ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.88 by root, Sat Nov 10 04:40:27 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
113 155
114typedef struct ev_watcher *W; 156typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
161
162#include "ev_win32.c"
163
118/*****************************************************************************/ 164/*****************************************************************************/
119 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
120typedef struct 214typedef struct
121{ 215{
122 struct ev_watcher_list *head; 216 WL head;
123 unsigned char events; 217 unsigned char events;
124 unsigned char reify; 218 unsigned char reify;
125} ANFD; 219} ANFD;
126 220
127typedef struct 221typedef struct
128{ 222{
129 W w; 223 W w;
130 int events; 224 int events;
131} ANPENDING; 225} ANPENDING;
132 226
133#ifdef EV_MULTIPLICITY 227#if EV_MULTIPLICITY
228
134struct ev_loop 229 struct ev_loop
135{ 230 {
231 ev_tstamp ev_rt_now;
136# define VAR(name,decl) decl 232 #define VAR(name,decl) decl;
137# include "ev_vars.h" 233 #include "ev_vars.h"
138}; 234 #undef VAR
235 };
236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
240
139#else 241#else
242
243 ev_tstamp ev_rt_now;
140# define VAR(name,decl) static decl 244 #define VAR(name,decl) static decl;
141# include "ev_vars.h" 245 #include "ev_vars.h"
142#endif
143#undef VAR 246 #undef VAR
247
248 static int default_loop;
249
250#endif
144 251
145/*****************************************************************************/ 252/*****************************************************************************/
146 253
147inline ev_tstamp 254inline ev_tstamp
148ev_time (void) 255ev_time (void)
171#endif 278#endif
172 279
173 return ev_time (); 280 return ev_time ();
174} 281}
175 282
283#if EV_MULTIPLICITY
176ev_tstamp 284ev_tstamp
177ev_now (EV_P) 285ev_now (EV_P)
178{ 286{
179 return rt_now; 287 return ev_rt_now;
180} 288}
289#endif
181 290
182#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
183 292
184#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
185 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
186 { \ 295 { \
187 int newcnt = cur; \ 296 int newcnt = cur; \
188 do \ 297 do \
189 { \ 298 { \
190 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
191 } \ 300 } \
192 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
193 \ 302 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
195 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
196 cur = newcnt; \ 305 cur = newcnt; \
197 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
198 323
199/*****************************************************************************/ 324/*****************************************************************************/
200 325
201static void 326static void
202anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
209 334
210 ++base; 335 ++base;
211 } 336 }
212} 337}
213 338
214static void 339void
215event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
216{ 341{
342 W w_ = (W)w;
343
217 if (w->pending) 344 if (w_->pending)
218 { 345 {
219 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
220 return; 347 return;
221 } 348 }
222 349
223 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
224 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
225 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
226 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
227} 354}
228 355
229static void 356static void
230queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
231{ 358{
232 int i; 359 int i;
233 360
234 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
235 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
236} 363}
237 364
238static void 365inline void
239fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
240{ 367{
241 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
242 struct ev_io *w; 369 struct ev_io *w;
243 370
244 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
245 { 372 {
246 int ev = w->events & events; 373 int ev = w->events & revents;
247 374
248 if (ev) 375 if (ev)
249 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
250 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
251} 384}
252 385
253/*****************************************************************************/ 386/*****************************************************************************/
254 387
255static void 388static void
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269 events |= w->events; 402 events |= w->events;
270 403
271 anfd->reify = 0; 404 anfd->reify = 0;
272 405
273 if (anfd->events != events)
274 {
275 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
276 anfd->events = events; 407 anfd->events = events;
277 }
278 } 408 }
279 409
280 fdchangecnt = 0; 410 fdchangecnt = 0;
281} 411}
282 412
283static void 413static void
284fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
285{ 415{
286 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
287 return; 417 return;
288 418
289 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
290 420
291 ++fdchangecnt; 421 ++fdchangecnt;
292 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
293 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
294} 424}
295 425
296static void 426static void
297fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
299 struct ev_io *w; 429 struct ev_io *w;
300 430
301 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
302 { 432 {
303 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
304 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
306} 446}
307 447
308/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
309static void 449static void
310fd_ebadf (EV_P) 450fd_ebadf (EV_P)
311{ 451{
312 int fd; 452 int fd;
313 453
314 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 455 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
318} 458}
319 459
320/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 461static void
322fd_enomem (EV_P) 462fd_enomem (EV_P)
323{ 463{
324 int fd = anfdmax; 464 int fd;
325 465
326 while (fd--) 466 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 467 if (anfds [fd].events)
328 { 468 {
329 close (fd);
330 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
331 return; 470 return;
332 } 471 }
333} 472}
334 473
474/* usually called after fork if method needs to re-arm all fds from scratch */
475static void
476fd_rearm_all (EV_P)
477{
478 int fd;
479
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events)
483 {
484 anfds [fd].events = 0;
485 fd_change (EV_A_ fd);
486 }
487}
488
335/*****************************************************************************/ 489/*****************************************************************************/
336 490
337static void 491static void
338upheap (WT *timers, int k) 492upheap (WT *heap, int k)
339{ 493{
340 WT w = timers [k]; 494 WT w = heap [k];
341 495
342 while (k && timers [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
343 { 497 {
344 timers [k] = timers [k >> 1]; 498 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
346 k >>= 1; 500 k >>= 1;
347 } 501 }
348 502
349 timers [k] = w; 503 heap [k] = w;
350 timers [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
351 505
352} 506}
353 507
354static void 508static void
355downheap (WT *timers, int N, int k) 509downheap (WT *heap, int N, int k)
356{ 510{
357 WT w = timers [k]; 511 WT w = heap [k];
358 512
359 while (k < (N >> 1)) 513 while (k < (N >> 1))
360 { 514 {
361 int j = k << 1; 515 int j = k << 1;
362 516
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 518 ++j;
365 519
366 if (w->at <= timers [j]->at) 520 if (w->at <= heap [j]->at)
367 break; 521 break;
368 522
369 timers [k] = timers [j]; 523 heap [k] = heap [j];
370 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
371 k = j; 525 k = j;
372 } 526 }
373 527
374 timers [k] = w; 528 heap [k] = w;
375 timers [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
376} 542}
377 543
378/*****************************************************************************/ 544/*****************************************************************************/
379 545
380typedef struct 546typedef struct
381{ 547{
382 struct ev_watcher_list *head; 548 WL head;
383 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
384} ANSIG; 550} ANSIG;
385 551
386static ANSIG *signals; 552static ANSIG *signals;
387static int signalmax; 553static int signalmax;
388 554
389static int sigpipe [2]; 555static int sigpipe [2];
390static sig_atomic_t volatile gotsig; 556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
391 558
392static void 559static void
393signals_init (ANSIG *base, int count) 560signals_init (ANSIG *base, int count)
394{ 561{
395 while (count--) 562 while (count--)
402} 569}
403 570
404static void 571static void
405sighandler (int signum) 572sighandler (int signum)
406{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
407 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
408 579
409 if (!gotsig) 580 if (!gotsig)
410 { 581 {
411 int old_errno = errno; 582 int old_errno = errno;
412 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
413 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
414 errno = old_errno; 589 errno = old_errno;
415 } 590 }
416} 591}
417 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
418static void 613static void
419sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
420{ 615{
421 struct ev_watcher_list *w;
422 int signum; 616 int signum;
423 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
424 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
425 gotsig = 0; 623 gotsig = 0;
426 624
427 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
428 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
429 { 627 ev_feed_signal_event (EV_A_ signum + 1);
430 signals [signum].gotsig = 0;
431
432 for (w = signals [signum].head; w; w = w->next)
433 event (EV_A_ (W)w, EV_SIGNAL);
434 }
435} 628}
436 629
437static void 630static void
438siginit (EV_P) 631siginit (EV_P)
439{ 632{
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif 640#endif
448 641
449 ev_io_set (&sigev, sigpipe [0], EV_READ); 642 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev); 643 ev_io_start (EV_A_ &sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 645}
453 646
454/*****************************************************************************/ 647/*****************************************************************************/
455 648
649static struct ev_child *childs [PID_HASHSIZE];
650
456#ifndef WIN32 651#ifndef WIN32
652
653static struct ev_signal childev;
457 654
458#ifndef WCONTINUED 655#ifndef WCONTINUED
459# define WCONTINUED 0 656# define WCONTINUED 0
460#endif 657#endif
461 658
465 struct ev_child *w; 662 struct ev_child *w;
466 663
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
469 { 666 {
470 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
471 w->rpid = pid; 668 w->rpid = pid;
472 w->rstatus = status; 669 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
474 } 671 }
475} 672}
476 673
477static void 674static void
478childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
480 int pid, status; 677 int pid, status;
481 678
482 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483 { 680 {
484 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
485 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
486 683
487 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
488 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
489 } 686 }
490} 687}
497# include "ev_kqueue.c" 694# include "ev_kqueue.c"
498#endif 695#endif
499#if EV_USE_EPOLL 696#if EV_USE_EPOLL
500# include "ev_epoll.c" 697# include "ev_epoll.c"
501#endif 698#endif
502#if EV_USEV_POLL 699#if EV_USE_POLL
503# include "ev_poll.c" 700# include "ev_poll.c"
504#endif 701#endif
505#if EV_USE_SELECT 702#if EV_USE_SELECT
506# include "ev_select.c" 703# include "ev_select.c"
507#endif 704#endif
534ev_method (EV_P) 731ev_method (EV_P)
535{ 732{
536 return method; 733 return method;
537} 734}
538 735
539int 736static void
540ev_init (EV_P_ int methods) 737loop_init (EV_P_ int methods)
541{ 738{
542#ifdef EV_MULTIPLICITY
543 memset (loop, 0, sizeof (struct ev_loop));
544#endif
545
546 if (!method) 739 if (!method)
547 { 740 {
548#if EV_USE_MONOTONIC 741#if EV_USE_MONOTONIC
549 { 742 {
550 struct timespec ts; 743 struct timespec ts;
551 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552 have_monotonic = 1; 745 have_monotonic = 1;
553 } 746 }
554#endif 747#endif
555 748
556 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
557 mn_now = get_clock (); 750 mn_now = get_clock ();
558 now_floor = mn_now; 751 now_floor = mn_now;
559 diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
560
561 if (pipe (sigpipe))
562 return 0;
563 753
564 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
565 if (!enable_secure () && getenv ("LIBmethodS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
566 methods = atoi (getenv ("LIBmethodS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
567 else 757 else
568 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
569 759
570 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
571#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573#endif 766#endif
574#if EV_USE_EPOLL 767#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
576#endif 769#endif
577#if EV_USEV_POLL 770#if EV_USE_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
579#endif 772#endif
580#if EV_USE_SELECT 773#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582#endif 775#endif
583 776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif
802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
814 method = 0;
815}
816
817static void
818loop_fork (EV_P)
819{
820#if EV_USE_EPOLL
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843}
844
845#if EV_MULTIPLICITY
846struct ev_loop *
847ev_loop_new (int methods)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else
879int
880#endif
881ev_default_loop (int methods)
882{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop)
888 {
889#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct;
891#else
892 default_loop = 1;
893#endif
894
895 loop_init (EV_A_ methods);
896
584 if (method) 897 if (ev_method (EV_A))
585 { 898 {
586 ev_watcher_init (&sigev, sigcb);
587 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A); 899 siginit (EV_A);
589 900
590#ifndef WIN32 901#ifndef WIN32
591 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
592 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 904 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 905 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 906#endif
596 } 907 }
908 else
909 default_loop = 0;
597 } 910 }
598 911
599 return method; 912 return default_loop;
913}
914
915void
916ev_default_destroy (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934}
935
936void
937ev_default_fork (void)
938{
939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1;
600} 945}
601 946
602/*****************************************************************************/ 947/*****************************************************************************/
603 948
604void 949static int
605ev_fork_prepare (void) 950any_pending (EV_P)
606{ 951{
607 /* nop */ 952 int pri;
608}
609 953
610void 954 for (pri = NUMPRI; pri--; )
611ev_fork_parent (void) 955 if (pendingcnt [pri])
612{ 956 return 1;
613 /* nop */
614}
615 957
616void 958 return 0;
617ev_fork_child (void)
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif
623
624 ev_io_stop (&sigev);
625 close (sigpipe [0]);
626 close (sigpipe [1]);
627 pipe (sigpipe);
628 siginit ();
629} 959}
630
631/*****************************************************************************/
632 960
633static void 961static void
634call_pending (EV_P) 962call_pending (EV_P)
635{ 963{
636 int pri; 964 int pri;
641 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642 970
643 if (p->w) 971 if (p->w)
644 { 972 {
645 p->w->pending = 0; 973 p->w->pending = 0;
646 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
647 } 975 }
648 } 976 }
649} 977}
650 978
651static void 979static void
652timers_reify (EV_P) 980timers_reify (EV_P)
653{ 981{
654 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
655 { 983 {
656 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
657 987
658 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
659 if (w->repeat) 989 if (w->repeat)
660 { 990 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
662 w->at = mn_now + w->repeat; 992 ((WT)w)->at = mn_now + w->repeat;
663 downheap ((WT *)timers, timercnt, 0); 993 downheap ((WT *)timers, timercnt, 0);
664 } 994 }
665 else 995 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 997
668 event ((W)w, EV_TIMEOUT); 998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
669 } 999 }
670} 1000}
671 1001
672static void 1002static void
673periodics_reify (EV_P) 1003periodics_reify (EV_P)
674{ 1004{
675 while (periodiccnt && periodics [0]->at <= rt_now) 1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
676 { 1006 {
677 struct ev_periodic *w = periodics [0]; 1007 struct ev_periodic *w = periodics [0];
678 1008
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1010
679 /* first reschedule or stop timer */ 1011 /* first reschedule or stop timer */
680 if (w->interval) 1012 if (w->reschedule_cb)
681 { 1013 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1015
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 }
1019 else if (w->interval)
1020 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0); 1023 downheap ((WT *)periodics, periodiccnt, 0);
685 } 1024 }
686 else 1025 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688 1027
689 event (EV_A_ (W)w, EV_PERIODIC); 1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
690 } 1029 }
691} 1030}
692 1031
693static void 1032static void
694periodics_reschedule (EV_P_ ev_tstamp diff) 1033periodics_reschedule (EV_P)
695{ 1034{
696 int i; 1035 int i;
697 1036
698 /* adjust periodics after time jump */ 1037 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i) 1038 for (i = 0; i < periodiccnt; ++i)
700 { 1039 {
701 struct ev_periodic *w = periodics [i]; 1040 struct ev_periodic *w = periodics [i];
702 1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
703 if (w->interval) 1044 else if (w->interval)
704 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
706
707 if (fabs (diff) >= 1e-4)
708 {
709 ev_periodic_stop (EV_A_ w);
710 ev_periodic_start (EV_A_ w);
711
712 i = 0; /* restart loop, inefficient, but time jumps should be rare */
713 }
714 }
715 } 1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
716} 1051}
717 1052
718inline int 1053inline int
719time_update_monotonic (EV_P) 1054time_update_monotonic (EV_P)
720{ 1055{
721 mn_now = get_clock (); 1056 mn_now = get_clock ();
722 1057
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
724 { 1059 {
725 rt_now = mn_now + diff; 1060 ev_rt_now = rtmn_diff + mn_now;
726 return 0; 1061 return 0;
727 } 1062 }
728 else 1063 else
729 { 1064 {
730 now_floor = mn_now; 1065 now_floor = mn_now;
731 rt_now = ev_time (); 1066 ev_rt_now = ev_time ();
732 return 1; 1067 return 1;
733 } 1068 }
734} 1069}
735 1070
736static void 1071static void
741#if EV_USE_MONOTONIC 1076#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 1077 if (expect_true (have_monotonic))
743 { 1078 {
744 if (time_update_monotonic (EV_A)) 1079 if (time_update_monotonic (EV_A))
745 { 1080 {
746 ev_tstamp odiff = diff; 1081 ev_tstamp odiff = rtmn_diff;
747 1082
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
749 { 1084 {
750 diff = rt_now - mn_now; 1085 rtmn_diff = ev_rt_now - mn_now;
751 1086
752 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
753 return; /* all is well */ 1088 return; /* all is well */
754 1089
755 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 1091 mn_now = get_clock ();
757 now_floor = mn_now; 1092 now_floor = mn_now;
758 } 1093 }
759 1094
760 periodics_reschedule (EV_A_ diff - odiff); 1095 periodics_reschedule (EV_A);
761 /* no timer adjustment, as the monotonic clock doesn't jump */ 1096 /* no timer adjustment, as the monotonic clock doesn't jump */
1097 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
762 } 1098 }
763 } 1099 }
764 else 1100 else
765#endif 1101#endif
766 { 1102 {
767 rt_now = ev_time (); 1103 ev_rt_now = ev_time ();
768 1104
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
770 { 1106 {
771 periodics_reschedule (EV_A_ rt_now - mn_now); 1107 periodics_reschedule (EV_A);
772 1108
773 /* adjust timers. this is easy, as the offset is the same for all */ 1109 /* adjust timers. this is easy, as the offset is the same for all */
774 for (i = 0; i < timercnt; ++i) 1110 for (i = 0; i < timercnt; ++i)
775 timers [i]->at += diff; 1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
776 } 1112 }
777 1113
778 mn_now = rt_now; 1114 mn_now = ev_rt_now;
779 } 1115 }
780} 1116}
781 1117
782void 1118void
783ev_ref (EV_P) 1119ev_ref (EV_P)
806 { 1142 {
807 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808 call_pending (EV_A); 1144 call_pending (EV_A);
809 } 1145 }
810 1146
1147 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork))
1149 loop_fork (EV_A);
1150
811 /* update fd-related kernel structures */ 1151 /* update fd-related kernel structures */
812 fd_reify (EV_A); 1152 fd_reify (EV_A);
813 1153
814 /* calculate blocking time */ 1154 /* calculate blocking time */
815 1155
816 /* we only need this for !monotonic clockor timers, but as we basically 1156 /* we only need this for !monotonic clock or timers, but as we basically
817 always have timers, we just calculate it always */ 1157 always have timers, we just calculate it always */
818#if EV_USE_MONOTONIC 1158#if EV_USE_MONOTONIC
819 if (expect_true (have_monotonic)) 1159 if (expect_true (have_monotonic))
820 time_update_monotonic (EV_A); 1160 time_update_monotonic (EV_A);
821 else 1161 else
822#endif 1162#endif
823 { 1163 {
824 rt_now = ev_time (); 1164 ev_rt_now = ev_time ();
825 mn_now = rt_now; 1165 mn_now = ev_rt_now;
826 } 1166 }
827 1167
828 if (flags & EVLOOP_NONBLOCK || idlecnt) 1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
829 block = 0.; 1169 block = 0.;
830 else 1170 else
831 { 1171 {
832 block = MAX_BLOCKTIME; 1172 block = MAX_BLOCKTIME;
833 1173
834 if (timercnt) 1174 if (timercnt)
835 { 1175 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
837 if (block > to) block = to; 1177 if (block > to) block = to;
838 } 1178 }
839 1179
840 if (periodiccnt) 1180 if (periodiccnt)
841 { 1181 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
843 if (block > to) block = to; 1183 if (block > to) block = to;
844 } 1184 }
845 1185
846 if (block < 0.) block = 0.; 1186 if (block < 0.) block = 0.;
847 } 1187 }
848 1188
849 method_poll (EV_A_ block); 1189 method_poll (EV_A_ block);
850 1190
851 /* update rt_now, do magic */ 1191 /* update ev_rt_now, do magic */
852 time_update (EV_A); 1192 time_update (EV_A);
853 1193
854 /* queue pending timers and reschedule them */ 1194 /* queue pending timers and reschedule them */
855 timers_reify (EV_A); /* relative timers called last */ 1195 timers_reify (EV_A); /* relative timers called last */
856 periodics_reify (EV_A); /* absolute timers called first */ 1196 periodics_reify (EV_A); /* absolute timers called first */
857 1197
858 /* queue idle watchers unless io or timers are pending */ 1198 /* queue idle watchers unless io or timers are pending */
859 if (!pendingcnt) 1199 if (idlecnt && !any_pending (EV_A))
860 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
861 1201
862 /* queue check watchers, to be executed first */ 1202 /* queue check watchers, to be executed first */
863 if (checkcnt) 1203 if (checkcnt)
864 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
939 return; 1279 return;
940 1280
941 assert (("ev_io_start called with negative fd", fd >= 0)); 1281 assert (("ev_io_start called with negative fd", fd >= 0));
942 1282
943 ev_start (EV_A_ (W)w, 1); 1283 ev_start (EV_A_ (W)w, 1);
944 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
945 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
946 1286
947 fd_change (EV_A_ fd); 1287 fd_change (EV_A_ fd);
948} 1288}
949 1289
964ev_timer_start (EV_P_ struct ev_timer *w) 1304ev_timer_start (EV_P_ struct ev_timer *w)
965{ 1305{
966 if (ev_is_active (w)) 1306 if (ev_is_active (w))
967 return; 1307 return;
968 1308
969 w->at += mn_now; 1309 ((WT)w)->at += mn_now;
970 1310
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1311 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 1312
973 ev_start (EV_A_ (W)w, ++timercnt); 1313 ev_start (EV_A_ (W)w, ++timercnt);
974 array_needsize (timers, timermax, timercnt, ); 1314 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
975 timers [timercnt - 1] = w; 1315 timers [timercnt - 1] = w;
976 upheap ((WT *)timers, timercnt - 1); 1316 upheap ((WT *)timers, timercnt - 1);
1317
1318 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
977} 1319}
978 1320
979void 1321void
980ev_timer_stop (EV_P_ struct ev_timer *w) 1322ev_timer_stop (EV_P_ struct ev_timer *w)
981{ 1323{
982 ev_clear_pending (EV_A_ (W)w); 1324 ev_clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 1325 if (!ev_is_active (w))
984 return; 1326 return;
985 1327
1328 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1329
986 if (w->active < timercnt--) 1330 if (((W)w)->active < timercnt--)
987 { 1331 {
988 timers [w->active - 1] = timers [timercnt]; 1332 timers [((W)w)->active - 1] = timers [timercnt];
989 downheap ((WT *)timers, timercnt, w->active - 1); 1333 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
990 } 1334 }
991 1335
992 w->at = w->repeat; 1336 ((WT)w)->at = w->repeat;
993 1337
994 ev_stop (EV_A_ (W)w); 1338 ev_stop (EV_A_ (W)w);
995} 1339}
996 1340
997void 1341void
998ev_timer_again (EV_P_ struct ev_timer *w) 1342ev_timer_again (EV_P_ struct ev_timer *w)
999{ 1343{
1000 if (ev_is_active (w)) 1344 if (ev_is_active (w))
1001 { 1345 {
1002 if (w->repeat) 1346 if (w->repeat)
1003 {
1004 w->at = mn_now + w->repeat;
1005 downheap ((WT *)timers, timercnt, w->active - 1); 1347 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1006 }
1007 else 1348 else
1008 ev_timer_stop (EV_A_ w); 1349 ev_timer_stop (EV_A_ w);
1009 } 1350 }
1010 else if (w->repeat) 1351 else if (w->repeat)
1011 ev_timer_start (EV_A_ w); 1352 ev_timer_start (EV_A_ w);
1015ev_periodic_start (EV_P_ struct ev_periodic *w) 1356ev_periodic_start (EV_P_ struct ev_periodic *w)
1016{ 1357{
1017 if (ev_is_active (w)) 1358 if (ev_is_active (w))
1018 return; 1359 return;
1019 1360
1361 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval)
1364 {
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1365 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1021
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 1366 /* this formula differs from the one in periodic_reify because we do not always round up */
1023 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1367 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1368 }
1025 1369
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 1370 ev_start (EV_A_ (W)w, ++periodiccnt);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 1371 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1028 periodics [periodiccnt - 1] = w; 1372 periodics [periodiccnt - 1] = w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 1373 upheap ((WT *)periodics, periodiccnt - 1);
1374
1375 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1030} 1376}
1031 1377
1032void 1378void
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 1379ev_periodic_stop (EV_P_ struct ev_periodic *w)
1034{ 1380{
1035 ev_clear_pending (EV_A_ (W)w); 1381 ev_clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 1382 if (!ev_is_active (w))
1037 return; 1383 return;
1038 1384
1385 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1386
1039 if (w->active < periodiccnt--) 1387 if (((W)w)->active < periodiccnt--)
1040 { 1388 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 1389 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1390 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1043 } 1391 }
1044 1392
1393 ev_stop (EV_A_ (W)w);
1394}
1395
1396void
1397ev_periodic_again (EV_P_ struct ev_periodic *w)
1398{
1399 /* TODO: use adjustheap and recalculation */
1400 ev_periodic_stop (EV_A_ w);
1401 ev_periodic_start (EV_A_ w);
1402}
1403
1404void
1405ev_idle_start (EV_P_ struct ev_idle *w)
1406{
1407 if (ev_is_active (w))
1408 return;
1409
1410 ev_start (EV_A_ (W)w, ++idlecnt);
1411 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1412 idles [idlecnt - 1] = w;
1413}
1414
1415void
1416ev_idle_stop (EV_P_ struct ev_idle *w)
1417{
1418 ev_clear_pending (EV_A_ (W)w);
1419 if (ev_is_active (w))
1420 return;
1421
1422 idles [((W)w)->active - 1] = idles [--idlecnt];
1423 ev_stop (EV_A_ (W)w);
1424}
1425
1426void
1427ev_prepare_start (EV_P_ struct ev_prepare *w)
1428{
1429 if (ev_is_active (w))
1430 return;
1431
1432 ev_start (EV_A_ (W)w, ++preparecnt);
1433 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1434 prepares [preparecnt - 1] = w;
1435}
1436
1437void
1438ev_prepare_stop (EV_P_ struct ev_prepare *w)
1439{
1440 ev_clear_pending (EV_A_ (W)w);
1441 if (ev_is_active (w))
1442 return;
1443
1444 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1445 ev_stop (EV_A_ (W)w);
1446}
1447
1448void
1449ev_check_start (EV_P_ struct ev_check *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++checkcnt);
1455 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1456 checks [checkcnt - 1] = w;
1457}
1458
1459void
1460ev_check_stop (EV_P_ struct ev_check *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (ev_is_active (w))
1464 return;
1465
1466 checks [((W)w)->active - 1] = checks [--checkcnt];
1045 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1046} 1468}
1047 1469
1048#ifndef SA_RESTART 1470#ifndef SA_RESTART
1049# define SA_RESTART 0 1471# define SA_RESTART 0
1050#endif 1472#endif
1051 1473
1052void 1474void
1053ev_signal_start (EV_P_ struct ev_signal *w) 1475ev_signal_start (EV_P_ struct ev_signal *w)
1054{ 1476{
1477#if EV_MULTIPLICITY
1478 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1479#endif
1055 if (ev_is_active (w)) 1480 if (ev_is_active (w))
1056 return; 1481 return;
1057 1482
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1483 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1059 1484
1060 ev_start (EV_A_ (W)w, 1); 1485 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init); 1486 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1487 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1063 1488
1064 if (!w->next) 1489 if (!((WL)w)->next)
1065 { 1490 {
1491#if WIN32
1492 signal (w->signum, sighandler);
1493#else
1066 struct sigaction sa; 1494 struct sigaction sa;
1067 sa.sa_handler = sighandler; 1495 sa.sa_handler = sighandler;
1068 sigfillset (&sa.sa_mask); 1496 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1497 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 1498 sigaction (w->signum, &sa, 0);
1499#endif
1071 } 1500 }
1072} 1501}
1073 1502
1074void 1503void
1075ev_signal_stop (EV_P_ struct ev_signal *w) 1504ev_signal_stop (EV_P_ struct ev_signal *w)
1084 if (!signals [w->signum - 1].head) 1513 if (!signals [w->signum - 1].head)
1085 signal (w->signum, SIG_DFL); 1514 signal (w->signum, SIG_DFL);
1086} 1515}
1087 1516
1088void 1517void
1089ev_idle_start (EV_P_ struct ev_idle *w)
1090{
1091 if (ev_is_active (w))
1092 return;
1093
1094 ev_start (EV_A_ (W)w, ++idlecnt);
1095 array_needsize (idles, idlemax, idlecnt, );
1096 idles [idlecnt - 1] = w;
1097}
1098
1099void
1100ev_idle_stop (EV_P_ struct ev_idle *w)
1101{
1102 ev_clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w))
1104 return;
1105
1106 idles [w->active - 1] = idles [--idlecnt];
1107 ev_stop (EV_A_ (W)w);
1108}
1109
1110void
1111ev_prepare_start (EV_P_ struct ev_prepare *w)
1112{
1113 if (ev_is_active (w))
1114 return;
1115
1116 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, );
1118 prepares [preparecnt - 1] = w;
1119}
1120
1121void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w)
1123{
1124 ev_clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w))
1126 return;
1127
1128 prepares [w->active - 1] = prepares [--preparecnt];
1129 ev_stop (EV_A_ (W)w);
1130}
1131
1132void
1133ev_check_start (EV_P_ struct ev_check *w)
1134{
1135 if (ev_is_active (w))
1136 return;
1137
1138 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, );
1140 checks [checkcnt - 1] = w;
1141}
1142
1143void
1144ev_check_stop (EV_P_ struct ev_check *w)
1145{
1146 ev_clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w))
1148 return;
1149
1150 checks [w->active - 1] = checks [--checkcnt];
1151 ev_stop (EV_A_ (W)w);
1152}
1153
1154void
1155ev_child_start (EV_P_ struct ev_child *w) 1518ev_child_start (EV_P_ struct ev_child *w)
1156{ 1519{
1520#if EV_MULTIPLICITY
1521 assert (("child watchers are only supported in the default loop", loop == default_loop));
1522#endif
1157 if (ev_is_active (w)) 1523 if (ev_is_active (w))
1158 return; 1524 return;
1159 1525
1160 ev_start (EV_A_ (W)w, 1); 1526 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1527 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1188 void (*cb)(int revents, void *arg) = once->cb; 1554 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 1555 void *arg = once->arg;
1190 1556
1191 ev_io_stop (EV_A_ &once->io); 1557 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 1558 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 1559 ev_free (once);
1194 1560
1195 cb (revents, arg); 1561 cb (revents, arg);
1196} 1562}
1197 1563
1198static void 1564static void
1208} 1574}
1209 1575
1210void 1576void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1577ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 1578{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 1579 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1214 1580
1215 if (!once) 1581 if (!once)
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1582 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1217 else 1583 else
1218 { 1584 {
1219 once->cb = cb; 1585 once->cb = cb;
1220 once->arg = arg; 1586 once->arg = arg;
1221 1587
1222 ev_watcher_init (&once->io, once_cb_io); 1588 ev_init (&once->io, once_cb_io);
1223 if (fd >= 0) 1589 if (fd >= 0)
1224 { 1590 {
1225 ev_io_set (&once->io, fd, events); 1591 ev_io_set (&once->io, fd, events);
1226 ev_io_start (EV_A_ &once->io); 1592 ev_io_start (EV_A_ &once->io);
1227 } 1593 }
1228 1594
1229 ev_watcher_init (&once->to, once_cb_to); 1595 ev_init (&once->to, once_cb_to);
1230 if (timeout >= 0.) 1596 if (timeout >= 0.)
1231 { 1597 {
1232 ev_timer_set (&once->to, timeout, 0.); 1598 ev_timer_set (&once->to, timeout, 0.);
1233 ev_timer_start (EV_A_ &once->to); 1599 ev_timer_start (EV_A_ &once->to);
1234 } 1600 }
1235 } 1601 }
1236} 1602}
1237 1603
1238/*****************************************************************************/ 1604#ifdef __cplusplus
1239
1240#if 0
1241
1242struct ev_io wio;
1243
1244static void
1245sin_cb (struct ev_io *w, int revents)
1246{
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1248} 1605}
1249
1250static void
1251ocb (struct ev_timer *w, int revents)
1252{
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1254 ev_timer_stop (w);
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 {
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif 1606#endif
1294 1607
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314}
1315
1316#endif
1317
1318
1319
1320

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines