ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
58 80
59#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
61#endif 83#endif
62 84
63#ifndef EV_USEV_POLL 85#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 87#endif
66 88
67#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
69#endif 91#endif
70 92
71#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
73#endif 103#endif
74 104
75#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
77#endif 107#endif
113 143
114typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
117 147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155
118/*****************************************************************************/ 156/*****************************************************************************/
119 157
158static void (*syserr_cb)(void);
159
160void ev_set_syserr_cb (void (*cb)(void))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (void)
167{
168 if (syserr_cb)
169 syserr_cb ();
170 else
171 {
172 perror ("libev");
173 abort ();
174 }
175}
176
177static void *(*alloc)(void *ptr, long size);
178
179void ev_set_allocator (void *(*cb)(void *ptr, long size))
180{
181 alloc = cb;
182}
183
184static void *
185ev_realloc (void *ptr, long size)
186{
187 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
188
189 if (!ptr && size)
190 {
191 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
192 abort ();
193 }
194
195 return ptr;
196}
197
198#define ev_malloc(size) ev_realloc (0, (size))
199#define ev_free(ptr) ev_realloc ((ptr), 0)
200
201/*****************************************************************************/
202
120typedef struct 203typedef struct
121{ 204{
122 struct ev_watcher_list *head; 205 WL head;
123 unsigned char events; 206 unsigned char events;
124 unsigned char reify; 207 unsigned char reify;
125} ANFD; 208} ANFD;
126 209
127typedef struct 210typedef struct
128{ 211{
129 W w; 212 W w;
130 int events; 213 int events;
131} ANPENDING; 214} ANPENDING;
132 215
133#ifdef EV_MULTIPLICITY 216#if EV_MULTIPLICITY
217
134struct ev_loop 218struct ev_loop
135{ 219{
136# define VAR(name,decl) decl 220# define VAR(name,decl) decl;
137# include "ev_vars.h" 221# include "ev_vars.h"
138}; 222};
223# undef VAR
224# include "ev_wrap.h"
225
139#else 226#else
227
140# define VAR(name,decl) static decl 228# define VAR(name,decl) static decl;
141# include "ev_vars.h" 229# include "ev_vars.h"
142#endif
143#undef VAR 230# undef VAR
231
232#endif
144 233
145/*****************************************************************************/ 234/*****************************************************************************/
146 235
147inline ev_tstamp 236inline ev_tstamp
148ev_time (void) 237ev_time (void)
179 return rt_now; 268 return rt_now;
180} 269}
181 270
182#define array_roundsize(base,n) ((n) | 4 & ~3) 271#define array_roundsize(base,n) ((n) | 4 & ~3)
183 272
184#define array_needsize(base,cur,cnt,init) \ 273#define array_needsize(base,cur,cnt,init) \
185 if (expect_false ((cnt) > cur)) \ 274 if (expect_false ((cnt) > cur)) \
186 { \ 275 { \
187 int newcnt = cur; \ 276 int newcnt = cur; \
188 do \ 277 do \
189 { \ 278 { \
190 newcnt = array_roundsize (base, newcnt << 1); \ 279 newcnt = array_roundsize (base, newcnt << 1); \
191 } \ 280 } \
192 while ((cnt) > newcnt); \ 281 while ((cnt) > newcnt); \
193 \ 282 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \ 283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
195 init (base + cur, newcnt - cur); \ 284 init (base + cur, newcnt - cur); \
196 cur = newcnt; \ 285 cur = newcnt; \
197 } 286 }
287
288#define array_slim(stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 }
295
296#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
198 298
199/*****************************************************************************/ 299/*****************************************************************************/
200 300
201static void 301static void
202anfds_init (ANFD *base, int count) 302anfds_init (ANFD *base, int count)
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 368 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269 events |= w->events; 369 events |= w->events;
270 370
271 anfd->reify = 0; 371 anfd->reify = 0;
272 372
273 if (anfd->events != events)
274 {
275 method_modify (EV_A_ fd, anfd->events, events); 373 method_modify (EV_A_ fd, anfd->events, events);
276 anfd->events = events; 374 anfd->events = events;
277 }
278 } 375 }
279 376
280 fdchangecnt = 0; 377 fdchangecnt = 0;
281} 378}
282 379
319 416
320/* called on ENOMEM in select/poll to kill some fds and retry */ 417/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 418static void
322fd_enomem (EV_P) 419fd_enomem (EV_P)
323{ 420{
324 int fd = anfdmax; 421 int fd;
325 422
326 while (fd--) 423 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 424 if (anfds [fd].events)
328 { 425 {
329 close (fd);
330 fd_kill (EV_A_ fd); 426 fd_kill (EV_A_ fd);
331 return; 427 return;
332 } 428 }
333} 429}
334 430
431/* susually called after fork if method needs to re-arm all fds from scratch */
432static void
433fd_rearm_all (EV_P)
434{
435 int fd;
436
437 /* this should be highly optimised to not do anything but set a flag */
438 for (fd = 0; fd < anfdmax; ++fd)
439 if (anfds [fd].events)
440 {
441 anfds [fd].events = 0;
442 fd_change (EV_A_ fd);
443 }
444}
445
335/*****************************************************************************/ 446/*****************************************************************************/
336 447
337static void 448static void
338upheap (WT *timers, int k) 449upheap (WT *heap, int k)
339{ 450{
340 WT w = timers [k]; 451 WT w = heap [k];
341 452
342 while (k && timers [k >> 1]->at > w->at) 453 while (k && heap [k >> 1]->at > w->at)
343 { 454 {
344 timers [k] = timers [k >> 1]; 455 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 456 ((W)heap [k])->active = k + 1;
346 k >>= 1; 457 k >>= 1;
347 } 458 }
348 459
349 timers [k] = w; 460 heap [k] = w;
350 timers [k]->active = k + 1; 461 ((W)heap [k])->active = k + 1;
351 462
352} 463}
353 464
354static void 465static void
355downheap (WT *timers, int N, int k) 466downheap (WT *heap, int N, int k)
356{ 467{
357 WT w = timers [k]; 468 WT w = heap [k];
358 469
359 while (k < (N >> 1)) 470 while (k < (N >> 1))
360 { 471 {
361 int j = k << 1; 472 int j = k << 1;
362 473
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 474 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 475 ++j;
365 476
366 if (w->at <= timers [j]->at) 477 if (w->at <= heap [j]->at)
367 break; 478 break;
368 479
369 timers [k] = timers [j]; 480 heap [k] = heap [j];
370 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
371 k = j; 482 k = j;
372 } 483 }
373 484
374 timers [k] = w; 485 heap [k] = w;
375 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
376} 487}
377 488
378/*****************************************************************************/ 489/*****************************************************************************/
379 490
380typedef struct 491typedef struct
381{ 492{
382 struct ev_watcher_list *head; 493 WL head;
383 sig_atomic_t volatile gotsig; 494 sig_atomic_t volatile gotsig;
384} ANSIG; 495} ANSIG;
385 496
386static ANSIG *signals; 497static ANSIG *signals;
387static int signalmax; 498static int signalmax;
388 499
389static int sigpipe [2]; 500static int sigpipe [2];
390static sig_atomic_t volatile gotsig; 501static sig_atomic_t volatile gotsig;
502static struct ev_io sigev;
391 503
392static void 504static void
393signals_init (ANSIG *base, int count) 505signals_init (ANSIG *base, int count)
394{ 506{
395 while (count--) 507 while (count--)
402} 514}
403 515
404static void 516static void
405sighandler (int signum) 517sighandler (int signum)
406{ 518{
519#if WIN32
520 signal (signum, sighandler);
521#endif
522
407 signals [signum - 1].gotsig = 1; 523 signals [signum - 1].gotsig = 1;
408 524
409 if (!gotsig) 525 if (!gotsig)
410 { 526 {
411 int old_errno = errno; 527 int old_errno = errno;
416} 532}
417 533
418static void 534static void
419sigcb (EV_P_ struct ev_io *iow, int revents) 535sigcb (EV_P_ struct ev_io *iow, int revents)
420{ 536{
421 struct ev_watcher_list *w; 537 WL w;
422 int signum; 538 int signum;
423 539
424 read (sigpipe [0], &revents, 1); 540 read (sigpipe [0], &revents, 1);
425 gotsig = 0; 541 gotsig = 0;
426 542
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 561 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 562 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif 563#endif
448 564
449 ev_io_set (&sigev, sigpipe [0], EV_READ); 565 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev); 566 ev_io_start (EV_A_ &sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */ 567 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 568}
453 569
454/*****************************************************************************/ 570/*****************************************************************************/
455 571
456#ifndef WIN32 572#ifndef WIN32
573
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev;
457 576
458#ifndef WCONTINUED 577#ifndef WCONTINUED
459# define WCONTINUED 0 578# define WCONTINUED 0
460#endif 579#endif
461 580
465 struct ev_child *w; 584 struct ev_child *w;
466 585
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 586 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid) 587 if (w->pid == pid || !w->pid)
469 { 588 {
470 w->priority = sw->priority; /* need to do it *now* */ 589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
471 w->rpid = pid; 590 w->rpid = pid;
472 w->rstatus = status; 591 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD); 592 event (EV_A_ (W)w, EV_CHILD);
474 } 593 }
475} 594}
476 595
477static void 596static void
497# include "ev_kqueue.c" 616# include "ev_kqueue.c"
498#endif 617#endif
499#if EV_USE_EPOLL 618#if EV_USE_EPOLL
500# include "ev_epoll.c" 619# include "ev_epoll.c"
501#endif 620#endif
502#if EV_USEV_POLL 621#if EV_USE_POLL
503# include "ev_poll.c" 622# include "ev_poll.c"
504#endif 623#endif
505#if EV_USE_SELECT 624#if EV_USE_SELECT
506# include "ev_select.c" 625# include "ev_select.c"
507#endif 626#endif
534ev_method (EV_P) 653ev_method (EV_P)
535{ 654{
536 return method; 655 return method;
537} 656}
538 657
539int 658static void
540ev_init (EV_P_ int methods) 659loop_init (EV_P_ int methods)
541{ 660{
542#ifdef EV_MULTIPLICITY
543 memset (loop, 0, sizeof (struct ev_loop));
544#endif
545
546 if (!method) 661 if (!method)
547 { 662 {
548#if EV_USE_MONOTONIC 663#if EV_USE_MONOTONIC
549 { 664 {
550 struct timespec ts; 665 struct timespec ts;
554#endif 669#endif
555 670
556 rt_now = ev_time (); 671 rt_now = ev_time ();
557 mn_now = get_clock (); 672 mn_now = get_clock ();
558 now_floor = mn_now; 673 now_floor = mn_now;
559 diff = rt_now - mn_now; 674 rtmn_diff = rt_now - mn_now;
560
561 if (pipe (sigpipe))
562 return 0;
563 675
564 if (methods == EVMETHOD_AUTO) 676 if (methods == EVMETHOD_AUTO)
565 if (!enable_secure () && getenv ("LIBmethodS")) 677 if (!enable_secure () && getenv ("LIBEV_METHODS"))
566 methods = atoi (getenv ("LIBmethodS")); 678 methods = atoi (getenv ("LIBEV_METHODS"));
567 else 679 else
568 methods = EVMETHOD_ANY; 680 methods = EVMETHOD_ANY;
569 681
570 method = 0; 682 method = 0;
683#if EV_USE_WIN32
684 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
685#endif
571#if EV_USE_KQUEUE 686#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 687 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573#endif 688#endif
574#if EV_USE_EPOLL 689#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 690 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
576#endif 691#endif
577#if EV_USEV_POLL 692#if EV_USE_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
579#endif 694#endif
580#if EV_USE_SELECT 695#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582#endif 697#endif
698 }
699}
583 700
701void
702loop_destroy (EV_P)
703{
704 int i;
705
706#if EV_USE_WIN32
707 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
708#endif
709#if EV_USE_KQUEUE
710 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
711#endif
712#if EV_USE_EPOLL
713 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
714#endif
715#if EV_USE_POLL
716 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
717#endif
718#if EV_USE_SELECT
719 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
720#endif
721
722 for (i = NUMPRI; i--; )
723 array_free (pending, [i]);
724
725 array_free (fdchange, );
726 array_free (timer, );
727 array_free (periodic, );
728 array_free (idle, );
729 array_free (prepare, );
730 array_free (check, );
731
732 method = 0;
733 /*TODO*/
734}
735
736void
737loop_fork (EV_P)
738{
739 /*TODO*/
740#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif
743#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif
746}
747
748#if EV_MULTIPLICITY
749struct ev_loop *
750ev_loop_new (int methods)
751{
752 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
753
754 memset (loop, 0, sizeof (struct ev_loop));
755
756 loop_init (EV_A_ methods);
757
758 if (ev_method (EV_A))
759 return loop;
760
761 return 0;
762}
763
764void
765ev_loop_destroy (EV_P)
766{
767 loop_destroy (EV_A);
768 ev_free (loop);
769}
770
771void
772ev_loop_fork (EV_P)
773{
774 loop_fork (EV_A);
775}
776
777#endif
778
779#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop *
784#else
785static int default_loop;
786
787int
788#endif
789ev_default_loop (int methods)
790{
791 if (sigpipe [0] == sigpipe [1])
792 if (pipe (sigpipe))
793 return 0;
794
795 if (!default_loop)
796 {
797#if EV_MULTIPLICITY
798 struct ev_loop *loop = default_loop = &default_loop_struct;
799#else
800 default_loop = 1;
801#endif
802
803 loop_init (EV_A_ methods);
804
584 if (method) 805 if (ev_method (EV_A))
585 { 806 {
586 ev_watcher_init (&sigev, sigcb); 807 ev_watcher_init (&sigev, sigcb);
587 ev_set_priority (&sigev, EV_MAXPRI); 808 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A); 809 siginit (EV_A);
589 810
592 ev_set_priority (&childev, EV_MAXPRI); 813 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 814 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 816#endif
596 } 817 }
818 else
819 default_loop = 0;
597 } 820 }
598 821
599 return method; 822 return default_loop;
600} 823}
601 824
602/*****************************************************************************/
603
604void 825void
605ev_fork_prepare (void) 826ev_default_destroy (void)
606{ 827{
607 /* nop */ 828#if EV_MULTIPLICITY
608} 829 struct ev_loop *loop = default_loop;
609
610void
611ev_fork_parent (void)
612{
613 /* nop */
614}
615
616void
617ev_fork_child (void)
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif 830#endif
623 831
832 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev);
834
835 ev_ref (EV_A); /* signal watcher */
624 ev_io_stop (&sigev); 836 ev_io_stop (EV_A_ &sigev);
837
838 close (sigpipe [0]); sigpipe [0] = 0;
839 close (sigpipe [1]); sigpipe [1] = 0;
840
841 loop_destroy (EV_A);
842}
843
844void
845ev_default_fork (void)
846{
847#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop;
849#endif
850
851 loop_fork (EV_A);
852
853 ev_io_stop (EV_A_ &sigev);
625 close (sigpipe [0]); 854 close (sigpipe [0]);
626 close (sigpipe [1]); 855 close (sigpipe [1]);
627 pipe (sigpipe); 856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
628 siginit (); 859 siginit (EV_A);
629} 860}
630 861
631/*****************************************************************************/ 862/*****************************************************************************/
632 863
633static void 864static void
649} 880}
650 881
651static void 882static void
652timers_reify (EV_P) 883timers_reify (EV_P)
653{ 884{
654 while (timercnt && timers [0]->at <= mn_now) 885 while (timercnt && ((WT)timers [0])->at <= mn_now)
655 { 886 {
656 struct ev_timer *w = timers [0]; 887 struct ev_timer *w = timers [0];
888
889 assert (("inactive timer on timer heap detected", ev_is_active (w)));
657 890
658 /* first reschedule or stop timer */ 891 /* first reschedule or stop timer */
659 if (w->repeat) 892 if (w->repeat)
660 { 893 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 894 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
662 w->at = mn_now + w->repeat; 895 ((WT)w)->at = mn_now + w->repeat;
663 downheap ((WT *)timers, timercnt, 0); 896 downheap ((WT *)timers, timercnt, 0);
664 } 897 }
665 else 898 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 900
668 event ((W)w, EV_TIMEOUT); 901 event (EV_A_ (W)w, EV_TIMEOUT);
669 } 902 }
670} 903}
671 904
672static void 905static void
673periodics_reify (EV_P) 906periodics_reify (EV_P)
674{ 907{
675 while (periodiccnt && periodics [0]->at <= rt_now) 908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
676 { 909 {
677 struct ev_periodic *w = periodics [0]; 910 struct ev_periodic *w = periodics [0];
911
912 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
678 913
679 /* first reschedule or stop timer */ 914 /* first reschedule or stop timer */
680 if (w->interval) 915 if (w->interval)
681 { 916 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0); 919 downheap ((WT *)periodics, periodiccnt, 0);
685 } 920 }
686 else 921 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688 923
689 event (EV_A_ (W)w, EV_PERIODIC); 924 event (EV_A_ (W)w, EV_PERIODIC);
690 } 925 }
691} 926}
692 927
693static void 928static void
694periodics_reschedule (EV_P_ ev_tstamp diff) 929periodics_reschedule (EV_P)
695{ 930{
696 int i; 931 int i;
697 932
698 /* adjust periodics after time jump */ 933 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i) 934 for (i = 0; i < periodiccnt; ++i)
700 { 935 {
701 struct ev_periodic *w = periodics [i]; 936 struct ev_periodic *w = periodics [i];
702 937
703 if (w->interval) 938 if (w->interval)
704 { 939 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
706 941
707 if (fabs (diff) >= 1e-4) 942 if (fabs (diff) >= 1e-4)
708 { 943 {
709 ev_periodic_stop (EV_A_ w); 944 ev_periodic_stop (EV_A_ w);
710 ev_periodic_start (EV_A_ w); 945 ev_periodic_start (EV_A_ w);
720{ 955{
721 mn_now = get_clock (); 956 mn_now = get_clock ();
722 957
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
724 { 959 {
725 rt_now = mn_now + diff; 960 rt_now = rtmn_diff + mn_now;
726 return 0; 961 return 0;
727 } 962 }
728 else 963 else
729 { 964 {
730 now_floor = mn_now; 965 now_floor = mn_now;
741#if EV_USE_MONOTONIC 976#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 977 if (expect_true (have_monotonic))
743 { 978 {
744 if (time_update_monotonic (EV_A)) 979 if (time_update_monotonic (EV_A))
745 { 980 {
746 ev_tstamp odiff = diff; 981 ev_tstamp odiff = rtmn_diff;
747 982
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 983 for (i = 4; --i; ) /* loop a few times, before making important decisions */
749 { 984 {
750 diff = rt_now - mn_now; 985 rtmn_diff = rt_now - mn_now;
751 986
752 if (fabs (odiff - diff) < MIN_TIMEJUMP) 987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
753 return; /* all is well */ 988 return; /* all is well */
754 989
755 rt_now = ev_time (); 990 rt_now = ev_time ();
756 mn_now = get_clock (); 991 mn_now = get_clock ();
757 now_floor = mn_now; 992 now_floor = mn_now;
758 } 993 }
759 994
760 periodics_reschedule (EV_A_ diff - odiff); 995 periodics_reschedule (EV_A);
761 /* no timer adjustment, as the monotonic clock doesn't jump */ 996 /* no timer adjustment, as the monotonic clock doesn't jump */
997 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
762 } 998 }
763 } 999 }
764 else 1000 else
765#endif 1001#endif
766 { 1002 {
767 rt_now = ev_time (); 1003 rt_now = ev_time ();
768 1004
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
770 { 1006 {
771 periodics_reschedule (EV_A_ rt_now - mn_now); 1007 periodics_reschedule (EV_A);
772 1008
773 /* adjust timers. this is easy, as the offset is the same for all */ 1009 /* adjust timers. this is easy, as the offset is the same for all */
774 for (i = 0; i < timercnt; ++i) 1010 for (i = 0; i < timercnt; ++i)
775 timers [i]->at += diff; 1011 ((WT)timers [i])->at += rt_now - mn_now;
776 } 1012 }
777 1013
778 mn_now = rt_now; 1014 mn_now = rt_now;
779 } 1015 }
780} 1016}
831 { 1067 {
832 block = MAX_BLOCKTIME; 1068 block = MAX_BLOCKTIME;
833 1069
834 if (timercnt) 1070 if (timercnt)
835 { 1071 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1072 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
837 if (block > to) block = to; 1073 if (block > to) block = to;
838 } 1074 }
839 1075
840 if (periodiccnt) 1076 if (periodiccnt)
841 { 1077 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
843 if (block > to) block = to; 1079 if (block > to) block = to;
844 } 1080 }
845 1081
846 if (block < 0.) block = 0.; 1082 if (block < 0.) block = 0.;
847 } 1083 }
964ev_timer_start (EV_P_ struct ev_timer *w) 1200ev_timer_start (EV_P_ struct ev_timer *w)
965{ 1201{
966 if (ev_is_active (w)) 1202 if (ev_is_active (w))
967 return; 1203 return;
968 1204
969 w->at += mn_now; 1205 ((WT)w)->at += mn_now;
970 1206
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 1208
973 ev_start (EV_A_ (W)w, ++timercnt); 1209 ev_start (EV_A_ (W)w, ++timercnt);
974 array_needsize (timers, timermax, timercnt, ); 1210 array_needsize (timers, timermax, timercnt, );
975 timers [timercnt - 1] = w; 1211 timers [timercnt - 1] = w;
976 upheap ((WT *)timers, timercnt - 1); 1212 upheap ((WT *)timers, timercnt - 1);
1213
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
977} 1215}
978 1216
979void 1217void
980ev_timer_stop (EV_P_ struct ev_timer *w) 1218ev_timer_stop (EV_P_ struct ev_timer *w)
981{ 1219{
982 ev_clear_pending (EV_A_ (W)w); 1220 ev_clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 1221 if (!ev_is_active (w))
984 return; 1222 return;
985 1223
1224 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1225
986 if (w->active < timercnt--) 1226 if (((W)w)->active < timercnt--)
987 { 1227 {
988 timers [w->active - 1] = timers [timercnt]; 1228 timers [((W)w)->active - 1] = timers [timercnt];
989 downheap ((WT *)timers, timercnt, w->active - 1); 1229 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
990 } 1230 }
991 1231
992 w->at = w->repeat; 1232 ((WT)w)->at = w->repeat;
993 1233
994 ev_stop (EV_A_ (W)w); 1234 ev_stop (EV_A_ (W)w);
995} 1235}
996 1236
997void 1237void
999{ 1239{
1000 if (ev_is_active (w)) 1240 if (ev_is_active (w))
1001 { 1241 {
1002 if (w->repeat) 1242 if (w->repeat)
1003 { 1243 {
1004 w->at = mn_now + w->repeat; 1244 ((WT)w)->at = mn_now + w->repeat;
1005 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1006 } 1246 }
1007 else 1247 else
1008 ev_timer_stop (EV_A_ w); 1248 ev_timer_stop (EV_A_ w);
1009 } 1249 }
1010 else if (w->repeat) 1250 else if (w->repeat)
1019 1259
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1021 1261
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 1262 /* this formula differs from the one in periodic_reify because we do not always round up */
1023 if (w->interval) 1263 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1025 1265
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 1266 ev_start (EV_A_ (W)w, ++periodiccnt);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 1267 array_needsize (periodics, periodicmax, periodiccnt, );
1028 periodics [periodiccnt - 1] = w; 1268 periodics [periodiccnt - 1] = w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 1269 upheap ((WT *)periodics, periodiccnt - 1);
1270
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1030} 1272}
1031 1273
1032void 1274void
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 1275ev_periodic_stop (EV_P_ struct ev_periodic *w)
1034{ 1276{
1035 ev_clear_pending (EV_A_ (W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1037 return; 1279 return;
1038 1280
1281 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1282
1039 if (w->active < periodiccnt--) 1283 if (((W)w)->active < periodiccnt--)
1040 { 1284 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 1285 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1286 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1043 } 1287 }
1044 1288
1289 ev_stop (EV_A_ (W)w);
1290}
1291
1292void
1293ev_idle_start (EV_P_ struct ev_idle *w)
1294{
1295 if (ev_is_active (w))
1296 return;
1297
1298 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, );
1300 idles [idlecnt - 1] = w;
1301}
1302
1303void
1304ev_idle_stop (EV_P_ struct ev_idle *w)
1305{
1306 ev_clear_pending (EV_A_ (W)w);
1307 if (ev_is_active (w))
1308 return;
1309
1310 idles [((W)w)->active - 1] = idles [--idlecnt];
1311 ev_stop (EV_A_ (W)w);
1312}
1313
1314void
1315ev_prepare_start (EV_P_ struct ev_prepare *w)
1316{
1317 if (ev_is_active (w))
1318 return;
1319
1320 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, );
1322 prepares [preparecnt - 1] = w;
1323}
1324
1325void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w)
1327{
1328 ev_clear_pending (EV_A_ (W)w);
1329 if (ev_is_active (w))
1330 return;
1331
1332 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1333 ev_stop (EV_A_ (W)w);
1334}
1335
1336void
1337ev_check_start (EV_P_ struct ev_check *w)
1338{
1339 if (ev_is_active (w))
1340 return;
1341
1342 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, );
1344 checks [checkcnt - 1] = w;
1345}
1346
1347void
1348ev_check_stop (EV_P_ struct ev_check *w)
1349{
1350 ev_clear_pending (EV_A_ (W)w);
1351 if (ev_is_active (w))
1352 return;
1353
1354 checks [((W)w)->active - 1] = checks [--checkcnt];
1045 ev_stop (EV_A_ (W)w); 1355 ev_stop (EV_A_ (W)w);
1046} 1356}
1047 1357
1048#ifndef SA_RESTART 1358#ifndef SA_RESTART
1049# define SA_RESTART 0 1359# define SA_RESTART 0
1050#endif 1360#endif
1051 1361
1052void 1362void
1053ev_signal_start (EV_P_ struct ev_signal *w) 1363ev_signal_start (EV_P_ struct ev_signal *w)
1054{ 1364{
1365#if EV_MULTIPLICITY
1366 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1367#endif
1055 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1056 return; 1369 return;
1057 1370
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1059 1372
1060 ev_start (EV_A_ (W)w, 1); 1373 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init); 1374 array_needsize (signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1063 1376
1064 if (!w->next) 1377 if (!((WL)w)->next)
1065 { 1378 {
1379#if WIN32
1380 signal (w->signum, sighandler);
1381#else
1066 struct sigaction sa; 1382 struct sigaction sa;
1067 sa.sa_handler = sighandler; 1383 sa.sa_handler = sighandler;
1068 sigfillset (&sa.sa_mask); 1384 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 1386 sigaction (w->signum, &sa, 0);
1387#endif
1071 } 1388 }
1072} 1389}
1073 1390
1074void 1391void
1075ev_signal_stop (EV_P_ struct ev_signal *w) 1392ev_signal_stop (EV_P_ struct ev_signal *w)
1084 if (!signals [w->signum - 1].head) 1401 if (!signals [w->signum - 1].head)
1085 signal (w->signum, SIG_DFL); 1402 signal (w->signum, SIG_DFL);
1086} 1403}
1087 1404
1088void 1405void
1089ev_idle_start (EV_P_ struct ev_idle *w)
1090{
1091 if (ev_is_active (w))
1092 return;
1093
1094 ev_start (EV_A_ (W)w, ++idlecnt);
1095 array_needsize (idles, idlemax, idlecnt, );
1096 idles [idlecnt - 1] = w;
1097}
1098
1099void
1100ev_idle_stop (EV_P_ struct ev_idle *w)
1101{
1102 ev_clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w))
1104 return;
1105
1106 idles [w->active - 1] = idles [--idlecnt];
1107 ev_stop (EV_A_ (W)w);
1108}
1109
1110void
1111ev_prepare_start (EV_P_ struct ev_prepare *w)
1112{
1113 if (ev_is_active (w))
1114 return;
1115
1116 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, );
1118 prepares [preparecnt - 1] = w;
1119}
1120
1121void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w)
1123{
1124 ev_clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w))
1126 return;
1127
1128 prepares [w->active - 1] = prepares [--preparecnt];
1129 ev_stop (EV_A_ (W)w);
1130}
1131
1132void
1133ev_check_start (EV_P_ struct ev_check *w)
1134{
1135 if (ev_is_active (w))
1136 return;
1137
1138 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, );
1140 checks [checkcnt - 1] = w;
1141}
1142
1143void
1144ev_check_stop (EV_P_ struct ev_check *w)
1145{
1146 ev_clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w))
1148 return;
1149
1150 checks [w->active - 1] = checks [--checkcnt];
1151 ev_stop (EV_A_ (W)w);
1152}
1153
1154void
1155ev_child_start (EV_P_ struct ev_child *w) 1406ev_child_start (EV_P_ struct ev_child *w)
1156{ 1407{
1408#if EV_MULTIPLICITY
1409 assert (("child watchers are only supported in the default loop", loop == default_loop));
1410#endif
1157 if (ev_is_active (w)) 1411 if (ev_is_active (w))
1158 return; 1412 return;
1159 1413
1160 ev_start (EV_A_ (W)w, 1); 1414 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1415 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1188 void (*cb)(int revents, void *arg) = once->cb; 1442 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 1443 void *arg = once->arg;
1190 1444
1191 ev_io_stop (EV_A_ &once->io); 1445 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 1446 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 1447 ev_free (once);
1194 1448
1195 cb (revents, arg); 1449 cb (revents, arg);
1196} 1450}
1197 1451
1198static void 1452static void
1208} 1462}
1209 1463
1210void 1464void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 1466{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1214 1468
1215 if (!once) 1469 if (!once)
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1217 else 1471 else
1218 { 1472 {
1233 ev_timer_start (EV_A_ &once->to); 1487 ev_timer_start (EV_A_ &once->to);
1234 } 1488 }
1235 } 1489 }
1236} 1490}
1237 1491
1238/*****************************************************************************/
1239
1240#if 0
1241
1242struct ev_io wio;
1243
1244static void
1245sin_cb (struct ev_io *w, int revents)
1246{
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1248}
1249
1250static void
1251ocb (struct ev_timer *w, int revents)
1252{
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1254 ev_timer_stop (w);
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 {
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif
1294
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314}
1315
1316#endif
1317
1318
1319
1320

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines