0;
207 base->events = EV_NONE;
208 base->reify = 0;
209 878
210 ++base; 879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
211 } 892 {
212} 893 ncur *= elem;
213 894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
214static void 895 ncur = ncur - sizeof (void *) * 4;
215event (EV_P_ W w, int events) 896 ncur /= elem;
216{
217 if (w->pending)
218 { 897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
911
912#define array_needsize(type,base,cur,cnt,init) \
913 if (expect_false ((cnt) > (cur))) \
914 { \
915 int ocur_ = (cur); \
916 (base) = (type *)array_realloc \
917 (sizeof (type), (base), &(cur), (cnt)); \
918 init ((base) + (ocur_), (cur) - ocur_); \
919 }
920
921#if 0
922#define array_slim(type,stem) \
923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
924 { \
925 stem ## max = array_roundsize (stem ## cnt >> 1); \
926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
928 }
929#endif
930
931#define array_free(stem, idx) \
932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
933
934/*****************************************************************************/
935
936/* dummy callback for pending events */
937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
939{
940}
941
942void noinline
943ev_feed_event (EV_P_ void *w, int revents)
944{
945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
947
948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
219 pendings [ABSPRI (w)][w->pending - 1].events |= events; 955 pendings [pri][w_->pending - 1].events = revents;
220 return;
221 } 956 }
222
223 w->pending = ++pendingcnt [ABSPRI (w)];
224 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
225 pendings [ABSPRI (w)][w->pending - 1].w = w;
226 pendings [ABSPRI (w)][w->pending - 1].events = events;
227} 957}
228 958
229static void 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
230queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
231{ 976{
232 int i; 977 int i;
233 978
234 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
235 event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
236} 981}
237 982
238static void 983/*****************************************************************************/
984
985inline_speed void
239fd_event (EV_P_ int fd, int events) 986fd_event_nocheck (EV_P_ int fd, int revents)
240{ 987{
241 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
242 struct ev_io *w; 989 ev_io *w;
243 990
244 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
245 { 992 {
246 int ev = w->events & events; 993 int ev = w->events & revents;
247 994
248 if (ev) 995 if (ev)
249 event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
250 } 997 }
251} 998}
252 999
253/*****************************************************************************/ 1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
254 1006
255static void 1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
1011void
1012ev_feed_fd_event (EV_P_ int fd, int revents)
1013{
1014 if (fd >= 0 && fd < anfdmax)
1015 fd_event_nocheck (EV_A_ fd, revents);
1016}
1017
1018/* make sure the external fd watch events are in-sync */
1019/* with the kernel/libev internal state */
1020inline_size void
256fd_reify (EV_P) 1021fd_reify (EV_P)
257{ 1022{
258 int i; 1023 int i;
259 1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
260 for (i = 0; i < fdchangecnt; ++i) 1026 for (i = 0; i < fdchangecnt; ++i)
261 { 1027 {
262 int fd = fdchanges [i]; 1028 int fd = fdchanges [i];
263 ANFD *anfd = anfds + fd; 1029 ANFD *anfd = anfds + fd;
264 struct ev_io *w;
265 1030
266 int events = 0; 1031 if (anfd->reify & EV__IOFDSET && anfd->head)
267
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269 events |= w->events;
270
271 anfd->reify = 0;
272
273 if (anfd->events != events)
274 { 1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
275 method_modify (EV_A_ fd, anfd->events, events); 1042 backend_modify (EV_A_ fd, anfd->events, 0);
276 anfd->events = events; 1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
277 } 1046 }
278 } 1047 }
1048#endif
1049
1050 for (i = 0; i < fdchangecnt; ++i)
1051 {
1052 int fd = fdchanges [i];
1053 ANFD *anfd = anfds + fd;
1054 ev_io *w;
1055
1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
1058
1059 anfd->reify = 0;
1060
1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062 {
1063 anfd->events = 0;
1064
1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
1070 }
1071
1072 if (o_reify & EV__IOFDSET)
1073 backend_modify (EV_A_ fd, o_events, anfd->events);
1074 }
279 1075
280 fdchangecnt = 0; 1076 fdchangecnt = 0;
281} 1077}
282 1078
283static void 1079/* something about the given fd changed */
1080inline_size void
284fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
285{ 1082{
286 if (anfds [fd].reify || fdchangecnt < 0) 1083 unsigned char reify = anfds [fd].reify;
287 return;
288
289 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
290 1085
1086 if (expect_true (!reify))
1087 {
291 ++fdchangecnt; 1088 ++fdchangecnt;
292 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
293 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
294} 1092}
295 1093
296static void 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
297fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
298{ 1097{
299 struct ev_io *w; 1098 ev_io *w;
300 1099
301 while ((w = (struct ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
302 { 1101 {
303 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
304 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 1104 }
1105}
1106
1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
1109fd_valid (int fd)
1110{
1111#ifdef _WIN32
1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1113#else
1114 return fcntl (fd, F_GETFD) != -1;
1115#endif
306} 1116}
307 1117
308/* called on EBADF to verify fds */ 1118/* called on EBADF to verify fds */
309static void 1119static void noinline
310fd_ebadf (EV_P) 1120fd_ebadf (EV_P)
311{ 1121{
312 int fd; 1122 int fd;
313 1123
314 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 1125 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
317 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
318} 1128}
319 1129
320/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 1131static void noinline
322fd_enomem (EV_P) 1132fd_enomem (EV_P)
323{ 1133{
324 int fd = anfdmax; 1134 int fd;
325 1135
326 while (fd--) 1136 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 1137 if (anfds [fd].events)
328 { 1138 {
329 close (fd);
330 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
331 return; 1140 break;
332 } 1141 }
333} 1142}
334 1143
1144/* usually called after fork if backend needs to re-arm all fds from scratch */
1145static void noinline
1146fd_rearm_all (EV_P)
1147{
1148 int fd;
1149
1150 for (fd = 0; fd < anfdmax; ++fd)
1151 if (anfds [fd].events)
1152 {
1153 anfds [fd].events = 0;
1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1156 }
1157}
1158
1159/* used to prepare libev internal fd's */
1160/* this is not fork-safe */
1161inline_speed void
1162fd_intern (int fd)
1163{
1164#ifdef _WIN32
1165 unsigned long arg = 1;
1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167#else
1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
1169 fcntl (fd, F_SETFL, O_NONBLOCK);
1170#endif
1171}
1172
335/*****************************************************************************/ 1173/*****************************************************************************/
336 1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
1336static void noinline
1337evpipe_init (EV_P)
1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
1358 fd_intern (evpipe [0]);
1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
1362
1363 ev_io_start (EV_A_ &pipe_w);
1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
337static void 1399static void
338upheap (WT *timers, int k) 1400pipecb (EV_P_ ev_io *iow, int revents)
339{ 1401{
340 WT w = timers [k]; 1402 int i;
341 1403
342 while (k && timers [k >> 1]->at > w->at) 1404#if EV_USE_EVENTFD
343 { 1405 if (evfd >= 0)
344 timers [k] = timers [k >> 1];
345 timers [k]->active = k + 1;
346 k >>= 1;
347 } 1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
348 1417
349 timers [k] = w; 1418#if EV_SIGNAL_ENABLE
350 timers [k]->active = k + 1; 1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
351 1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
1442}
1443
1444/*****************************************************************************/
1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
352} 1458}
353 1459
354static void 1460static void
355downheap (WT *timers, int N, int k) 1461ev_sighandler (int signum)
356{ 1462{
357 WT w = timers [k]; 1463#ifdef _WIN32
1464 signal (signum, ev_sighandler);
1465#endif
358 1466
359 while (k < (N >> 1)) 1467 ev_feed_signal (signum);
360 { 1468}
361 int j = k << 1;
362 1469
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1470void noinline
364 ++j; 1471ev_feed_signal_event (EV_P_ int signum)
1472{
1473 WL w;
365 1474
366 if (w->at <= timers [j]->at) 1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
1480#if EV_MULTIPLICITY
1481 /* it is permissible to try to feed a signal to the wrong loop */
1482 /* or, likely more useful, feeding a signal nobody is waiting for */
1483
1484 if (expect_false (signals [signum].loop != EV_A))
1485 return;
1486#endif
1487
1488 signals [signum].pending = 0;
1489
1490 for (w = signals [signum].head; w; w = w->next)
1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1492}
1493
1494#if EV_USE_SIGNALFD
1495static void
1496sigfdcb (EV_P_ ev_io *iow, int revents)
1497{
1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1499
1500 for (;;)
1501 {
1502 ssize_t res = read (sigfd, si, sizeof (si));
1503
1504 /* not ISO-C, as res might be -1, but works with SuS */
1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1507
1508 if (res < (ssize_t)sizeof (si))
367 break; 1509 break;
368
369 timers [k] = timers [j];
370 timers [k]->active = k + 1;
371 k = j;
372 } 1510 }
373
374 timers [k] = w;
375 timers [k]->active = k + 1;
376} 1511}
1512#endif
1513
1514#endif
377 1515
378/*****************************************************************************/ 1516/*****************************************************************************/
379 1517
380typedef struct 1518#if EV_CHILD_ENABLE
381{ 1519static WL childs [EV_PID_HASHSIZE];
382 struct ev_watcher_list *head;
383 sig_atomic_t volatile gotsig;
384} ANSIG;
385 1520
386static ANSIG *signals; 1521static ev_signal childev;
387static int signalmax;
388 1522
389static int sigpipe [2]; 1523#ifndef WIFCONTINUED
390static sig_atomic_t volatile gotsig; 1524# define WIFCONTINUED(status) 0
1525#endif
391 1526
392static void 1527/* handle a single child status event */
393signals_init (ANSIG *base, int count) 1528inline_speed void
1529child_reap (EV_P_ int chain, int pid, int status)
394{ 1530{
395 while (count--) 1531 ev_child *w;
396 { 1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
397 base->head = 0;
398 base->gotsig = 0;
399 1533
400 ++base; 1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
401 } 1535 {
402} 1536 if ((w->pid == pid || !w->pid)
403 1537 && (!traced || (w->flags & 1)))
404static void
405sighandler (int signum)
406{
407 signals [signum - 1].gotsig = 1;
408
409 if (!gotsig)
410 {
411 int old_errno = errno;
412 gotsig = 1;
413 write (sigpipe [1], &signum, 1);
414 errno = old_errno;
415 }
416}
417
418static void
419sigcb (EV_P_ struct ev_io *iow, int revents)
420{
421 struct ev_watcher_list *w;
422 int signum;
423
424 read (sigpipe [0], &revents, 1);
425 gotsig = 0;
426
427 for (signum = signalmax; signum--; )
428 if (signals [signum].gotsig)
429 { 1538 {
430 signals [signum].gotsig = 0; 1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
431 1540 w->rpid = pid;
432 for (w = signals [signum].head; w; w = w->next) 1541 w->rstatus = status;
433 event (EV_A_ (W)w, EV_SIGNAL); 1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
434 } 1543 }
1544 }
435} 1545}
436
437static void
438siginit (EV_P)
439{
440#ifndef WIN32
441 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
442 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
443
444 /* rather than sort out wether we really need nb, set it */
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif
448
449 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */
452}
453
454/*****************************************************************************/
455
456#ifndef WIN32
457 1546
458#ifndef WCONTINUED 1547#ifndef WCONTINUED
459# define WCONTINUED 0 1548# define WCONTINUED 0
460#endif 1549#endif
461 1550
1551/* called on sigchld etc., calls waitpid */
462static void 1552static void
463child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
464{
465 struct ev_child *w;
466
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid)
469 {
470 w->priority = sw->priority; /* need to do it *now* */
471 w->rpid = pid;
472 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD);
474 }
475}
476
477static void
478childcb (EV_P_ struct ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
479{ 1554{
480 int pid, status; 1555 int pid, status;
481 1556
1557 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
482 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1558 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483 { 1559 if (!WCONTINUED
1560 || errno != EINVAL
1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1562 return;
1563
484 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1565 /* we need to do it this way so that the callback gets called before we continue */
485 event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
486 1567
487 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1569 if ((EV_PID_HASHSIZE) > 1)
488 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
489 }
490} 1571}
491 1572
492#endif 1573#endif
493 1574
494/*****************************************************************************/ 1575/*****************************************************************************/
495 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
1580#if EV_USE_PORT
1581# include "ev_port.c"
1582#endif
496#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
497# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
498#endif 1585#endif
499#if EV_USE_EPOLL 1586#if EV_USE_EPOLL
500# include "ev_epoll.c" 1587# include "ev_epoll.c"
501#endif 1588#endif
502#if EV_USEV_POLL 1589#if EV_USE_POLL
503# include "ev_poll.c" 1590# include "ev_poll.c"
504#endif 1591#endif
505#if EV_USE_SELECT 1592#if EV_USE_SELECT
506# include "ev_select.c" 1593# include "ev_select.c"
507#endif 1594#endif
517{ 1604{
518 return EV_VERSION_MINOR; 1605 return EV_VERSION_MINOR;
519} 1606}
520 1607
521/* return true if we are running with elevated privileges and should ignore env variables */ 1608/* return true if we are running with elevated privileges and should ignore env variables */
522static int 1609int inline_size
523enable_secure (void) 1610enable_secure (void)
524{ 1611{
525#ifdef WIN32 1612#ifdef _WIN32
526 return 0; 1613 return 0;
527#else 1614#else
528 return getuid () != geteuid () 1615 return getuid () != geteuid ()
529 || getgid () != getegid (); 1616 || getgid () != getegid ();
530#endif 1617#endif
531} 1618}
532 1619
1620unsigned int
1621ev_supported_backends (void)
1622{
1623 unsigned int flags = 0;
1624
1625 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1626 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1627 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1628 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1629 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1630
1631 return flags;
1632}
1633
1634unsigned int
1635ev_recommended_backends (void)
1636{
1637 unsigned int flags = ev_supported_backends ();
1638
1639#ifndef __NetBSD__
1640 /* kqueue is borked on everything but netbsd apparently */
1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1642 flags &= ~EVBACKEND_KQUEUE;
1643#endif
1644#ifdef __APPLE__
1645 /* only select works correctly on that "unix-certified" platform */
1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1651#endif
1652
1653 return flags;
1654}
1655
1656unsigned int
1657ev_embeddable_backends (void)
1658{
1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660
1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
1666}
1667
1668unsigned int
1669ev_backend (EV_P)
1670{
1671 return backend;
1672}
1673
1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
1682ev_depth (EV_P)
1683{
1684 return loop_depth;
1685}
1686
1687void
1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1689{
1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1724static void noinline
1725loop_init (EV_P_ unsigned int flags)
1726{
1727 if (!backend)
1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1743 {
1744 struct timespec ts;
1745
1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1747 have_monotonic = 1;
1748 }
1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1761
1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
1786 flags |= ev_recommended_backends ();
1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1791#if EV_USE_PORT
1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1796#endif
1797#if EV_USE_EPOLL
1798 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1799#endif
1800#if EV_USE_POLL
1801 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1802#endif
1803#if EV_USE_SELECT
1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1805#endif
1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1810 ev_init (&pipe_w, pipecb);
1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1813 }
1814}
1815
1816/* free up a loop structure */
1817void
1818ev_loop_destroy (EV_P)
1819{
1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1866
1867#if EV_USE_INOTIFY
1868 if (fs_fd >= 0)
1869 close (fs_fd);
1870#endif
1871
1872 if (backend_fd >= 0)
1873 close (backend_fd);
1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1878#if EV_USE_PORT
1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1880#endif
1881#if EV_USE_KQUEUE
1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1883#endif
1884#if EV_USE_EPOLL
1885 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1886#endif
1887#if EV_USE_POLL
1888 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1889#endif
1890#if EV_USE_SELECT
1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1892#endif
1893
1894 for (i = NUMPRI; i--; )
1895 {
1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1903
1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1906 array_free (fdchange, EMPTY);
1907 array_free (timer, EMPTY);
1908#if EV_PERIODIC_ENABLE
1909 array_free (periodic, EMPTY);
1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1917 array_free (prepare, EMPTY);
1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
1922
1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1936inline_size void infy_fork (EV_P);
1937#endif
1938
1939inline_size void
1940loop_fork (EV_P)
1941{
1942#if EV_USE_PORT
1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1944#endif
1945#if EV_USE_KQUEUE
1946 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1947#endif
1948#if EV_USE_EPOLL
1949 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1950#endif
1951#if EV_USE_INOTIFY
1952 infy_fork (EV_A);
1953#endif
1954
1955 if (ev_is_active (&pipe_w))
1956 {
1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1963
1964 ev_ref (EV_A);
1965 ev_io_stop (EV_A_ &pipe_w);
1966
1967#if EV_USE_EVENTFD
1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1983 }
1984
1985 postfork = 0;
1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
2060 {
2061 verify_watcher (EV_A_ (W)w);
2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2064 }
2065
2066 assert (timermax >= timercnt);
2067 verify_heap (EV_A_ timers, timercnt);
2068
2069#if EV_PERIODIC_ENABLE
2070 assert (periodicmax >= periodiccnt);
2071 verify_heap (EV_A_ periodics, periodiccnt);
2072#endif
2073
2074 for (i = NUMPRI; i--; )
2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
2083
2084#if EV_FORK_ENABLE
2085 assert (forkmax >= forkcnt);
2086 array_verify (EV_A_ (W *)forks, forkcnt);
2087#endif
2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
2114# endif
2115#endif
2116}
2117#endif
2118
2119#if EV_MULTIPLICITY
2120struct ev_loop *
2121#else
533int 2122int
534ev_method (EV_P) 2123#endif
2124ev_default_loop (unsigned int flags)
535{ 2125{
536 return method; 2126 if (!ev_default_loop_ptr)
537} 2127 {
538
539int
540ev_init (EV_P_ int methods)
541{
542#ifdef EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
543 memset (loop, 0, sizeof (struct ev_loop)); 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
2130#else
2131 ev_default_loop_ptr = 1;
544#endif 2132#endif
545 2133
546 if (!method) 2134 loop_init (EV_A_ flags);
547 {
548#if EV_USE_MONOTONIC
549 {
550 struct timespec ts;
551 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552 have_monotonic = 1;
553 }
554#endif
555 2135
556 rt_now = ev_time (); 2136 if (ev_backend (EV_A))
557 mn_now = get_clock ();
558 now_floor = mn_now;
559 diff = rt_now - mn_now;
560
561 if (pipe (sigpipe))
562 return 0;
563
564 if (methods == EVMETHOD_AUTO)
565 if (!enable_secure () && getenv ("LIBmethodS"))
566 methods = atoi (getenv ("LIBmethodS"));
567 else
568 methods = EVMETHOD_ANY;
569
570 method = 0;
571#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573#endif
574#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
576#endif
577#if EV_USEV_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
579#endif
580#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582#endif
583
584 if (method)
585 { 2137 {
586 ev_watcher_init (&sigev, sigcb); 2138#if EV_CHILD_ENABLE
587 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A);
589
590#ifndef WIN32
591 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
592 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 2143#endif
596 } 2144 }
2145 else
2146 ev_default_loop_ptr = 0;
597 } 2147 }
598 2148
599 return method; 2149 return ev_default_loop_ptr;
2150}
2151
2152void
2153ev_loop_fork (EV_P)
2154{
2155 postfork = 1; /* must be in line with ev_default_fork */
600} 2156}
601 2157
602/*****************************************************************************/ 2158/*****************************************************************************/
603 2159
604void 2160void
605ev_fork_prepare (void) 2161ev_invoke (EV_P_ void *w, int revents)
606{ 2162{
607 /* nop */ 2163 EV_CB_INVOKE ((W)w, revents);
608} 2164}
609 2165
610void 2166unsigned int
611ev_fork_parent (void) 2167ev_pending_count (EV_P)
612{ 2168{
613 /* nop */ 2169 int pri;
614} 2170 unsigned int count = 0;
615 2171
616void 2172 for (pri = NUMPRI; pri--; )
617ev_fork_child (void) 2173 count += pendingcnt [pri];
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif
623 2174
624 ev_io_stop (&sigev); 2175 return count;
625 close (sigpipe [0]);
626 close (sigpipe [1]);
627 pipe (sigpipe);
628 siginit ();
629} 2176}
630 2177
631/*****************************************************************************/ 2178void noinline
632 2179ev_invoke_pending (EV_P)
633static void
634call_pending (EV_P)
635{ 2180{
636 int pri; 2181 int pri;
637 2182
638 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
639 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
640 { 2185 {
641 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642 2187
643 if (p->w)
644 {
645 p->w->pending = 0; 2188 p->w->pending = 0;
646 p->w->cb (EV_A_ p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
647 } 2190 EV_FREQUENT_CHECK;
648 } 2191 }
649} 2192}
650 2193
651static void 2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
652timers_reify (EV_P) 2198idle_reify (EV_P)
653{ 2199{
654 while (timercnt && timers [0]->at <= mn_now) 2200 if (expect_false (idleall))
655 { 2201 {
656 struct ev_timer *w = timers [0]; 2202 int pri;
657 2203
658 /* first reschedule or stop timer */ 2204 for (pri = NUMPRI; pri--; )
659 if (w->repeat)
660 { 2205 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2206 if (pendingcnt [pri])
662 w->at = mn_now + w->repeat; 2207 break;
663 downheap ((WT *)timers, timercnt, 0);
664 }
665 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 2208
668 event ((W)w, EV_TIMEOUT); 2209 if (idlecnt [pri])
669 }
670}
671
672static void
673periodics_reify (EV_P)
674{
675 while (periodiccnt && periodics [0]->at <= rt_now)
676 {
677 struct ev_periodic *w = periodics [0];
678
679 /* first reschedule or stop timer */
680 if (w->interval)
681 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0);
685 }
686 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688
689 event (EV_A_ (W)w, EV_PERIODIC);
690 }
691}
692
693static void
694periodics_reschedule (EV_P_ ev_tstamp diff)
695{
696 int i;
697
698 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i)
700 {
701 struct ev_periodic *w = periodics [i];
702
703 if (w->interval)
704 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
706
707 if (fabs (diff) >= 1e-4)
708 { 2210 {
709 ev_periodic_stop (EV_A_ w); 2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
710 ev_periodic_start (EV_A_ w); 2212 break;
711
712 i = 0; /* restart loop, inefficient, but time jumps should be rare */
713 } 2213 }
714 } 2214 }
715 } 2215 }
716} 2216}
2217#endif
717 2218
718inline int 2219/* make timers pending */
719time_update_monotonic (EV_P) 2220inline_size void
2221timers_reify (EV_P)
720{ 2222{
721 mn_now = get_clock (); 2223 EV_FREQUENT_CHECK;
722 2224
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
724 {
725 rt_now = mn_now + diff;
726 return 0;
727 } 2226 {
728 else 2227 do
2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2241
2242 ANHE_at_cache (timers [HEAP0]);
2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
2250 }
2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2252
2253 feed_reverse_done (EV_A_ EV_TIMER);
729 { 2254 }
730 now_floor = mn_now; 2255}
731 rt_now = ev_time (); 2256
732 return 1; 2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
733 } 2267 {
734} 2268 ev_tstamp nat = at + w->interval;
735 2269
736static void 2270 /* when resolution fails us, we use ev_rt_now */
737time_update (EV_P) 2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
2285periodics_reify (EV_P)
2286{
2287 EV_FREQUENT_CHECK;
2288
2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2290 {
2291 int feed_count = 0;
2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2298
2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
738{ 2331{
739 int i; 2332 int i;
740 2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
2369{
741#if EV_USE_MONOTONIC 2370#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 2371 if (expect_true (have_monotonic))
743 { 2372 {
744 if (time_update_monotonic (EV_A)) 2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
2376 mn_now = get_clock ();
2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
745 { 2381 {
746 ev_tstamp odiff = diff; 2382 ev_rt_now = rtmn_diff + mn_now;
747 2383 return;
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */
749 {
750 diff = rt_now - mn_now;
751
752 if (fabs (odiff - diff) < MIN_TIMEJUMP)
753 return; /* all is well */
754
755 rt_now = ev_time ();
756 mn_now = get_clock ();
757 now_floor = mn_now;
758 }
759
760 periodics_reschedule (EV_A_ diff - odiff);
761 /* no timer adjustment, as the monotonic clock doesn't jump */
762 } 2384 }
2385
2386 now_floor = mn_now;
2387 ev_rt_now = ev_time ();
2388
2389 /* loop a few times, before making important decisions.
2390 * on the choice of "4": one iteration isn't enough,
2391 * in case we get preempted during the calls to
2392 * ev_time and get_clock. a second call is almost guaranteed
2393 * to succeed in that case, though. and looping a few more times
2394 * doesn't hurt either as we only do this on time-jumps or
2395 * in the unlikely event of having been preempted here.
2396 */
2397 for (i = 4; --i; )
2398 {
2399 ev_tstamp diff;
2400 rtmn_diff = ev_rt_now - mn_now;
2401
2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2405 return; /* all is well */
2406
2407 ev_rt_now = ev_time ();
2408 mn_now = get_clock ();
2409 now_floor = mn_now;
2410 }
2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2414# if EV_PERIODIC_ENABLE
2415 periodics_reschedule (EV_A);
2416# endif
763 } 2417 }
764 else 2418 else
765#endif 2419#endif
766 { 2420 {
767 rt_now = ev_time (); 2421 ev_rt_now = ev_time ();
768 2422
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
770 { 2424 {
771 periodics_reschedule (EV_A_ rt_now - mn_now);
772
773 /* adjust timers. this is easy, as the offset is the same for all */ 2425 /* adjust timers. this is easy, as the offset is the same for all of them */
774 for (i = 0; i < timercnt; ++i) 2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
775 timers [i]->at += diff; 2427#if EV_PERIODIC_ENABLE
2428 periodics_reschedule (EV_A);
2429#endif
776 } 2430 }
777 2431
778 mn_now = rt_now; 2432 mn_now = ev_rt_now;
779 } 2433 }
780} 2434}
781 2435
782void 2436void
783ev_ref (EV_P)
784{
785 ++activecnt;
786}
787
788void
789ev_unref (EV_P)
790{
791 --activecnt;
792}
793
794static int loop_done;
795
796void
797ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
798{ 2438{
799 double block; 2439#if EV_FEATURE_API
800 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2440 ++loop_depth;
2441#endif
2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
801 2448
802 do 2449 do
803 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
2455#ifndef _WIN32
2456 if (expect_false (curpid)) /* penalise the forking check even more */
2457 if (expect_false (getpid () != curpid))
2458 {
2459 curpid = getpid ();
2460 postfork = 1;
2461 }
2462#endif
2463
2464#if EV_FORK_ENABLE
2465 /* we might have forked, so queue fork handlers */
2466 if (expect_false (postfork))
2467 if (forkcnt)
2468 {
2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2470 EV_INVOKE_PENDING;
2471 }
2472#endif
2473
2474#if EV_PREPARE_ENABLE
804 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
805 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
806 { 2477 {
807 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
809 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
2485
2486 /* we might have forked, so reify kernel state if necessary */
2487 if (expect_false (postfork))
2488 loop_fork (EV_A);
810 2489
811 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
812 fd_reify (EV_A); 2491 fd_reify (EV_A);
813 2492
814 /* calculate blocking time */ 2493 /* calculate blocking time */
2494 {
2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
815 2497
816 /* we only need this for !monotonic clockor timers, but as we basically 2498 /* remember old timestamp for io_blocktime calculation */
817 always have timers, we just calculate it always */ 2499 ev_tstamp prev_mn_now = mn_now;
818#if EV_USE_MONOTONIC 2500
819 if (expect_true (have_monotonic)) 2501 /* update time to cancel out callback processing overhead */
820 time_update_monotonic (EV_A); 2502 time_update (EV_A_ 1e100);
821 else 2503
822#endif 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
823 { 2505 {
824 rt_now = ev_time ();
825 mn_now = rt_now;
826 }
827
828 if (flags & EVLOOP_NONBLOCK || idlecnt)
829 block = 0.;
830 else
831 {
832 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
833 2507
834 if (timercnt) 2508 if (timercnt)
835 { 2509 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
837 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
838 } 2512 }
839 2513
2514#if EV_PERIODIC_ENABLE
840 if (periodiccnt) 2515 if (periodiccnt)
841 { 2516 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
843 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
844 } 2519 }
2520#endif
845 2521
846 if (block < 0.) block = 0.; 2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* extra check because io_blocktime is commonly 0 */
2527 if (expect_false (io_blocktime))
2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_fudge)
2532 sleeptime = waittime - backend_fudge;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
2536 ev_sleep (sleeptime);
2537 waittime -= sleeptime;
2538 }
2539 }
847 } 2540 }
848 2541
849 method_poll (EV_A_ block); 2542#if EV_FEATURE_API
2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
850 2548
851 /* update rt_now, do magic */ 2549 /* update ev_rt_now, do magic */
852 time_update (EV_A); 2550 time_update (EV_A_ waittime + sleeptime);
2551 }
853 2552
854 /* queue pending timers and reschedule them */ 2553 /* queue pending timers and reschedule them */
855 timers_reify (EV_A); /* relative timers called last */ 2554 timers_reify (EV_A); /* relative timers called last */
2555#if EV_PERIODIC_ENABLE
856 periodics_reify (EV_A); /* absolute timers called first */ 2556 periodics_reify (EV_A); /* absolute timers called first */
2557#endif
857 2558
2559#if EV_IDLE_ENABLE
858 /* queue idle watchers unless io or timers are pending */ 2560 /* queue idle watchers unless other events are pending */
859 if (!pendingcnt) 2561 idle_reify (EV_A);
860 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2562#endif
861 2563
2564#if EV_CHECK_ENABLE
862 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
863 if (checkcnt) 2566 if (expect_false (checkcnt))
864 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
865 2569
866 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
867 } 2571 }
868 while (activecnt && !loop_done); 2572 while (expect_true (
2573 activecnt
2574 && !loop_done
2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2576 ));
869 2577
870 if (loop_done != 2) 2578 if (loop_done == EVBREAK_ONE)
871 loop_done = 0; 2579 loop_done = EVBREAK_CANCEL;
872}
873 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
874void 2586void
875ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
876{ 2588{
877 loop_done = how; 2589 loop_done = how;
878} 2590}
879 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
880/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
881 2631
882inline void 2632inline_size void
883wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
884{ 2634{
885 elem->next = *head; 2635 elem->next = *head;
886 *head = elem; 2636 *head = elem;
887} 2637}
888 2638
889inline void 2639inline_size void
890wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
891{ 2641{
892 while (*head) 2642 while (*head)
893 { 2643 {
894 if (*head == elem) 2644 if (expect_true (*head == elem))
895 { 2645 {
896 *head = elem->next; 2646 *head = elem->next;
897 return; 2647 break;
898 } 2648 }
899 2649
900 head = &(*head)->next; 2650 head = &(*head)->next;
901 } 2651 }
902} 2652}
903 2653
2654/* internal, faster, version of ev_clear_pending */
904inline void 2655inline_speed void
905ev_clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
906{ 2657{
907 if (w->pending) 2658 if (w->pending)
908 { 2659 {
909 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
910 w->pending = 0; 2661 w->pending = 0;
911 } 2662 }
912} 2663}
913 2664
2665int
2666ev_clear_pending (EV_P_ void *w)
2667{
2668 W w_ = (W)w;
2669 int pending = w_->pending;
2670
2671 if (expect_true (pending))
2672 {
2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
2675 w_->pending = 0;
2676 return p->events;
2677 }
2678 else
2679 return 0;
2680}
2681
914inline void 2682inline_size void
2683pri_adjust (EV_P_ W w)
2684{
2685 int pri = ev_priority (w);
2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2688 ev_set_priority (w, pri);
2689}
2690
2691inline_speed void
915ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
916{ 2693{
917 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2694 pri_adjust (EV_A_ w);
918 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
919
920 w->active = active; 2695 w->active = active;
921 ev_ref (EV_A); 2696 ev_ref (EV_A);
922} 2697}
923 2698
924inline void 2699inline_size void
925ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
926{ 2701{
927 ev_unref (EV_A); 2702 ev_unref (EV_A);
928 w->active = 0; 2703 w->active = 0;
929} 2704}
930 2705
931/*****************************************************************************/ 2706/*****************************************************************************/
932 2707
933void 2708void noinline
934ev_io_start (EV_P_ struct ev_io *w) 2709ev_io_start (EV_P_ ev_io *w)
935{ 2710{
936 int fd = w->fd; 2711 int fd = w->fd;
937 2712
938 if (ev_is_active (w)) 2713 if (expect_false (ev_is_active (w)))
939 return; 2714 return;
940 2715
941 assert (("ev_io_start called with negative fd", fd >= 0)); 2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
942 2720
943 ev_start (EV_A_ (W)w, 1); 2721 ev_start (EV_A_ (W)w, 1);
944 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
945 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2723 wlist_add (&anfds[fd].head, (WL)w);
946 2724
947 fd_change (EV_A_ fd); 2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
948} 2726 w->events &= ~EV__IOFDSET;
949 2727
950void 2728 EV_FREQUENT_CHECK;
2729}
2730
2731void noinline
951ev_io_stop (EV_P_ struct ev_io *w) 2732ev_io_stop (EV_P_ ev_io *w)
952{ 2733{
953 ev_clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
954 if (!ev_is_active (w)) 2735 if (expect_false (!ev_is_active (w)))
955 return; 2736 return;
956 2737
2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2739
2740 EV_FREQUENT_CHECK;
2741
957 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2742 wlist_del (&anfds[w->fd].head, (WL)w);
958 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
959 2744
960 fd_change (EV_A_ w->fd); 2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
961}
962 2746
963void 2747 EV_FREQUENT_CHECK;
2748}
2749
2750void noinline
964ev_timer_start (EV_P_ struct ev_timer *w) 2751ev_timer_start (EV_P_ ev_timer *w)
965{ 2752{
966 if (ev_is_active (w)) 2753 if (expect_false (ev_is_active (w)))
967 return; 2754 return;
968 2755
969 w->at += mn_now; 2756 ev_at (w) += mn_now;
970 2757
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
973 ev_start (EV_A_ (W)w, ++timercnt); 2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
974 array_needsize (timers, timermax, timercnt, ); 2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
975 timers [timercnt - 1] = w; 2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
976 upheap ((WT *)timers, timercnt - 1); 2766 ANHE_at_cache (timers [ev_active (w)]);
977} 2767 upheap (timers, ev_active (w));
978 2768
979void 2769 EV_FREQUENT_CHECK;
2770
2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2772}
2773
2774void noinline
980ev_timer_stop (EV_P_ struct ev_timer *w) 2775ev_timer_stop (EV_P_ ev_timer *w)
981{ 2776{
982 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 2778 if (expect_false (!ev_is_active (w)))
984 return; 2779 return;
985 2780
986 if (w->active < timercnt--) 2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2787
2788 --timercnt;
2789
2790 if (expect_true (active < timercnt + HEAP0))
987 { 2791 {
988 timers [w->active - 1] = timers [timercnt]; 2792 timers [active] = timers [timercnt + HEAP0];
989 downheap ((WT *)timers, timercnt, w->active - 1); 2793 adjustheap (timers, timercnt, active);
990 } 2794 }
2795 }
991 2796
992 w->at = w->repeat; 2797 ev_at (w) -= mn_now;
993 2798
994 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
995}
996 2800
997void 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
998ev_timer_again (EV_P_ struct ev_timer *w) 2805ev_timer_again (EV_P_ ev_timer *w)
999{ 2806{
2807 EV_FREQUENT_CHECK;
2808
1000 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1001 { 2810 {
1002 if (w->repeat) 2811 if (w->repeat)
1003 { 2812 {
1004 w->at = mn_now + w->repeat; 2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
1005 downheap ((WT *)timers, timercnt, w->active - 1); 2815 adjustheap (timers, timercnt, ev_active (w));
1006 } 2816 }
1007 else 2817 else
1008 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1009 } 2819 }
1010 else if (w->repeat) 2820 else if (w->repeat)
2821 {
2822 ev_at (w) = w->repeat;
1011 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1012} 2824 }
1013 2825
1014void 2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2833}
2834
2835#if EV_PERIODIC_ENABLE
2836void noinline
1015ev_periodic_start (EV_P_ struct ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1016{ 2838{
1017 if (ev_is_active (w)) 2839 if (expect_false (ev_is_active (w)))
1018 return; 2840 return;
1019 2841
2842 if (w->reschedule_cb)
2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2844 else if (w->interval)
2845 {
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2847 periodic_recalc (EV_A_ w);
2848 }
2849 else
2850 ev_at (w) = w->offset;
1021 2851
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 2852 EV_FREQUENT_CHECK;
1023 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1025 2853
2854 ++periodiccnt;
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1028 periodics [periodiccnt - 1] = w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
1030} 2859 upheap (periodics, ev_active (w));
1031 2860
1032void 2861 EV_FREQUENT_CHECK;
2862
2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2864}
2865
2866void noinline
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1034{ 2868{
1035 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 2870 if (expect_false (!ev_is_active (w)))
1037 return; 2871 return;
1038 2872
1039 if (w->active < periodiccnt--) 2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ev_active (w);
2877
2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2879
2880 --periodiccnt;
2881
2882 if (expect_true (active < periodiccnt + HEAP0))
1040 { 2883 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2885 adjustheap (periodics, periodiccnt, active);
1043 } 2886 }
2887 }
1044 2888
1045 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1046} 2892}
2893
2894void noinline
2895ev_periodic_again (EV_P_ ev_periodic *w)
2896{
2897 /* TODO: use adjustheap and recalculation */
2898 ev_periodic_stop (EV_A_ w);
2899 ev_periodic_start (EV_A_ w);
2900}
2901#endif
1047 2902
1048#ifndef SA_RESTART 2903#ifndef SA_RESTART
1049# define SA_RESTART 0 2904# define SA_RESTART 0
1050#endif 2905#endif
1051 2906
1052void 2907#if EV_SIGNAL_ENABLE
2908
2909void noinline
1053ev_signal_start (EV_P_ struct ev_signal *w) 2910ev_signal_start (EV_P_ ev_signal *w)
1054{ 2911{
1055 if (ev_is_active (w)) 2912 if (expect_false (ev_is_active (w)))
1056 return; 2913 return;
1057 2914
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2916
2917#if EV_MULTIPLICITY
2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
2928 {
2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2930 if (sigfd < 0 && errno == EINVAL)
2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2932
2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
2936
2937 sigemptyset (&sigfd_set);
2938
2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
1059 2955
1060 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
1063 2958
1064 if (!w->next) 2959 if (!((WL)w)->next)
2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
2962# endif
1065 { 2963 {
2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
2967 signal (w->signum, ev_sighandler);
2968# else
1066 struct sigaction sa; 2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
1067 sa.sa_handler = sighandler; 2973 sa.sa_handler = ev_sighandler;
1068 sigfillset (&sa.sa_mask); 2974 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
2984#endif
1071 } 2985 }
1072}
1073 2986
1074void 2987 EV_FREQUENT_CHECK;
2988}
2989
2990void noinline
1075ev_signal_stop (EV_P_ struct ev_signal *w) 2991ev_signal_stop (EV_P_ ev_signal *w)
1076{ 2992{
1077 ev_clear_pending (EV_A_ (W)w); 2993 clear_pending (EV_A_ (W)w);
1078 if (!ev_is_active (w)) 2994 if (expect_false (!ev_is_active (w)))
1079 return; 2995 return;
1080 2996
2997 EV_FREQUENT_CHECK;
2998
1081 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
1082 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
1083 3001
1084 if (!signals [w->signum - 1].head) 3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
1085 signal (w->signum, SIG_DFL); 3021 signal (w->signum, SIG_DFL);
1086} 3022 }
1087 3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
3030
1088void 3031void
1089ev_idle_start (EV_P_ struct ev_idle *w) 3032ev_child_start (EV_P_ ev_child *w)
1090{ 3033{
3034#if EV_MULTIPLICITY
3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3036#endif
1091 if (ev_is_active (w)) 3037 if (expect_false (ev_is_active (w)))
1092 return; 3038 return;
1093 3039
3040 EV_FREQUENT_CHECK;
3041
1094 ev_start (EV_A_ (W)w, ++idlecnt); 3042 ev_start (EV_A_ (W)w, 1);
1095 array_needsize (idles, idlemax, idlecnt, ); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1096 idles [idlecnt - 1] = w;
1097}
1098 3044
3045 EV_FREQUENT_CHECK;
3046}
3047
1099void 3048void
1100ev_idle_stop (EV_P_ struct ev_idle *w) 3049ev_child_stop (EV_P_ ev_child *w)
1101{ 3050{
1102 ev_clear_pending (EV_A_ (W)w); 3051 clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w)) 3052 if (expect_false (!ev_is_active (w)))
1104 return; 3053 return;
1105 3054
1106 idles [w->active - 1] = idles [--idlecnt]; 3055 EV_FREQUENT_CHECK;
3056
3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1107 ev_stop (EV_A_ (W)w); 3058 ev_stop (EV_A_ (W)w);
1108}
1109 3059
1110void 3060 EV_FREQUENT_CHECK;
1111ev_prepare_start (EV_P_ struct ev_prepare *w) 3061}
3062
3063#endif
3064
3065#if EV_STAT_ENABLE
3066
3067# ifdef _WIN32
3068# undef lstat
3069# define lstat(a,b) _stati64 (a,b)
3070# endif
3071
3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3074#define MIN_STAT_INTERVAL 0.1074891
3075
3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3077
3078#if EV_USE_INOTIFY
3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3082
3083static void noinline
3084infy_add (EV_P_ ev_stat *w)
1112{ 3085{
1113 if (ev_is_active (w)) 3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3087
3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3108 }
3109 else
3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3113
3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3118 {
3119 char path [4096];
3120 strcpy (path, w->path);
3121
3122 do
3123 {
3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3126
3127 char *pend = strrchr (path, '/');
3128
3129 if (!pend || pend == path)
3130 break;
3131
3132 *pend = 0;
3133 w->wd = inotify_add_watch (fs_fd, path, mask);
3134 }
3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3136 }
3137 }
3138
3139 if (w->wd >= 0)
3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3146}
3147
3148static void noinline
3149infy_del (EV_P_ ev_stat *w)
3150{
3151 int slot;
3152 int wd = w->wd;
3153
3154 if (wd < 0)
1114 return; 3155 return;
1115 3156
3157 w->wd = -2;
3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3159 wlist_del (&fs_hash [slot].head, (WL)w);
3160
3161 /* remove this watcher, if others are watching it, they will rearm */
3162 inotify_rm_watch (fs_fd, wd);
3163}
3164
3165static void noinline
3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3167{
3168 if (slot < 0)
3169 /* overflow, need to check for all hash slots */
3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3171 infy_wd (EV_A_ slot, wd, ev);
3172 else
3173 {
3174 WL w_;
3175
3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3177 {
3178 ev_stat *w = (ev_stat *)w_;
3179 w_ = w_->next; /* lets us remove this watcher and all before it */
3180
3181 if (w->wd == wd || wd == -1)
3182 {
3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3186 w->wd = -1;
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 }
3189
3190 stat_timer_cb (EV_A_ &w->timer, 0);
3191 }
3192 }
3193 }
3194}
3195
3196static void
3197infy_cb (EV_P_ ev_io *w, int revents)
3198{
3199 char buf [EV_INOTIFY_BUFSIZE];
3200 int ofs;
3201 int len = read (fs_fd, buf, sizeof (buf));
3202
3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
3209}
3210
3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
3235infy_init (EV_P)
3236{
3237 if (fs_fd != -2)
3238 return;
3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
3244 fs_fd = infy_newfd ();
3245
3246 if (fs_fd >= 0)
3247 {
3248 fd_intern (fs_fd);
3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3250 ev_set_priority (&fs_w, EV_MAXPRI);
3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
3253 }
3254}
3255
3256inline_size void
3257infy_fork (EV_P)
3258{
3259 int slot;
3260
3261 if (fs_fd < 0)
3262 return;
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
3266 close (fs_fd);
3267 fs_fd = infy_newfd ();
3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3278 {
3279 WL w_ = fs_hash [slot].head;
3280 fs_hash [slot].head = 0;
3281
3282 while (w_)
3283 {
3284 ev_stat *w = (ev_stat *)w_;
3285 w_ = w_->next; /* lets us add this watcher */
3286
3287 w->wd = -1;
3288
3289 if (fs_fd >= 0)
3290 infy_add (EV_A_ w); /* re-add, no matter what */
3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
3298 }
3299 }
3300}
3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
3306#else
3307# define EV_LSTAT(p,b) lstat (p, b)
3308#endif
3309
3310void
3311ev_stat_stat (EV_P_ ev_stat *w)
3312{
3313 if (lstat (w->path, &w->attr) < 0)
3314 w->attr.st_nlink = 0;
3315 else if (!w->attr.st_nlink)
3316 w->attr.st_nlink = 1;
3317}
3318
3319static void noinline
3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3321{
3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3323
3324 ev_statdata prev = w->attr;
3325 ev_stat_stat (EV_A_ w);
3326
3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3328 if (
3329 prev.st_dev != w->attr.st_dev
3330 || prev.st_ino != w->attr.st_ino
3331 || prev.st_mode != w->attr.st_mode
3332 || prev.st_nlink != w->attr.st_nlink
3333 || prev.st_uid != w->attr.st_uid
3334 || prev.st_gid != w->attr.st_gid
3335 || prev.st_rdev != w->attr.st_rdev
3336 || prev.st_size != w->attr.st_size
3337 || prev.st_atime != w->attr.st_atime
3338 || prev.st_mtime != w->attr.st_mtime
3339 || prev.st_ctime != w->attr.st_ctime
3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
3349 infy_del (EV_A_ w);
3350 infy_add (EV_A_ w);
3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
3353 #endif
3354
3355 ev_feed_event (EV_A_ w, EV_STAT);
3356 }
3357}
3358
3359void
3360ev_stat_start (EV_P_ ev_stat *w)
3361{
3362 if (expect_false (ev_is_active (w)))
3363 return;
3364
3365 ev_stat_stat (EV_A_ w);
3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3368 w->interval = MIN_STAT_INTERVAL;
3369
3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3371 ev_set_priority (&w->timer, ev_priority (w));
3372
3373#if EV_USE_INOTIFY
3374 infy_init (EV_A);
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w);
3378 else
3379#endif
3380 {
3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
3384
3385 ev_start (EV_A_ (W)w, 1);
3386
3387 EV_FREQUENT_CHECK;
3388}
3389
3390void
3391ev_stat_stop (EV_P_ ev_stat *w)
3392{
3393 clear_pending (EV_A_ (W)w);
3394 if (expect_false (!ev_is_active (w)))
3395 return;
3396
3397 EV_FREQUENT_CHECK;
3398
3399#if EV_USE_INOTIFY
3400 infy_del (EV_A_ w);
3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
3408
3409 ev_stop (EV_A_ (W)w);
3410
3411 EV_FREQUENT_CHECK;
3412}
3413#endif
3414
3415#if EV_IDLE_ENABLE
3416void
3417ev_idle_start (EV_P_ ev_idle *w)
3418{
3419 if (expect_false (ev_is_active (w)))
3420 return;
3421
3422 pri_adjust (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ++idlecnt [ABSPRI (w)];
3428
3429 ++idleall;
3430 ev_start (EV_A_ (W)w, active);
3431
3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3433 idles [ABSPRI (w)][active - 1] = w;
3434 }
3435
3436 EV_FREQUENT_CHECK;
3437}
3438
3439void
3440ev_idle_stop (EV_P_ ev_idle *w)
3441{
3442 clear_pending (EV_A_ (W)w);
3443 if (expect_false (!ev_is_active (w)))
3444 return;
3445
3446 EV_FREQUENT_CHECK;
3447
3448 {
3449 int active = ev_active (w);
3450
3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3453
3454 ev_stop (EV_A_ (W)w);
3455 --idleall;
3456 }
3457
3458 EV_FREQUENT_CHECK;
3459}
3460#endif
3461
3462#if EV_PREPARE_ENABLE
3463void
3464ev_prepare_start (EV_P_ ev_prepare *w)
3465{
3466 if (expect_false (ev_is_active (w)))
3467 return;
3468
3469 EV_FREQUENT_CHECK;
3470
1116 ev_start (EV_A_ (W)w, ++preparecnt); 3471 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, ); 3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1118 prepares [preparecnt - 1] = w; 3473 prepares [preparecnt - 1] = w;
1119}
1120 3474
3475 EV_FREQUENT_CHECK;
3476}
3477
1121void 3478void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w) 3479ev_prepare_stop (EV_P_ ev_prepare *w)
1123{ 3480{
1124 ev_clear_pending (EV_A_ (W)w); 3481 clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w)) 3482 if (expect_false (!ev_is_active (w)))
1126 return; 3483 return;
1127 3484
3485 EV_FREQUENT_CHECK;
3486
3487 {
3488 int active = ev_active (w);
3489
1128 prepares [w->active - 1] = prepares [--preparecnt]; 3490 prepares [active - 1] = prepares [--preparecnt];
3491 ev_active (prepares [active - 1]) = active;
3492 }
3493
1129 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
1130}
1131 3495
3496 EV_FREQUENT_CHECK;
3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
1132void 3501void
1133ev_check_start (EV_P_ struct ev_check *w) 3502ev_check_start (EV_P_ ev_check *w)
1134{ 3503{
1135 if (ev_is_active (w)) 3504 if (expect_false (ev_is_active (w)))
1136 return; 3505 return;
1137 3506
3507 EV_FREQUENT_CHECK;
3508
1138 ev_start (EV_A_ (W)w, ++checkcnt); 3509 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, ); 3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1140 checks [checkcnt - 1] = w; 3511 checks [checkcnt - 1] = w;
1141}
1142 3512
3513 EV_FREQUENT_CHECK;
3514}
3515
1143void 3516void
1144ev_check_stop (EV_P_ struct ev_check *w) 3517ev_check_stop (EV_P_ ev_check *w)
1145{ 3518{
1146 ev_clear_pending (EV_A_ (W)w); 3519 clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w)) 3520 if (expect_false (!ev_is_active (w)))
1148 return; 3521 return;
1149 3522
3523 EV_FREQUENT_CHECK;
3524
3525 {
3526 int active = ev_active (w);
3527
1150 checks [w->active - 1] = checks [--checkcnt]; 3528 checks [active - 1] = checks [--checkcnt];
3529 ev_active (checks [active - 1]) = active;
3530 }
3531
1151 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
1152}
1153 3533
1154void 3534 EV_FREQUENT_CHECK;
1155ev_child_start (EV_P_ struct ev_child *w) 3535}
3536#endif
3537
3538#if EV_EMBED_ENABLE
3539void noinline
3540ev_embed_sweep (EV_P_ ev_embed *w)
1156{ 3541{
3542 ev_run (w->other, EVRUN_NOWAIT);
3543}
3544
3545static void
3546embed_io_cb (EV_P_ ev_io *io, int revents)
3547{
3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3549
1157 if (ev_is_active (w)) 3550 if (ev_cb (w))
3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3552 else
3553 ev_run (w->other, EVRUN_NOWAIT);
3554}
3555
3556static void
3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3558{
3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3560
3561 {
3562 EV_P = w->other;
3563
3564 while (fdchangecnt)
3565 {
3566 fd_reify (EV_A);
3567 ev_run (EV_A_ EVRUN_NOWAIT);
3568 }
3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
3587}
3588
3589#if 0
3590static void
3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3592{
3593 ev_idle_stop (EV_A_ idle);
3594}
3595#endif
3596
3597void
3598ev_embed_start (EV_P_ ev_embed *w)
3599{
3600 if (expect_false (ev_is_active (w)))
1158 return; 3601 return;
1159 3602
3603 {
3604 EV_P = w->other;
3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3607 }
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_set_priority (&w->io, ev_priority (w));
3612 ev_io_start (EV_A_ &w->io);
3613
3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
3615 ev_set_priority (&w->prepare, EV_MINPRI);
3616 ev_prepare_start (EV_A_ &w->prepare);
3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3622
1160 ev_start (EV_A_ (W)w, 1); 3623 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1162}
1163 3624
3625 EV_FREQUENT_CHECK;
3626}
3627
1164void 3628void
1165ev_child_stop (EV_P_ struct ev_child *w) 3629ev_embed_stop (EV_P_ ev_embed *w)
1166{ 3630{
1167 ev_clear_pending (EV_A_ (W)w); 3631 clear_pending (EV_A_ (W)w);
1168 if (ev_is_active (w)) 3632 if (expect_false (!ev_is_active (w)))
1169 return; 3633 return;
1170 3634
1171 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3635 EV_FREQUENT_CHECK;
3636
3637 ev_io_stop (EV_A_ &w->io);
3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
3640
1172 ev_stop (EV_A_ (W)w); 3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
1173} 3644}
3645#endif
3646
3647#if EV_FORK_ENABLE
3648void
3649ev_fork_start (EV_P_ ev_fork *w)
3650{
3651 if (expect_false (ev_is_active (w)))
3652 return;
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++forkcnt);
3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_fork_stop (EV_P_ ev_fork *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 forks [active - 1] = forks [--forkcnt];
3676 ev_active (forks [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
3685#if EV_CLEANUP_ENABLE
3686void
3687ev_cleanup_start (EV_P_ ev_cleanup *w)
3688{
3689 if (expect_false (ev_is_active (w)))
3690 return;
3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
3738
3739 ev_start (EV_A_ (W)w, ++asynccnt);
3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
3744}
3745
3746void
3747ev_async_stop (EV_P_ ev_async *w)
3748{
3749 clear_pending (EV_A_ (W)w);
3750 if (expect_false (!ev_is_active (w)))
3751 return;
3752
3753 EV_FREQUENT_CHECK;
3754
3755 {
3756 int active = ev_active (w);
3757
3758 asyncs [active - 1] = asyncs [--asynccnt];
3759 ev_active (asyncs [active - 1]) = active;
3760 }
3761
3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
3765}
3766
3767void
3768ev_async_send (EV_P_ ev_async *w)
3769{
3770 w->sent = 1;
3771 evpipe_write (EV_A_ &async_pending);
3772}
3773#endif
1174 3774
1175/*****************************************************************************/ 3775/*****************************************************************************/
1176 3776
1177struct ev_once 3777struct ev_once
1178{ 3778{
1179 struct ev_io io; 3779 ev_io io;
1180 struct ev_timer to; 3780 ev_timer to;
1181 void (*cb)(int revents, void *arg); 3781 void (*cb)(int revents, void *arg);
1182 void *arg; 3782 void *arg;
1183}; 3783};
1184 3784
1185static void 3785static void
1186once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
1187{ 3787{
1188 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 3789 void *arg = once->arg;
1190 3790
1191 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 3793 ev_free (once);
1194 3794
1195 cb (revents, arg); 3795 cb (revents, arg);
1196} 3796}
1197 3797
1198static void 3798static void
1199once_cb_io (EV_P_ struct ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
1200{ 3800{
1201 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1202} 3804}
1203 3805
1204static void 3806static void
1205once_cb_to (EV_P_ struct ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
1206{ 3808{
1207 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1208} 3812}
1209 3813
1210void 3814void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 3816{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1214 3818
1215 if (!once) 3819 if (expect_false (!once))
3820 {
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1217 else 3822 return;
1218 { 3823 }
3824
1219 once->cb = cb; 3825 once->cb = cb;
1220 once->arg = arg; 3826 once->arg = arg;
1221 3827
1222 ev_watcher_init (&once->io, once_cb_io); 3828 ev_init (&once->io, once_cb_io);
1223 if (fd >= 0) 3829 if (fd >= 0)
3830 {
3831 ev_io_set (&once->io, fd, events);
3832 ev_io_start (EV_A_ &once->io);
3833 }
3834
3835 ev_init (&once->to, once_cb_to);
3836 if (timeout >= 0.)
3837 {
3838 ev_timer_set (&once->to, timeout, 0.);
3839 ev_timer_start (EV_A_ &once->to);
3840 }
3841}
3842
3843/*****************************************************************************/
3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
1224 { 3855 {
1225 ev_io_set (&once->io, fd, events); 3856 wn = wl->next;
1226 ev_io_start (EV_A_ &once->io); 3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
1227 } 3876 }
1228 3877
1229 ev_watcher_init (&once->to, once_cb_to); 3878 if (types & (EV_TIMER | EV_STAT))
1230 if (timeout >= 0.) 3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1231 { 3883 {
1232 ev_timer_set (&once->to, timeout, 0.); 3884 if (types & EV_STAT)
1233 ev_timer_start (EV_A_ &once->to); 3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1234 } 3886 }
1235 } 3887 else
1236} 3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1237 3891
1238/*****************************************************************************/ 3892#if EV_PERIODIC_ENABLE
3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
1239 3897
1240#if 0 3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
1241 3904
1242struct ev_io wio; 3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
1243 3911
1244static void 3912#if EV_ASYNC_ENABLE
1245sin_cb (struct ev_io *w, int revents) 3913 if (types & EV_ASYNC)
1246{ 3914 for (i = asynccnt; i--; )
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
1248} 3916#endif
1249 3917
1250static void 3918#if EV_PREPARE_ENABLE
1251ocb (struct ev_timer *w, int revents) 3919 if (types & EV_PREPARE)
1252{ 3920 for (i = preparecnt; i--; )
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3921# if EV_EMBED_ENABLE
1254 ev_timer_stop (w); 3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 {
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif 3923# endif
1294 3924 cb (EV_A_ EV_PREPARE, prepares [i]);
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314}
1315
1316#endif 3925#endif
1317 3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
1318 3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
1319 3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
1320 3958
3959#if EV_MULTIPLICITY
3960 #include "ev_wrap.h"
3961#endif
3962
3963EV_CPP(})
3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines