ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC vs.
Revision 1.537 by sf-exg, Sun May 14 19:02:31 2023 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2020 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus 40#pragma clang diagnostic ignored "-Wunused-value"
41extern "C" { 41#pragma clang diagnostic ignored "-Wcomment"
42#endif 42#pragma clang diagnostic ignored "-Wextern-initializer"
43 43
44/* this big block deduces configuration from config.h */ 44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_FLOOR
53# ifndef EV_USE_FLOOR
54# define EV_USE_FLOOR 1
55# endif
50# endif 56# endif
51 57
52# if HAVE_CLOCK_SYSCALL 58# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 59# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 60# define EV_USE_CLOCK_SYSCALL 1
57# endif 63# endif
58# ifndef EV_USE_MONOTONIC 64# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 65# define EV_USE_MONOTONIC 1
60# endif 66# endif
61# endif 67# endif
68# elif !defined EV_USE_CLOCK_SYSCALL
69# define EV_USE_CLOCK_SYSCALL 0
62# endif 70# endif
63 71
64# if HAVE_CLOCK_GETTIME 72# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 73# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 74# define EV_USE_MONOTONIC 1
75# ifndef EV_USE_REALTIME 83# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0 84# define EV_USE_REALTIME 0
77# endif 85# endif
78# endif 86# endif
79 87
88# if HAVE_NANOSLEEP
80# ifndef EV_USE_NANOSLEEP 89# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1 90# define EV_USE_NANOSLEEP EV_FEATURE_OS
91# endif
83# else 92# else
93# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0 94# define EV_USE_NANOSLEEP 0
95# endif
96
97# if HAVE_SELECT && HAVE_SYS_SELECT_H
98# ifndef EV_USE_SELECT
99# define EV_USE_SELECT EV_FEATURE_BACKENDS
85# endif 100# endif
101# else
102# undef EV_USE_SELECT
103# define EV_USE_SELECT 0
86# endif 104# endif
87 105
106# if HAVE_POLL && HAVE_POLL_H
88# ifndef EV_USE_SELECT 107# ifndef EV_USE_POLL
89# if HAVE_SELECT && HAVE_SYS_SELECT_H 108# define EV_USE_POLL EV_FEATURE_BACKENDS
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif 109# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else 110# else
111# undef EV_USE_POLL
100# define EV_USE_POLL 0 112# define EV_USE_POLL 0
101# endif
102# endif 113# endif
103 114
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 115# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1 116# ifndef EV_USE_EPOLL
107# else 117# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# define EV_USE_EPOLL 0
109# endif 118# endif
119# else
120# undef EV_USE_EPOLL
121# define EV_USE_EPOLL 0
110# endif 122# endif
111 123
112# ifndef EV_USE_KQUEUE 124# if HAVE_LINUX_AIO_ABI_H
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 125# ifndef EV_USE_LINUXAIO
114# define EV_USE_KQUEUE 1 126# define EV_USE_LINUXAIO 0 /* was: EV_FEATURE_BACKENDS, always off by default */
115# else
116# define EV_USE_KQUEUE 0
117# endif 127# endif
128# else
129# undef EV_USE_LINUXAIO
130# define EV_USE_LINUXAIO 0
118# endif 131# endif
119 132
133# if HAVE_LINUX_FS_H && HAVE_SYS_TIMERFD_H && HAVE_KERNEL_RWF_T
120# ifndef EV_USE_PORT 134# ifndef EV_USE_IOURING
121# if HAVE_PORT_H && HAVE_PORT_CREATE 135# define EV_USE_IOURING EV_FEATURE_BACKENDS
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif 136# endif
126# endif
127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else 137# else
138# undef EV_USE_IOURING
132# define EV_USE_INOTIFY 0 139# define EV_USE_IOURING 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif 140# endif
143 141
142# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
143# ifndef EV_USE_KQUEUE
144# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
145# endif
146# else
147# undef EV_USE_KQUEUE
148# define EV_USE_KQUEUE 0
144#endif 149# endif
150
151# if HAVE_PORT_H && HAVE_PORT_CREATE
152# ifndef EV_USE_PORT
153# define EV_USE_PORT EV_FEATURE_BACKENDS
154# endif
155# else
156# undef EV_USE_PORT
157# define EV_USE_PORT 0
158# endif
145 159
146#include <math.h> 160# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
161# ifndef EV_USE_INOTIFY
162# define EV_USE_INOTIFY EV_FEATURE_OS
163# endif
164# else
165# undef EV_USE_INOTIFY
166# define EV_USE_INOTIFY 0
167# endif
168
169# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
170# ifndef EV_USE_SIGNALFD
171# define EV_USE_SIGNALFD EV_FEATURE_OS
172# endif
173# else
174# undef EV_USE_SIGNALFD
175# define EV_USE_SIGNALFD 0
176# endif
177
178# if HAVE_EVENTFD
179# ifndef EV_USE_EVENTFD
180# define EV_USE_EVENTFD EV_FEATURE_OS
181# endif
182# else
183# undef EV_USE_EVENTFD
184# define EV_USE_EVENTFD 0
185# endif
186
187# if HAVE_SYS_TIMERFD_H
188# ifndef EV_USE_TIMERFD
189# define EV_USE_TIMERFD EV_FEATURE_OS
190# endif
191# else
192# undef EV_USE_TIMERFD
193# define EV_USE_TIMERFD 0
194# endif
195
196#endif
197
198/* OS X, in its infinite idiocy, actually HARDCODES
199 * a limit of 1024 into their select. Where people have brains,
200 * OS X engineers apparently have a vacuum. Or maybe they were
201 * ordered to have a vacuum, or they do anything for money.
202 * This might help. Or not.
203 * Note that this must be defined early, as other include files
204 * will rely on this define as well.
205 */
206#define _DARWIN_UNLIMITED_SELECT 1
207
147#include <stdlib.h> 208#include <stdlib.h>
209#include <string.h>
148#include <fcntl.h> 210#include <fcntl.h>
149#include <stddef.h> 211#include <stddef.h>
150 212
151#include <stdio.h> 213#include <stdio.h>
152 214
153#include <assert.h> 215#include <assert.h>
154#include <errno.h> 216#include <errno.h>
155#include <sys/types.h> 217#include <sys/types.h>
156#include <time.h> 218#include <time.h>
219#include <limits.h>
157 220
158#include <signal.h> 221#include <signal.h>
159 222
160#ifdef EV_H 223#ifdef EV_H
161# include EV_H 224# include EV_H
162#else 225#else
163# include "ev.h" 226# include "ev.h"
227#endif
228
229#if EV_NO_THREADS
230# undef EV_NO_SMP
231# define EV_NO_SMP 1
232# undef ECB_NO_THREADS
233# define ECB_NO_THREADS 1
234#endif
235#if EV_NO_SMP
236# undef EV_NO_SMP
237# define ECB_NO_SMP 1
164#endif 238#endif
165 239
166#ifndef _WIN32 240#ifndef _WIN32
167# include <sys/time.h> 241# include <sys/time.h>
168# include <sys/wait.h> 242# include <sys/wait.h>
169# include <unistd.h> 243# include <unistd.h>
170#else 244#else
171# include <io.h> 245# include <io.h>
172# define WIN32_LEAN_AND_MEAN 246# define WIN32_LEAN_AND_MEAN
247# include <winsock2.h>
173# include <windows.h> 248# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET 249# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1 250# define EV_SELECT_IS_WINSOCKET 1
176# endif 251# endif
252# undef EV_AVOID_STDIO
177#endif 253#endif
178 254
179/* this block tries to deduce configuration from header-defined symbols and defaults */ 255/* this block tries to deduce configuration from header-defined symbols and defaults */
180 256
257/* try to deduce the maximum number of signals on this platform */
258#if defined EV_NSIG
259/* use what's provided */
260#elif defined NSIG
261# define EV_NSIG (NSIG)
262#elif defined _NSIG
263# define EV_NSIG (_NSIG)
264#elif defined SIGMAX
265# define EV_NSIG (SIGMAX+1)
266#elif defined SIG_MAX
267# define EV_NSIG (SIG_MAX+1)
268#elif defined _SIG_MAX
269# define EV_NSIG (_SIG_MAX+1)
270#elif defined MAXSIG
271# define EV_NSIG (MAXSIG+1)
272#elif defined MAX_SIG
273# define EV_NSIG (MAX_SIG+1)
274#elif defined SIGARRAYSIZE
275# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
276#elif defined _sys_nsig
277# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
278#else
279# define EV_NSIG (8 * sizeof (sigset_t) + 1)
280#endif
281
282#ifndef EV_USE_FLOOR
283# define EV_USE_FLOOR 0
284#endif
285
181#ifndef EV_USE_CLOCK_SYSCALL 286#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2 287# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
183# define EV_USE_CLOCK_SYSCALL 1 288# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
184# else 289# else
185# define EV_USE_CLOCK_SYSCALL 0 290# define EV_USE_CLOCK_SYSCALL 0
186# endif 291# endif
187#endif 292#endif
188 293
294#if !(_POSIX_TIMERS > 0)
295# ifndef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 0
297# endif
298# ifndef EV_USE_REALTIME
299# define EV_USE_REALTIME 0
300# endif
301#endif
302
189#ifndef EV_USE_MONOTONIC 303#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 304# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1 305# define EV_USE_MONOTONIC EV_FEATURE_OS
192# else 306# else
193# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
194# endif 308# endif
195#endif 309#endif
196 310
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 312# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 313#endif
200 314
201#ifndef EV_USE_NANOSLEEP 315#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 316# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 317# define EV_USE_NANOSLEEP EV_FEATURE_OS
204# else 318# else
205# define EV_USE_NANOSLEEP 0 319# define EV_USE_NANOSLEEP 0
206# endif 320# endif
207#endif 321#endif
208 322
209#ifndef EV_USE_SELECT 323#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1 324# define EV_USE_SELECT EV_FEATURE_BACKENDS
211#endif 325#endif
212 326
213#ifndef EV_USE_POLL 327#ifndef EV_USE_POLL
214# ifdef _WIN32 328# ifdef _WIN32
215# define EV_USE_POLL 0 329# define EV_USE_POLL 0
216# else 330# else
217# define EV_USE_POLL 1 331# define EV_USE_POLL EV_FEATURE_BACKENDS
218# endif 332# endif
219#endif 333#endif
220 334
221#ifndef EV_USE_EPOLL 335#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1 337# define EV_USE_EPOLL EV_FEATURE_BACKENDS
224# else 338# else
225# define EV_USE_EPOLL 0 339# define EV_USE_EPOLL 0
226# endif 340# endif
227#endif 341#endif
228 342
232 346
233#ifndef EV_USE_PORT 347#ifndef EV_USE_PORT
234# define EV_USE_PORT 0 348# define EV_USE_PORT 0
235#endif 349#endif
236 350
351#ifndef EV_USE_LINUXAIO
352# if __linux /* libev currently assumes linux/aio_abi.h is always available on linux */
353# define EV_USE_LINUXAIO 0 /* was: 1, always off by default */
354# else
355# define EV_USE_LINUXAIO 0
356# endif
357#endif
358
359#ifndef EV_USE_IOURING
360# if __linux /* later checks might disable again */
361# define EV_USE_IOURING 1
362# else
363# define EV_USE_IOURING 0
364# endif
365#endif
366
237#ifndef EV_USE_INOTIFY 367#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 368# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1 369# define EV_USE_INOTIFY EV_FEATURE_OS
240# else 370# else
241# define EV_USE_INOTIFY 0 371# define EV_USE_INOTIFY 0
242# endif 372# endif
243#endif 373#endif
244 374
245#ifndef EV_PID_HASHSIZE 375#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL 376# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif 377#endif
252 378
253#ifndef EV_INOTIFY_HASHSIZE 379#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL 380# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif 381#endif
260 382
261#ifndef EV_USE_EVENTFD 383#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 384# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1 385# define EV_USE_EVENTFD EV_FEATURE_OS
264# else 386# else
265# define EV_USE_EVENTFD 0 387# define EV_USE_EVENTFD 0
388# endif
389#endif
390
391#ifndef EV_USE_SIGNALFD
392# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
393# define EV_USE_SIGNALFD EV_FEATURE_OS
394# else
395# define EV_USE_SIGNALFD 0
396# endif
397#endif
398
399#ifndef EV_USE_TIMERFD
400# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 8))
401# define EV_USE_TIMERFD EV_FEATURE_OS
402# else
403# define EV_USE_TIMERFD 0
266# endif 404# endif
267#endif 405#endif
268 406
269#if 0 /* debugging */ 407#if 0 /* debugging */
270# define EV_VERIFY 3 408# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 409# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 410# define EV_HEAP_CACHE_AT 1
273#endif 411#endif
274 412
275#ifndef EV_VERIFY 413#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL 414# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
277#endif 415#endif
278 416
279#ifndef EV_USE_4HEAP 417#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL 418# define EV_USE_4HEAP EV_FEATURE_DATA
281#endif 419#endif
282 420
283#ifndef EV_HEAP_CACHE_AT 421#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 422# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
423#endif
424
425#ifdef __ANDROID__
426/* supposedly, android doesn't typedef fd_mask */
427# undef EV_USE_SELECT
428# define EV_USE_SELECT 0
429/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
430# undef EV_USE_CLOCK_SYSCALL
431# define EV_USE_CLOCK_SYSCALL 0
432#endif
433
434/* aix's poll.h seems to cause lots of trouble */
435#ifdef _AIX
436/* AIX has a completely broken poll.h header */
437# undef EV_USE_POLL
438# define EV_USE_POLL 0
439#endif
440
441/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
442/* which makes programs even slower. might work on other unices, too. */
443#if EV_USE_CLOCK_SYSCALL
444# include <sys/syscall.h>
445# ifdef SYS_clock_gettime
446# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
447# undef EV_USE_MONOTONIC
448# define EV_USE_MONOTONIC 1
449# define EV_NEED_SYSCALL 1
450# else
451# undef EV_USE_CLOCK_SYSCALL
452# define EV_USE_CLOCK_SYSCALL 0
453# endif
285#endif 454#endif
286 455
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 456/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 457
289#ifndef CLOCK_MONOTONIC 458#ifndef CLOCK_MONOTONIC
299#if !EV_STAT_ENABLE 468#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY 469# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0 470# define EV_USE_INOTIFY 0
302#endif 471#endif
303 472
473#if __linux && EV_USE_IOURING
474# include <linux/version.h>
475# if LINUX_VERSION_CODE < KERNEL_VERSION(4,14,0)
476# undef EV_USE_IOURING
477# define EV_USE_IOURING 0
478# endif
479#endif
480
304#if !EV_USE_NANOSLEEP 481#if !EV_USE_NANOSLEEP
305# ifndef _WIN32 482/* hp-ux has it in sys/time.h, which we unconditionally include above */
483# if !defined _WIN32 && !defined __hpux
306# include <sys/select.h> 484# include <sys/select.h>
307# endif 485# endif
308#endif 486#endif
309 487
488#if EV_USE_LINUXAIO
489# include <sys/syscall.h>
490# if SYS_io_getevents && EV_USE_EPOLL /* linuxaio backend requires epoll backend */
491# define EV_NEED_SYSCALL 1
492# else
493# undef EV_USE_LINUXAIO
494# define EV_USE_LINUXAIO 0
495# endif
496#endif
497
498#if EV_USE_IOURING
499# include <sys/syscall.h>
500# if !SYS_io_uring_register && __linux && !__alpha
501# define SYS_io_uring_setup 425
502# define SYS_io_uring_enter 426
503# define SYS_io_uring_register 427
504# endif
505# if SYS_io_uring_setup && EV_USE_EPOLL /* iouring backend requires epoll backend */
506# define EV_NEED_SYSCALL 1
507# else
508# undef EV_USE_IOURING
509# define EV_USE_IOURING 0
510# endif
511#endif
512
310#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h> 514# include <sys/statfs.h>
313# include <sys/inotify.h> 515# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 516/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW 517# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY 518# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0 519# define EV_USE_INOTIFY 0
318# endif 520# endif
319#endif 521#endif
320 522
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 523#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 524/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
336# include <stdint.h> 525# include <stdint.h>
337# ifdef __cplusplus 526# ifndef EFD_NONBLOCK
338extern "C" { 527# define EFD_NONBLOCK O_NONBLOCK
339# endif 528# endif
340int eventfd (unsigned int initval, int flags); 529# ifndef EFD_CLOEXEC
341# ifdef __cplusplus 530# ifdef O_CLOEXEC
342} 531# define EFD_CLOEXEC O_CLOEXEC
532# else
533# define EFD_CLOEXEC 02000000
534# endif
343# endif 535# endif
536EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
537#endif
538
539#if EV_USE_SIGNALFD
540/* our minimum requirement is glibc 2.7 which has the stub, but not the full header */
541# include <stdint.h>
542# ifndef SFD_NONBLOCK
543# define SFD_NONBLOCK O_NONBLOCK
344#endif 544# endif
545# ifndef SFD_CLOEXEC
546# ifdef O_CLOEXEC
547# define SFD_CLOEXEC O_CLOEXEC
548# else
549# define SFD_CLOEXEC 02000000
550# endif
551# endif
552EV_CPP (extern "C") int (signalfd) (int fd, const sigset_t *mask, int flags);
345 553
346/**/ 554struct signalfd_siginfo
555{
556 uint32_t ssi_signo;
557 char pad[128 - sizeof (uint32_t)];
558};
559#endif
560
561/* for timerfd, libev core requires TFD_TIMER_CANCEL_ON_SET &c */
562#if EV_USE_TIMERFD
563# include <sys/timerfd.h>
564/* timerfd is only used for periodics */
565# if !(defined (TFD_TIMER_CANCEL_ON_SET) && defined (TFD_CLOEXEC) && defined (TFD_NONBLOCK)) || !EV_PERIODIC_ENABLE
566# undef EV_USE_TIMERFD
567# define EV_USE_TIMERFD 0
568# endif
569#endif
570
571/*****************************************************************************/
347 572
348#if EV_VERIFY >= 3 573#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 574# define EV_FREQUENT_CHECK ev_verify (EV_A)
350#else 575#else
351# define EV_FREQUENT_CHECK do { } while (0) 576# define EV_FREQUENT_CHECK do { } while (0)
352#endif 577#endif
353 578
354/* 579/*
355 * This is used to avoid floating point rounding problems. 580 * This is used to work around floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000. 581 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */ 582 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 583#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
584/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
363 585
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 586#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 587#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 588#define MAX_BLOCKTIME2 1500001.07 /* same, but when timerfd is used to detect jumps, also safe delay to not overflow */
367 589
590/* find a portable timestamp that is "always" in the future but fits into time_t.
591 * this is quite hard, and we are mostly guessing - we handle 32 bit signed/unsigned time_t,
592 * and sizes larger than 32 bit, and maybe the unlikely floating point time_t */
593#define EV_TSTAMP_HUGE \
594 (sizeof (time_t) >= 8 ? 10000000000000. \
595 : 0 < (time_t)4294967295 ? 4294967295. \
596 : 2147483647.) \
597
598#ifndef EV_TS_CONST
599# define EV_TS_CONST(nv) nv
600# define EV_TS_TO_MSEC(a) a * 1e3 + 0.9999
601# define EV_TS_FROM_USEC(us) us * 1e-6
602# define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
603# define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
604# define EV_TV_GET(tv) ((tv).tv_sec + (tv).tv_usec * 1e-6)
605# define EV_TS_GET(ts) ((ts).tv_sec + (ts).tv_nsec * 1e-9)
606#endif
607
608/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
609/* ECB.H BEGIN */
610/*
611 * libecb - http://software.schmorp.de/pkg/libecb
612 *
613 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de>
614 * Copyright (©) 2011 Emanuele Giaquinta
615 * All rights reserved.
616 *
617 * Redistribution and use in source and binary forms, with or without modifica-
618 * tion, are permitted provided that the following conditions are met:
619 *
620 * 1. Redistributions of source code must retain the above copyright notice,
621 * this list of conditions and the following disclaimer.
622 *
623 * 2. Redistributions in binary form must reproduce the above copyright
624 * notice, this list of conditions and the following disclaimer in the
625 * documentation and/or other materials provided with the distribution.
626 *
627 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
628 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
629 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
630 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
631 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
632 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
633 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
634 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
635 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
636 * OF THE POSSIBILITY OF SUCH DAMAGE.
637 *
638 * Alternatively, the contents of this file may be used under the terms of
639 * the GNU General Public License ("GPL") version 2 or any later version,
640 * in which case the provisions of the GPL are applicable instead of
641 * the above. If you wish to allow the use of your version of this file
642 * only under the terms of the GPL and not to allow others to use your
643 * version of this file under the BSD license, indicate your decision
644 * by deleting the provisions above and replace them with the notice
645 * and other provisions required by the GPL. If you do not delete the
646 * provisions above, a recipient may use your version of this file under
647 * either the BSD or the GPL.
648 */
649
650#ifndef ECB_H
651#define ECB_H
652
653/* 16 bits major, 16 bits minor */
654#define ECB_VERSION 0x00010008
655
656#include <string.h> /* for memcpy */
657
658#if defined (_WIN32) && !defined (__MINGW32__)
659 typedef signed char int8_t;
660 typedef unsigned char uint8_t;
661 typedef signed char int_fast8_t;
662 typedef unsigned char uint_fast8_t;
663 typedef signed short int16_t;
664 typedef unsigned short uint16_t;
665 typedef signed int int_fast16_t;
666 typedef unsigned int uint_fast16_t;
667 typedef signed int int32_t;
668 typedef unsigned int uint32_t;
669 typedef signed int int_fast32_t;
670 typedef unsigned int uint_fast32_t;
368#if __GNUC__ >= 4 671 #if __GNUC__
369# define expect(expr,value) __builtin_expect ((expr),(value)) 672 typedef signed long long int64_t;
370# define noinline __attribute__ ((noinline)) 673 typedef unsigned long long uint64_t;
674 #else /* _MSC_VER || __BORLANDC__ */
675 typedef signed __int64 int64_t;
676 typedef unsigned __int64 uint64_t;
677 #endif
678 typedef int64_t int_fast64_t;
679 typedef uint64_t uint_fast64_t;
680 #ifdef _WIN64
681 #define ECB_PTRSIZE 8
682 typedef uint64_t uintptr_t;
683 typedef int64_t intptr_t;
684 #else
685 #define ECB_PTRSIZE 4
686 typedef uint32_t uintptr_t;
687 typedef int32_t intptr_t;
688 #endif
371#else 689#else
372# define expect(expr,value) (expr) 690 #include <inttypes.h>
373# define noinline 691 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 692 #define ECB_PTRSIZE 8
375# define inline 693 #else
694 #define ECB_PTRSIZE 4
695 #endif
376# endif 696#endif
697
698#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
699#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
700
701#ifndef ECB_OPTIMIZE_SIZE
702 #if __OPTIMIZE_SIZE__
703 #define ECB_OPTIMIZE_SIZE 1
704 #else
705 #define ECB_OPTIMIZE_SIZE 0
377#endif 706 #endif
707#endif
378 708
379#define expect_false(expr) expect ((expr) != 0, 0) 709/* work around x32 idiocy by defining proper macros */
380#define expect_true(expr) expect ((expr) != 0, 1) 710#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
381#define inline_size static inline 711 #if _ILP32
712 #define ECB_AMD64_X32 1
713 #else
714 #define ECB_AMD64 1
715 #endif
716#endif
382 717
383#if EV_MINIMAL 718/* many compilers define _GNUC_ to some versions but then only implement
384# define inline_speed static noinline 719 * what their idiot authors think are the "more important" extensions,
720 * causing enormous grief in return for some better fake benchmark numbers.
721 * or so.
722 * we try to detect these and simply assume they are not gcc - if they have
723 * an issue with that they should have done it right in the first place.
724 */
725#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
726 #define ECB_GCC_VERSION(major,minor) 0
385#else 727#else
728 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
729#endif
730
731#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
732
733#if __clang__ && defined __has_builtin
734 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
735#else
736 #define ECB_CLANG_BUILTIN(x) 0
737#endif
738
739#if __clang__ && defined __has_extension
740 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
741#else
742 #define ECB_CLANG_EXTENSION(x) 0
743#endif
744
745#define ECB_CPP (__cplusplus+0)
746#define ECB_CPP11 (__cplusplus >= 201103L)
747#define ECB_CPP14 (__cplusplus >= 201402L)
748#define ECB_CPP17 (__cplusplus >= 201703L)
749
750#if ECB_CPP
751 #define ECB_C 0
752 #define ECB_STDC_VERSION 0
753#else
754 #define ECB_C 1
755 #define ECB_STDC_VERSION __STDC_VERSION__
756#endif
757
758#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
759#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
760#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
761
762#if ECB_CPP
763 #define ECB_EXTERN_C extern "C"
764 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
765 #define ECB_EXTERN_C_END }
766#else
767 #define ECB_EXTERN_C extern
768 #define ECB_EXTERN_C_BEG
769 #define ECB_EXTERN_C_END
770#endif
771
772/*****************************************************************************/
773
774/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
775/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
776
777#if ECB_NO_THREADS
778 #define ECB_NO_SMP 1
779#endif
780
781#if ECB_NO_SMP
782 #define ECB_MEMORY_FENCE do { } while (0)
783#endif
784
785/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
786#if __xlC__ && ECB_CPP
787 #include <builtins.h>
788#endif
789
790#if 1400 <= _MSC_VER
791 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
792#endif
793
794#ifndef ECB_MEMORY_FENCE
795 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
796 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
797 #if __i386 || __i386__
798 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
799 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
800 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
801 #elif ECB_GCC_AMD64
802 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
803 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
804 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
805 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
806 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
807 #elif defined __ARM_ARCH_2__ \
808 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
809 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
810 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
811 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
812 || defined __ARM_ARCH_5TEJ__
813 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
814 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
815 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
816 || defined __ARM_ARCH_6T2__
817 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
818 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
819 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
820 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
821 #elif __aarch64__
822 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
823 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
824 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
825 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
826 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
827 #elif defined __s390__ || defined __s390x__
828 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
829 #elif defined __mips__
830 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
831 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
832 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
833 #elif defined __alpha__
834 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
835 #elif defined __hppa__
836 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
837 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
838 #elif defined __ia64__
839 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
840 #elif defined __m68k__
841 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
842 #elif defined __m88k__
843 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
844 #elif defined __sh__
845 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
846 #endif
847 #endif
848#endif
849
850#ifndef ECB_MEMORY_FENCE
851 #if ECB_GCC_VERSION(4,7)
852 /* see comment below (stdatomic.h) about the C11 memory model. */
853 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
854 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
855 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
856 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
857
858 #elif ECB_CLANG_EXTENSION(c_atomic)
859 /* see comment below (stdatomic.h) about the C11 memory model. */
860 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
861 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
862 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
863 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
864
865 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
866 #define ECB_MEMORY_FENCE __sync_synchronize ()
867 #elif _MSC_VER >= 1500 /* VC++ 2008 */
868 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
869 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
870 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
871 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
872 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
873 #elif _MSC_VER >= 1400 /* VC++ 2005 */
874 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
875 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
876 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
877 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
878 #elif defined _WIN32
879 #include <WinNT.h>
880 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
881 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
882 #include <mbarrier.h>
883 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
884 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
885 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
886 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
887 #elif __xlC__
888 #define ECB_MEMORY_FENCE __sync ()
889 #endif
890#endif
891
892#ifndef ECB_MEMORY_FENCE
893 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
894 /* we assume that these memory fences work on all variables/all memory accesses, */
895 /* not just C11 atomics and atomic accesses */
896 #include <stdatomic.h>
897 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
898 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
899 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
900 #endif
901#endif
902
903#ifndef ECB_MEMORY_FENCE
904 #if !ECB_AVOID_PTHREADS
905 /*
906 * if you get undefined symbol references to pthread_mutex_lock,
907 * or failure to find pthread.h, then you should implement
908 * the ECB_MEMORY_FENCE operations for your cpu/compiler
909 * OR provide pthread.h and link against the posix thread library
910 * of your system.
911 */
912 #include <pthread.h>
913 #define ECB_NEEDS_PTHREADS 1
914 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
915
916 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
917 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
918 #endif
919#endif
920
921#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
922 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
923#endif
924
925#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
926 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
927#endif
928
929#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
930 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
931#endif
932
933/*****************************************************************************/
934
935#if ECB_CPP
936 #define ecb_inline static inline
937#elif ECB_GCC_VERSION(2,5)
938 #define ecb_inline static __inline__
939#elif ECB_C99
940 #define ecb_inline static inline
941#else
942 #define ecb_inline static
943#endif
944
945#if ECB_GCC_VERSION(3,3)
946 #define ecb_restrict __restrict__
947#elif ECB_C99
948 #define ecb_restrict restrict
949#else
950 #define ecb_restrict
951#endif
952
953typedef int ecb_bool;
954
955#define ECB_CONCAT_(a, b) a ## b
956#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
957#define ECB_STRINGIFY_(a) # a
958#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
959#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
960
961#define ecb_function_ ecb_inline
962
963#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
964 #define ecb_attribute(attrlist) __attribute__ (attrlist)
965#else
966 #define ecb_attribute(attrlist)
967#endif
968
969#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
970 #define ecb_is_constant(expr) __builtin_constant_p (expr)
971#else
972 /* possible C11 impl for integral types
973 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
974 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
975
976 #define ecb_is_constant(expr) 0
977#endif
978
979#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
980 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
981#else
982 #define ecb_expect(expr,value) (expr)
983#endif
984
985#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
986 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
987#else
988 #define ecb_prefetch(addr,rw,locality)
989#endif
990
991/* no emulation for ecb_decltype */
992#if ECB_CPP11
993 // older implementations might have problems with decltype(x)::type, work around it
994 template<class T> struct ecb_decltype_t { typedef T type; };
995 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
996#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
997 #define ecb_decltype(x) __typeof__ (x)
998#endif
999
1000#if _MSC_VER >= 1300
1001 #define ecb_deprecated __declspec (deprecated)
1002#else
1003 #define ecb_deprecated ecb_attribute ((__deprecated__))
1004#endif
1005
1006#if _MSC_VER >= 1500
1007 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
1008#elif ECB_GCC_VERSION(4,5)
1009 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
1010#else
1011 #define ecb_deprecated_message(msg) ecb_deprecated
1012#endif
1013
1014#if _MSC_VER >= 1400
1015 #define ecb_noinline __declspec (noinline)
1016#else
1017 #define ecb_noinline ecb_attribute ((__noinline__))
1018#endif
1019
1020#define ecb_unused ecb_attribute ((__unused__))
1021#define ecb_const ecb_attribute ((__const__))
1022#define ecb_pure ecb_attribute ((__pure__))
1023
1024#if ECB_C11 || __IBMC_NORETURN
1025 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
1026 #define ecb_noreturn _Noreturn
1027#elif ECB_CPP11
1028 #define ecb_noreturn [[noreturn]]
1029#elif _MSC_VER >= 1200
1030 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
1031 #define ecb_noreturn __declspec (noreturn)
1032#else
1033 #define ecb_noreturn ecb_attribute ((__noreturn__))
1034#endif
1035
1036#if ECB_GCC_VERSION(4,3)
1037 #define ecb_artificial ecb_attribute ((__artificial__))
1038 #define ecb_hot ecb_attribute ((__hot__))
1039 #define ecb_cold ecb_attribute ((__cold__))
1040#else
1041 #define ecb_artificial
1042 #define ecb_hot
1043 #define ecb_cold
1044#endif
1045
1046/* put around conditional expressions if you are very sure that the */
1047/* expression is mostly true or mostly false. note that these return */
1048/* booleans, not the expression. */
1049#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
1050#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
1051/* for compatibility to the rest of the world */
1052#define ecb_likely(expr) ecb_expect_true (expr)
1053#define ecb_unlikely(expr) ecb_expect_false (expr)
1054
1055/* count trailing zero bits and count # of one bits */
1056#if ECB_GCC_VERSION(3,4) \
1057 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
1058 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
1059 && ECB_CLANG_BUILTIN(__builtin_popcount))
1060 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
1061 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
1062 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
1063 #define ecb_ctz32(x) __builtin_ctz (x)
1064 #define ecb_ctz64(x) __builtin_ctzll (x)
1065 #define ecb_popcount32(x) __builtin_popcount (x)
1066 /* no popcountll */
1067#else
1068 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
1069 ecb_function_ ecb_const int
1070 ecb_ctz32 (uint32_t x)
1071 {
1072#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1073 unsigned long r;
1074 _BitScanForward (&r, x);
1075 return (int)r;
1076#else
1077 int r = 0;
1078
1079 x &= ~x + 1; /* this isolates the lowest bit */
1080
1081#if ECB_branchless_on_i386
1082 r += !!(x & 0xaaaaaaaa) << 0;
1083 r += !!(x & 0xcccccccc) << 1;
1084 r += !!(x & 0xf0f0f0f0) << 2;
1085 r += !!(x & 0xff00ff00) << 3;
1086 r += !!(x & 0xffff0000) << 4;
1087#else
1088 if (x & 0xaaaaaaaa) r += 1;
1089 if (x & 0xcccccccc) r += 2;
1090 if (x & 0xf0f0f0f0) r += 4;
1091 if (x & 0xff00ff00) r += 8;
1092 if (x & 0xffff0000) r += 16;
1093#endif
1094
1095 return r;
1096#endif
1097 }
1098
1099 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
1100 ecb_function_ ecb_const int
1101 ecb_ctz64 (uint64_t x)
1102 {
1103#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1104 unsigned long r;
1105 _BitScanForward64 (&r, x);
1106 return (int)r;
1107#else
1108 int shift = x & 0xffffffff ? 0 : 32;
1109 return ecb_ctz32 (x >> shift) + shift;
1110#endif
1111 }
1112
1113 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
1114 ecb_function_ ecb_const int
1115 ecb_popcount32 (uint32_t x)
1116 {
1117 x -= (x >> 1) & 0x55555555;
1118 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
1119 x = ((x >> 4) + x) & 0x0f0f0f0f;
1120 x *= 0x01010101;
1121
1122 return x >> 24;
1123 }
1124
1125 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
1126 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
1127 {
1128#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
1129 unsigned long r;
1130 _BitScanReverse (&r, x);
1131 return (int)r;
1132#else
1133 int r = 0;
1134
1135 if (x >> 16) { x >>= 16; r += 16; }
1136 if (x >> 8) { x >>= 8; r += 8; }
1137 if (x >> 4) { x >>= 4; r += 4; }
1138 if (x >> 2) { x >>= 2; r += 2; }
1139 if (x >> 1) { r += 1; }
1140
1141 return r;
1142#endif
1143 }
1144
1145 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1146 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1147 {
1148#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1149 unsigned long r;
1150 _BitScanReverse64 (&r, x);
1151 return (int)r;
1152#else
1153 int r = 0;
1154
1155 if (x >> 32) { x >>= 32; r += 32; }
1156
1157 return r + ecb_ld32 (x);
1158#endif
1159 }
1160#endif
1161
1162ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1163ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1164ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1165ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1166
1167ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1168ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1169{
1170 return ( (x * 0x0802U & 0x22110U)
1171 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1172}
1173
1174ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1175ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1176{
1177 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1178 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1179 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1180 x = ( x >> 8 ) | ( x << 8);
1181
1182 return x;
1183}
1184
1185ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1186ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1187{
1188 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1189 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1190 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1191 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1192 x = ( x >> 16 ) | ( x << 16);
1193
1194 return x;
1195}
1196
1197/* popcount64 is only available on 64 bit cpus as gcc builtin */
1198/* so for this version we are lazy */
1199ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1200ecb_function_ ecb_const int
1201ecb_popcount64 (uint64_t x)
1202{
1203 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1204}
1205
1206ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1207ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1208ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1209ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1210ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1211ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1212ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1213ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1214
1215ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1216ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1217ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1218ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1219ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1220ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1221ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1222ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1223
1224#if ECB_CPP
1225
1226inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
1227inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
1228inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
1229inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
1230
1231inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
1232inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
1233inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
1234inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
1235
1236inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
1237inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
1238inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
1239inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
1240
1241inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
1242inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
1243inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
1244inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
1245
1246inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
1247inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
1248inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
1249
1250inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
1251inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
1252inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
1253inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
1254
1255inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
1256inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
1257inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
1258inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
1259
1260#endif
1261
1262#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1263 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1264 #define ecb_bswap16(x) __builtin_bswap16 (x)
1265 #else
1266 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1267 #endif
1268 #define ecb_bswap32(x) __builtin_bswap32 (x)
1269 #define ecb_bswap64(x) __builtin_bswap64 (x)
1270#elif _MSC_VER
1271 #include <stdlib.h>
1272 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1273 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1274 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1275#else
1276 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1277 ecb_function_ ecb_const uint16_t
1278 ecb_bswap16 (uint16_t x)
1279 {
1280 return ecb_rotl16 (x, 8);
1281 }
1282
1283 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1284 ecb_function_ ecb_const uint32_t
1285 ecb_bswap32 (uint32_t x)
1286 {
1287 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1288 }
1289
1290 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1291 ecb_function_ ecb_const uint64_t
1292 ecb_bswap64 (uint64_t x)
1293 {
1294 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1295 }
1296#endif
1297
1298#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1299 #define ecb_unreachable() __builtin_unreachable ()
1300#else
1301 /* this seems to work fine, but gcc always emits a warning for it :/ */
1302 ecb_inline ecb_noreturn void ecb_unreachable (void);
1303 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1304#endif
1305
1306/* try to tell the compiler that some condition is definitely true */
1307#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1308
1309ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1310ecb_inline ecb_const uint32_t
1311ecb_byteorder_helper (void)
1312{
1313 /* the union code still generates code under pressure in gcc, */
1314 /* but less than using pointers, and always seems to */
1315 /* successfully return a constant. */
1316 /* the reason why we have this horrible preprocessor mess */
1317 /* is to avoid it in all cases, at least on common architectures */
1318 /* or when using a recent enough gcc version (>= 4.6) */
1319#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1320 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1321 #define ECB_LITTLE_ENDIAN 1
1322 return 0x44332211;
1323#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1324 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1325 #define ECB_BIG_ENDIAN 1
1326 return 0x11223344;
1327#else
1328 union
1329 {
1330 uint8_t c[4];
1331 uint32_t u;
1332 } u = { 0x11, 0x22, 0x33, 0x44 };
1333 return u.u;
1334#endif
1335}
1336
1337ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1338ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1339ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1340ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1341
1342/*****************************************************************************/
1343/* unaligned load/store */
1344
1345ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1346ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1347ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1348
1349ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1350ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1351ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1352
1353ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1354ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1355ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
1356
1357ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
1358ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
1359ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
1360
1361ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
1362ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
1363ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
1364
1365ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
1366ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
1367ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
1368
1369ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
1370ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
1371ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
1372
1373ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
1374ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
1375ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
1376
1377ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
1378ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
1379ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
1380
1381ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
1382ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
1383ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
1384
1385#if ECB_CPP
1386
1387inline uint8_t ecb_bswap (uint8_t v) { return v; }
1388inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
1389inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
1390inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
1391
1392template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1393template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1394template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
1395template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
1396template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
1397template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
1398template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
1399template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
1400
1401template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
1402template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
1403template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
1404template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
1405template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
1406template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
1407template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
1408template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
1409
1410#endif
1411
1412/*****************************************************************************/
1413
1414#if ECB_GCC_VERSION(3,0) || ECB_C99
1415 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1416#else
1417 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1418#endif
1419
1420#if ECB_CPP
1421 template<typename T>
1422 static inline T ecb_div_rd (T val, T div)
1423 {
1424 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1425 }
1426 template<typename T>
1427 static inline T ecb_div_ru (T val, T div)
1428 {
1429 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1430 }
1431#else
1432 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1433 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1434#endif
1435
1436#if ecb_cplusplus_does_not_suck
1437 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1438 template<typename T, int N>
1439 static inline int ecb_array_length (const T (&arr)[N])
1440 {
1441 return N;
1442 }
1443#else
1444 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1445#endif
1446
1447/*****************************************************************************/
1448
1449ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1450ecb_function_ ecb_const uint32_t
1451ecb_binary16_to_binary32 (uint32_t x)
1452{
1453 unsigned int s = (x & 0x8000) << (31 - 15);
1454 int e = (x >> 10) & 0x001f;
1455 unsigned int m = x & 0x03ff;
1456
1457 if (ecb_expect_false (e == 31))
1458 /* infinity or NaN */
1459 e = 255 - (127 - 15);
1460 else if (ecb_expect_false (!e))
1461 {
1462 if (ecb_expect_true (!m))
1463 /* zero, handled by code below by forcing e to 0 */
1464 e = 0 - (127 - 15);
1465 else
1466 {
1467 /* subnormal, renormalise */
1468 unsigned int s = 10 - ecb_ld32 (m);
1469
1470 m = (m << s) & 0x3ff; /* mask implicit bit */
1471 e -= s - 1;
1472 }
1473 }
1474
1475 /* e and m now are normalised, or zero, (or inf or nan) */
1476 e += 127 - 15;
1477
1478 return s | (e << 23) | (m << (23 - 10));
1479}
1480
1481ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1482ecb_function_ ecb_const uint16_t
1483ecb_binary32_to_binary16 (uint32_t x)
1484{
1485 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1486 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1487 unsigned int m = x & 0x007fffff;
1488
1489 x &= 0x7fffffff;
1490
1491 /* if it's within range of binary16 normals, use fast path */
1492 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1493 {
1494 /* mantissa round-to-even */
1495 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1496
1497 /* handle overflow */
1498 if (ecb_expect_false (m >= 0x00800000))
1499 {
1500 m >>= 1;
1501 e += 1;
1502 }
1503
1504 return s | (e << 10) | (m >> (23 - 10));
1505 }
1506
1507 /* handle large numbers and infinity */
1508 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1509 return s | 0x7c00;
1510
1511 /* handle zero, subnormals and small numbers */
1512 if (ecb_expect_true (x < 0x38800000))
1513 {
1514 /* zero */
1515 if (ecb_expect_true (!x))
1516 return s;
1517
1518 /* handle subnormals */
1519
1520 /* too small, will be zero */
1521 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1522 return s;
1523
1524 m |= 0x00800000; /* make implicit bit explicit */
1525
1526 /* very tricky - we need to round to the nearest e (+10) bit value */
1527 {
1528 unsigned int bits = 14 - e;
1529 unsigned int half = (1 << (bits - 1)) - 1;
1530 unsigned int even = (m >> bits) & 1;
1531
1532 /* if this overflows, we will end up with a normalised number */
1533 m = (m + half + even) >> bits;
1534 }
1535
1536 return s | m;
1537 }
1538
1539 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1540 m >>= 13;
1541
1542 return s | 0x7c00 | m | !m;
1543}
1544
1545/*******************************************************************************/
1546/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1547
1548/* basically, everything uses "ieee pure-endian" floating point numbers */
1549/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1550#if 0 \
1551 || __i386 || __i386__ \
1552 || ECB_GCC_AMD64 \
1553 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1554 || defined __s390__ || defined __s390x__ \
1555 || defined __mips__ \
1556 || defined __alpha__ \
1557 || defined __hppa__ \
1558 || defined __ia64__ \
1559 || defined __m68k__ \
1560 || defined __m88k__ \
1561 || defined __sh__ \
1562 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1563 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1564 || defined __aarch64__
1565 #define ECB_STDFP 1
1566#else
1567 #define ECB_STDFP 0
1568#endif
1569
1570#ifndef ECB_NO_LIBM
1571
1572 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1573
1574 /* only the oldest of old doesn't have this one. solaris. */
1575 #ifdef INFINITY
1576 #define ECB_INFINITY INFINITY
1577 #else
1578 #define ECB_INFINITY HUGE_VAL
1579 #endif
1580
1581 #ifdef NAN
1582 #define ECB_NAN NAN
1583 #else
1584 #define ECB_NAN ECB_INFINITY
1585 #endif
1586
1587 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1588 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1589 #define ecb_frexpf(x,e) frexpf ((x), (e))
1590 #else
1591 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1592 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1593 #endif
1594
1595 /* convert a float to ieee single/binary32 */
1596 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1597 ecb_function_ ecb_const uint32_t
1598 ecb_float_to_binary32 (float x)
1599 {
1600 uint32_t r;
1601
1602 #if ECB_STDFP
1603 memcpy (&r, &x, 4);
1604 #else
1605 /* slow emulation, works for anything but -0 */
1606 uint32_t m;
1607 int e;
1608
1609 if (x == 0e0f ) return 0x00000000U;
1610 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1611 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1612 if (x != x ) return 0x7fbfffffU;
1613
1614 m = ecb_frexpf (x, &e) * 0x1000000U;
1615
1616 r = m & 0x80000000U;
1617
1618 if (r)
1619 m = -m;
1620
1621 if (e <= -126)
1622 {
1623 m &= 0xffffffU;
1624 m >>= (-125 - e);
1625 e = -126;
1626 }
1627
1628 r |= (e + 126) << 23;
1629 r |= m & 0x7fffffU;
1630 #endif
1631
1632 return r;
1633 }
1634
1635 /* converts an ieee single/binary32 to a float */
1636 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1637 ecb_function_ ecb_const float
1638 ecb_binary32_to_float (uint32_t x)
1639 {
1640 float r;
1641
1642 #if ECB_STDFP
1643 memcpy (&r, &x, 4);
1644 #else
1645 /* emulation, only works for normals and subnormals and +0 */
1646 int neg = x >> 31;
1647 int e = (x >> 23) & 0xffU;
1648
1649 x &= 0x7fffffU;
1650
1651 if (e)
1652 x |= 0x800000U;
1653 else
1654 e = 1;
1655
1656 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1657 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1658
1659 r = neg ? -r : r;
1660 #endif
1661
1662 return r;
1663 }
1664
1665 /* convert a double to ieee double/binary64 */
1666 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1667 ecb_function_ ecb_const uint64_t
1668 ecb_double_to_binary64 (double x)
1669 {
1670 uint64_t r;
1671
1672 #if ECB_STDFP
1673 memcpy (&r, &x, 8);
1674 #else
1675 /* slow emulation, works for anything but -0 */
1676 uint64_t m;
1677 int e;
1678
1679 if (x == 0e0 ) return 0x0000000000000000U;
1680 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1681 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1682 if (x != x ) return 0X7ff7ffffffffffffU;
1683
1684 m = frexp (x, &e) * 0x20000000000000U;
1685
1686 r = m & 0x8000000000000000;;
1687
1688 if (r)
1689 m = -m;
1690
1691 if (e <= -1022)
1692 {
1693 m &= 0x1fffffffffffffU;
1694 m >>= (-1021 - e);
1695 e = -1022;
1696 }
1697
1698 r |= ((uint64_t)(e + 1022)) << 52;
1699 r |= m & 0xfffffffffffffU;
1700 #endif
1701
1702 return r;
1703 }
1704
1705 /* converts an ieee double/binary64 to a double */
1706 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1707 ecb_function_ ecb_const double
1708 ecb_binary64_to_double (uint64_t x)
1709 {
1710 double r;
1711
1712 #if ECB_STDFP
1713 memcpy (&r, &x, 8);
1714 #else
1715 /* emulation, only works for normals and subnormals and +0 */
1716 int neg = x >> 63;
1717 int e = (x >> 52) & 0x7ffU;
1718
1719 x &= 0xfffffffffffffU;
1720
1721 if (e)
1722 x |= 0x10000000000000U;
1723 else
1724 e = 1;
1725
1726 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1727 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1728
1729 r = neg ? -r : r;
1730 #endif
1731
1732 return r;
1733 }
1734
1735 /* convert a float to ieee half/binary16 */
1736 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1737 ecb_function_ ecb_const uint16_t
1738 ecb_float_to_binary16 (float x)
1739 {
1740 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1741 }
1742
1743 /* convert an ieee half/binary16 to float */
1744 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1745 ecb_function_ ecb_const float
1746 ecb_binary16_to_float (uint16_t x)
1747 {
1748 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1749 }
1750
1751#endif
1752
1753#endif
1754
1755/* ECB.H END */
1756
1757#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1758/* if your architecture doesn't need memory fences, e.g. because it is
1759 * single-cpu/core, or if you use libev in a project that doesn't use libev
1760 * from multiple threads, then you can define ECB_NO_THREADS when compiling
1761 * libev, in which cases the memory fences become nops.
1762 * alternatively, you can remove this #error and link against libpthread,
1763 * which will then provide the memory fences.
1764 */
1765# error "memory fences not defined for your architecture, please report"
1766#endif
1767
1768#ifndef ECB_MEMORY_FENCE
1769# define ECB_MEMORY_FENCE do { } while (0)
1770# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1771# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1772#endif
1773
1774#define inline_size ecb_inline
1775
1776#if EV_FEATURE_CODE
386# define inline_speed static inline 1777# define inline_speed ecb_inline
1778#else
1779# define inline_speed ecb_noinline static
387#endif 1780#endif
388 1781
1782/*****************************************************************************/
1783/* raw syscall wrappers */
1784
1785#if EV_NEED_SYSCALL
1786
1787#include <sys/syscall.h>
1788
1789/*
1790 * define some syscall wrappers for common architectures
1791 * this is mostly for nice looks during debugging, not performance.
1792 * our syscalls return < 0, not == -1, on error. which is good
1793 * enough for linux aio.
1794 * TODO: arm is also common nowadays, maybe even mips and x86
1795 * TODO: after implementing this, it suddenly looks like overkill, but its hard to remove...
1796 */
1797#if __GNUC__ && __linux && ECB_AMD64 && !EV_FEATURE_CODE
1798 /* the costly errno access probably kills this for size optimisation */
1799
1800 #define ev_syscall(nr,narg,arg1,arg2,arg3,arg4,arg5,arg6) \
1801 ({ \
1802 long res; \
1803 register unsigned long r6 __asm__ ("r9" ); \
1804 register unsigned long r5 __asm__ ("r8" ); \
1805 register unsigned long r4 __asm__ ("r10"); \
1806 register unsigned long r3 __asm__ ("rdx"); \
1807 register unsigned long r2 __asm__ ("rsi"); \
1808 register unsigned long r1 __asm__ ("rdi"); \
1809 if (narg >= 6) r6 = (unsigned long)(arg6); \
1810 if (narg >= 5) r5 = (unsigned long)(arg5); \
1811 if (narg >= 4) r4 = (unsigned long)(arg4); \
1812 if (narg >= 3) r3 = (unsigned long)(arg3); \
1813 if (narg >= 2) r2 = (unsigned long)(arg2); \
1814 if (narg >= 1) r1 = (unsigned long)(arg1); \
1815 __asm__ __volatile__ ( \
1816 "syscall\n\t" \
1817 : "=a" (res) \
1818 : "0" (nr), "r" (r1), "r" (r2), "r" (r3), "r" (r4), "r" (r5) \
1819 : "cc", "r11", "cx", "memory"); \
1820 errno = -res; \
1821 res; \
1822 })
1823
1824#endif
1825
1826#ifdef ev_syscall
1827 #define ev_syscall0(nr) ev_syscall (nr, 0, 0, 0, 0, 0, 0, 0)
1828 #define ev_syscall1(nr,arg1) ev_syscall (nr, 1, arg1, 0, 0, 0, 0, 0)
1829 #define ev_syscall2(nr,arg1,arg2) ev_syscall (nr, 2, arg1, arg2, 0, 0, 0, 0)
1830 #define ev_syscall3(nr,arg1,arg2,arg3) ev_syscall (nr, 3, arg1, arg2, arg3, 0, 0, 0)
1831 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) ev_syscall (nr, 3, arg1, arg2, arg3, arg4, 0, 0)
1832 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) ev_syscall (nr, 5, arg1, arg2, arg3, arg4, arg5, 0)
1833 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) ev_syscall (nr, 6, arg1, arg2, arg3, arg4, arg5,arg6)
1834#else
1835 #define ev_syscall0(nr) syscall (nr)
1836 #define ev_syscall1(nr,arg1) syscall (nr, arg1)
1837 #define ev_syscall2(nr,arg1,arg2) syscall (nr, arg1, arg2)
1838 #define ev_syscall3(nr,arg1,arg2,arg3) syscall (nr, arg1, arg2, arg3)
1839 #define ev_syscall4(nr,arg1,arg2,arg3,arg4) syscall (nr, arg1, arg2, arg3, arg4)
1840 #define ev_syscall5(nr,arg1,arg2,arg3,arg4,arg5) syscall (nr, arg1, arg2, arg3, arg4, arg5)
1841 #define ev_syscall6(nr,arg1,arg2,arg3,arg4,arg5,arg6) syscall (nr, arg1, arg2, arg3, arg4, arg5,arg6)
1842#endif
1843
1844#endif
1845
1846/*****************************************************************************/
1847
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1848#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1849
1850#if EV_MINPRI == EV_MAXPRI
1851# define ABSPRI(w) (((W)w), 0)
1852#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1853# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1854#endif
391 1855
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1856#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394 1857
395typedef ev_watcher *W; 1858typedef ev_watcher *W;
396typedef ev_watcher_list *WL; 1859typedef ev_watcher_list *WL;
397typedef ev_watcher_time *WT; 1860typedef ev_watcher_time *WT;
398 1861
399#define ev_active(w) ((W)(w))->active 1862#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 1863#define ev_at(w) ((WT)(w))->at
401 1864
402#if EV_USE_REALTIME 1865#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1866/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 1867/* giving it a reasonably high chance of working on typical architectures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1868static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif 1869#endif
407 1870
408#if EV_USE_MONOTONIC 1871#if EV_USE_MONOTONIC
409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1872static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif 1873#endif
411 1874
1875#ifndef EV_FD_TO_WIN32_HANDLE
1876# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1877#endif
1878#ifndef EV_WIN32_HANDLE_TO_FD
1879# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1880#endif
1881#ifndef EV_WIN32_CLOSE_FD
1882# define EV_WIN32_CLOSE_FD(fd) close (fd)
1883#endif
1884
412#ifdef _WIN32 1885#ifdef _WIN32
413# include "ev_win32.c" 1886# include "ev_win32.c"
414#endif 1887#endif
415 1888
416/*****************************************************************************/ 1889/*****************************************************************************/
417 1890
1891#if EV_USE_LINUXAIO
1892# include <linux/aio_abi.h> /* probably only needed for aio_context_t */
1893#endif
1894
1895/* define a suitable floor function (only used by periodics atm) */
1896
1897#if EV_USE_FLOOR
1898# include <math.h>
1899# define ev_floor(v) floor (v)
1900#else
1901
1902#include <float.h>
1903
1904/* a floor() replacement function, should be independent of ev_tstamp type */
1905ecb_noinline
1906static ev_tstamp
1907ev_floor (ev_tstamp v)
1908{
1909 /* the choice of shift factor is not terribly important */
1910#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1911 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1912#else
1913 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1914#endif
1915
1916 /* special treatment for negative arguments */
1917 if (ecb_expect_false (v < 0.))
1918 {
1919 ev_tstamp f = -ev_floor (-v);
1920
1921 return f - (f == v ? 0 : 1);
1922 }
1923
1924 /* argument too large for an unsigned long? then reduce it */
1925 if (ecb_expect_false (v >= shift))
1926 {
1927 ev_tstamp f;
1928
1929 if (v == v - 1.)
1930 return v; /* very large numbers are assumed to be integer */
1931
1932 f = shift * ev_floor (v * (1. / shift));
1933 return f + ev_floor (v - f);
1934 }
1935
1936 /* fits into an unsigned long */
1937 return (unsigned long)v;
1938}
1939
1940#endif
1941
1942/*****************************************************************************/
1943
1944#ifdef __linux
1945# include <sys/utsname.h>
1946#endif
1947
1948ecb_noinline ecb_cold
1949static unsigned int
1950ev_linux_version (void)
1951{
1952#ifdef __linux
1953 unsigned int v = 0;
1954 struct utsname buf;
1955 int i;
1956 char *p = buf.release;
1957
1958 if (uname (&buf))
1959 return 0;
1960
1961 for (i = 3+1; --i; )
1962 {
1963 unsigned int c = 0;
1964
1965 for (;;)
1966 {
1967 if (*p >= '0' && *p <= '9')
1968 c = c * 10 + *p++ - '0';
1969 else
1970 {
1971 p += *p == '.';
1972 break;
1973 }
1974 }
1975
1976 v = (v << 8) | c;
1977 }
1978
1979 return v;
1980#else
1981 return 0;
1982#endif
1983}
1984
1985/*****************************************************************************/
1986
1987#if EV_AVOID_STDIO
1988ecb_noinline ecb_cold
1989static void
1990ev_printerr (const char *msg)
1991{
1992 write (STDERR_FILENO, msg, strlen (msg));
1993}
1994#endif
1995
418static void (*syserr_cb)(const char *msg); 1996static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
419 1997
1998ecb_cold
420void 1999void
421ev_set_syserr_cb (void (*cb)(const char *msg)) 2000ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
422{ 2001{
423 syserr_cb = cb; 2002 syserr_cb = cb;
424} 2003}
425 2004
426static void noinline 2005ecb_noinline ecb_cold
2006static void
427ev_syserr (const char *msg) 2007ev_syserr (const char *msg)
428{ 2008{
429 if (!msg) 2009 if (!msg)
430 msg = "(libev) system error"; 2010 msg = "(libev) system error";
431 2011
432 if (syserr_cb) 2012 if (syserr_cb)
433 syserr_cb (msg); 2013 syserr_cb (msg);
434 else 2014 else
435 { 2015 {
2016#if EV_AVOID_STDIO
2017 ev_printerr (msg);
2018 ev_printerr (": ");
2019 ev_printerr (strerror (errno));
2020 ev_printerr ("\n");
2021#else
436 perror (msg); 2022 perror (msg);
2023#endif
437 abort (); 2024 abort ();
438 } 2025 }
439} 2026}
440 2027
441static void * 2028static void *
442ev_realloc_emul (void *ptr, long size) 2029ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
443{ 2030{
444 /* some systems, notably openbsd and darwin, fail to properly 2031 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and 2032 * implement realloc (x, 0) (as required by both ansi c-89 and
446 * the single unix specification, so work around them here. 2033 * the single unix specification, so work around them here.
2034 * recently, also (at least) fedora and debian started breaking it,
2035 * despite documenting it otherwise.
447 */ 2036 */
448 2037
449 if (size) 2038 if (size)
450 return realloc (ptr, size); 2039 return realloc (ptr, size);
451 2040
452 free (ptr); 2041 free (ptr);
453 return 0; 2042 return 0;
454} 2043}
455 2044
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 2045static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
457 2046
2047ecb_cold
458void 2048void
459ev_set_allocator (void *(*cb)(void *ptr, long size)) 2049ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
460{ 2050{
461 alloc = cb; 2051 alloc = cb;
462} 2052}
463 2053
464inline_speed void * 2054inline_speed void *
466{ 2056{
467 ptr = alloc (ptr, size); 2057 ptr = alloc (ptr, size);
468 2058
469 if (!ptr && size) 2059 if (!ptr && size)
470 { 2060 {
2061#if EV_AVOID_STDIO
2062 ev_printerr ("(libev) memory allocation failed, aborting.\n");
2063#else
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 2064 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
2065#endif
472 abort (); 2066 abort ();
473 } 2067 }
474 2068
475 return ptr; 2069 return ptr;
476} 2070}
478#define ev_malloc(size) ev_realloc (0, (size)) 2072#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 2073#define ev_free(ptr) ev_realloc ((ptr), 0)
480 2074
481/*****************************************************************************/ 2075/*****************************************************************************/
482 2076
2077/* set in reify when reification needed */
2078#define EV_ANFD_REIFY 1
2079
2080/* file descriptor info structure */
483typedef struct 2081typedef struct
484{ 2082{
485 WL head; 2083 WL head;
486 unsigned char events; 2084 unsigned char events; /* the events watched for */
487 unsigned char reify; 2085 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 2086 unsigned char emask; /* some backends store the actual kernel mask in here */
489 unsigned char unused; 2087 unsigned char eflags; /* flags field for use by backends */
490#if EV_USE_EPOLL 2088#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 2089 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 2090#endif
493#if EV_SELECT_IS_WINSOCKET 2091#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
494 SOCKET handle; 2092 SOCKET handle;
495#endif 2093#endif
2094#if EV_USE_IOCP
2095 OVERLAPPED or, ow;
2096#endif
496} ANFD; 2097} ANFD;
497 2098
2099/* stores the pending event set for a given watcher */
498typedef struct 2100typedef struct
499{ 2101{
500 W w; 2102 W w;
501 int events; 2103 int events; /* the pending event set for the given watcher */
502} ANPENDING; 2104} ANPENDING;
503 2105
504#if EV_USE_INOTIFY 2106#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 2107/* hash table entry per inotify-id */
506typedef struct 2108typedef struct
509} ANFS; 2111} ANFS;
510#endif 2112#endif
511 2113
512/* Heap Entry */ 2114/* Heap Entry */
513#if EV_HEAP_CACHE_AT 2115#if EV_HEAP_CACHE_AT
2116 /* a heap element */
514 typedef struct { 2117 typedef struct {
515 ev_tstamp at; 2118 ev_tstamp at;
516 WT w; 2119 WT w;
517 } ANHE; 2120 } ANHE;
518 2121
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 2122 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 2123 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 2124 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 2125#else
2126 /* a heap element */
523 typedef WT ANHE; 2127 typedef WT ANHE;
524 2128
525 #define ANHE_w(he) (he) 2129 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 2130 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 2131 #define ANHE_at_cache(he)
538 #undef VAR 2142 #undef VAR
539 }; 2143 };
540 #include "ev_wrap.h" 2144 #include "ev_wrap.h"
541 2145
542 static struct ev_loop default_loop_struct; 2146 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr; 2147 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
544 2148
545#else 2149#else
546 2150
547 ev_tstamp ev_rt_now; 2151 EV_API_DECL ev_tstamp ev_rt_now = EV_TS_CONST (0.); /* needs to be initialised to make it a definition despite extern */
548 #define VAR(name,decl) static decl; 2152 #define VAR(name,decl) static decl;
549 #include "ev_vars.h" 2153 #include "ev_vars.h"
550 #undef VAR 2154 #undef VAR
551 2155
552 static int ev_default_loop_ptr; 2156 static int ev_default_loop_ptr;
553 2157
554#endif 2158#endif
555 2159
2160#if EV_FEATURE_API
2161# define EV_RELEASE_CB if (ecb_expect_false (release_cb)) release_cb (EV_A)
2162# define EV_ACQUIRE_CB if (ecb_expect_false (acquire_cb)) acquire_cb (EV_A)
2163# define EV_INVOKE_PENDING invoke_cb (EV_A)
2164#else
2165# define EV_RELEASE_CB (void)0
2166# define EV_ACQUIRE_CB (void)0
2167# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
2168#endif
2169
2170#define EVBREAK_RECURSE 0x80
2171
556/*****************************************************************************/ 2172/*****************************************************************************/
557 2173
2174#ifndef EV_HAVE_EV_TIME
558ev_tstamp 2175ev_tstamp
559ev_time (void) 2176ev_time (void) EV_NOEXCEPT
560{ 2177{
561#if EV_USE_REALTIME 2178#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 2179 if (ecb_expect_true (have_realtime))
563 { 2180 {
564 struct timespec ts; 2181 struct timespec ts;
565 clock_gettime (CLOCK_REALTIME, &ts); 2182 clock_gettime (CLOCK_REALTIME, &ts);
566 return ts.tv_sec + ts.tv_nsec * 1e-9; 2183 return EV_TS_GET (ts);
567 } 2184 }
568#endif 2185#endif
569 2186
2187 {
570 struct timeval tv; 2188 struct timeval tv;
571 gettimeofday (&tv, 0); 2189 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 2190 return EV_TV_GET (tv);
2191 }
573} 2192}
2193#endif
574 2194
575ev_tstamp inline_size 2195inline_size ev_tstamp
576get_clock (void) 2196get_clock (void)
577{ 2197{
578#if EV_USE_MONOTONIC 2198#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 2199 if (ecb_expect_true (have_monotonic))
580 { 2200 {
581 struct timespec ts; 2201 struct timespec ts;
582 clock_gettime (CLOCK_MONOTONIC, &ts); 2202 clock_gettime (CLOCK_MONOTONIC, &ts);
583 return ts.tv_sec + ts.tv_nsec * 1e-9; 2203 return EV_TS_GET (ts);
584 } 2204 }
585#endif 2205#endif
586 2206
587 return ev_time (); 2207 return ev_time ();
588} 2208}
589 2209
590#if EV_MULTIPLICITY 2210#if EV_MULTIPLICITY
591ev_tstamp 2211ev_tstamp
592ev_now (EV_P) 2212ev_now (EV_P) EV_NOEXCEPT
593{ 2213{
594 return ev_rt_now; 2214 return ev_rt_now;
595} 2215}
596#endif 2216#endif
597 2217
598void 2218void
599ev_sleep (ev_tstamp delay) 2219ev_sleep (ev_tstamp delay) EV_NOEXCEPT
600{ 2220{
601 if (delay > 0.) 2221 if (delay > EV_TS_CONST (0.))
602 { 2222 {
603#if EV_USE_NANOSLEEP 2223#if EV_USE_NANOSLEEP
604 struct timespec ts; 2224 struct timespec ts;
605 2225
606 ts.tv_sec = (time_t)delay; 2226 EV_TS_SET (ts, delay);
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0); 2227 nanosleep (&ts, 0);
610#elif defined(_WIN32) 2228#elif defined _WIN32
2229 /* maybe this should round up, as ms is very low resolution */
2230 /* compared to select (µs) or nanosleep (ns) */
611 Sleep ((unsigned long)(delay * 1e3)); 2231 Sleep ((unsigned long)(EV_TS_TO_MSEC (delay)));
612#else 2232#else
613 struct timeval tv; 2233 struct timeval tv;
614 2234
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 2235 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 2236 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 2237 /* by older ones */
2238 EV_TV_SET (tv, delay);
621 select (0, 0, 0, 0, &tv); 2239 select (0, 0, 0, 0, &tv);
622#endif 2240#endif
623 } 2241 }
624} 2242}
625 2243
626/*****************************************************************************/ 2244/*****************************************************************************/
627 2245
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 2246#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 2247
630int inline_size 2248/* find a suitable new size for the given array, */
2249/* hopefully by rounding to a nice-to-malloc size */
2250inline_size int
631array_nextsize (int elem, int cur, int cnt) 2251array_nextsize (int elem, int cur, int cnt)
632{ 2252{
633 int ncur = cur + 1; 2253 int ncur = cur + 1;
634 2254
635 do 2255 do
636 ncur <<= 1; 2256 ncur <<= 1;
637 while (cnt > ncur); 2257 while (cnt > ncur);
638 2258
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 2259 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 2260 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 { 2261 {
642 ncur *= elem; 2262 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 2263 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4; 2264 ncur = ncur - sizeof (void *) * 4;
646 } 2266 }
647 2267
648 return ncur; 2268 return ncur;
649} 2269}
650 2270
651static noinline void * 2271ecb_noinline ecb_cold
2272static void *
652array_realloc (int elem, void *base, int *cur, int cnt) 2273array_realloc (int elem, void *base, int *cur, int cnt)
653{ 2274{
654 *cur = array_nextsize (elem, *cur, cnt); 2275 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur); 2276 return ev_realloc (base, elem * *cur);
656} 2277}
657 2278
2279#define array_needsize_noinit(base,offset,count)
2280
658#define array_init_zero(base,count) \ 2281#define array_needsize_zerofill(base,offset,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 2282 memset ((void *)(base + offset), 0, sizeof (*(base)) * (count))
660 2283
661#define array_needsize(type,base,cur,cnt,init) \ 2284#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \ 2285 if (ecb_expect_false ((cnt) > (cur))) \
663 { \ 2286 { \
664 int ocur_ = (cur); \ 2287 ecb_unused int ocur_ = (cur); \
665 (base) = (type *)array_realloc \ 2288 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \ 2289 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \ 2290 init ((base), ocur_, ((cur) - ocur_)); \
668 } 2291 }
669 2292
670#if 0 2293#if 0
671#define array_slim(type,stem) \ 2294#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 2295 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
680#define array_free(stem, idx) \ 2303#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 2304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 2305
683/*****************************************************************************/ 2306/*****************************************************************************/
684 2307
685void noinline 2308/* dummy callback for pending events */
2309ecb_noinline
2310static void
2311pendingcb (EV_P_ ev_prepare *w, int revents)
2312{
2313}
2314
2315ecb_noinline
2316void
686ev_feed_event (EV_P_ void *w, int revents) 2317ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
687{ 2318{
688 W w_ = (W)w; 2319 W w_ = (W)w;
689 int pri = ABSPRI (w_); 2320 int pri = ABSPRI (w_);
690 2321
691 if (expect_false (w_->pending)) 2322 if (ecb_expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents; 2323 pendings [pri][w_->pending - 1].events |= revents;
693 else 2324 else
694 { 2325 {
695 w_->pending = ++pendingcnt [pri]; 2326 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2327 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, array_needsize_noinit);
697 pendings [pri][w_->pending - 1].w = w_; 2328 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 2329 pendings [pri][w_->pending - 1].events = revents;
699 } 2330 }
700}
701 2331
702void inline_speed 2332 pendingpri = NUMPRI - 1;
2333}
2334
2335inline_speed void
2336feed_reverse (EV_P_ W w)
2337{
2338 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, array_needsize_noinit);
2339 rfeeds [rfeedcnt++] = w;
2340}
2341
2342inline_size void
2343feed_reverse_done (EV_P_ int revents)
2344{
2345 do
2346 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2347 while (rfeedcnt);
2348}
2349
2350inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 2351queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 2352{
705 int i; 2353 int i;
706 2354
707 for (i = 0; i < eventcnt; ++i) 2355 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 2356 ev_feed_event (EV_A_ events [i], type);
709} 2357}
710 2358
711/*****************************************************************************/ 2359/*****************************************************************************/
712 2360
713void inline_speed 2361inline_speed void
714fd_event (EV_P_ int fd, int revents) 2362fd_event_nocheck (EV_P_ int fd, int revents)
715{ 2363{
716 ANFD *anfd = anfds + fd; 2364 ANFD *anfd = anfds + fd;
717 ev_io *w; 2365 ev_io *w;
718 2366
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2367 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 2371 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 2372 ev_feed_event (EV_A_ (W)w, ev);
725 } 2373 }
726} 2374}
727 2375
2376/* do not submit kernel events for fds that have reify set */
2377/* because that means they changed while we were polling for new events */
2378inline_speed void
2379fd_event (EV_P_ int fd, int revents)
2380{
2381 ANFD *anfd = anfds + fd;
2382
2383 if (ecb_expect_true (!anfd->reify))
2384 fd_event_nocheck (EV_A_ fd, revents);
2385}
2386
728void 2387void
729ev_feed_fd_event (EV_P_ int fd, int revents) 2388ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
730{ 2389{
731 if (fd >= 0 && fd < anfdmax) 2390 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 2391 fd_event_nocheck (EV_A_ fd, revents);
733} 2392}
734 2393
735void inline_size 2394/* make sure the external fd watch events are in-sync */
2395/* with the kernel/libev internal state */
2396inline_size void
736fd_reify (EV_P) 2397fd_reify (EV_P)
737{ 2398{
738 int i; 2399 int i;
739 2400
2401 /* most backends do not modify the fdchanges list in backend_modify.
2402 * except io_uring, which has fixed-size buffers which might force us
2403 * to handle events in backend_modify, causing fdchanges to be amended,
2404 * which could result in an endless loop.
2405 * to avoid this, we do not dynamically handle fds that were added
2406 * during fd_reify. that means that for those backends, fdchangecnt
2407 * might be non-zero during poll, which must cause them to not block.
2408 * to not put too much of a burden on other backends, this detail
2409 * needs to be handled in the backend.
2410 */
2411 int changecnt = fdchangecnt;
2412
2413#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
740 for (i = 0; i < fdchangecnt; ++i) 2414 for (i = 0; i < changecnt; ++i)
2415 {
2416 int fd = fdchanges [i];
2417 ANFD *anfd = anfds + fd;
2418
2419 if (anfd->reify & EV__IOFDSET && anfd->head)
2420 {
2421 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2422
2423 if (handle != anfd->handle)
2424 {
2425 unsigned long arg;
2426
2427 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2428
2429 /* handle changed, but fd didn't - we need to do it in two steps */
2430 backend_modify (EV_A_ fd, anfd->events, 0);
2431 anfd->events = 0;
2432 anfd->handle = handle;
2433 }
2434 }
2435 }
2436#endif
2437
2438 for (i = 0; i < changecnt; ++i)
741 { 2439 {
742 int fd = fdchanges [i]; 2440 int fd = fdchanges [i];
743 ANFD *anfd = anfds + fd; 2441 ANFD *anfd = anfds + fd;
744 ev_io *w; 2442 ev_io *w;
745 2443
746 unsigned char events = 0; 2444 unsigned char o_events = anfd->events;
2445 unsigned char o_reify = anfd->reify;
747 2446
748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2447 anfd->reify = 0;
749 events |= (unsigned char)w->events;
750 2448
751#if EV_SELECT_IS_WINSOCKET 2449 /*if (ecb_expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
752 if (events)
753 { 2450 {
754 unsigned long arg; 2451 anfd->events = 0;
755 #ifdef EV_FD_TO_WIN32_HANDLE 2452
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
757 #else 2454 anfd->events |= (unsigned char)w->events;
758 anfd->handle = _get_osfhandle (fd); 2455
759 #endif 2456 if (o_events != anfd->events)
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2457 o_reify = EV__IOFDSET; /* actually |= */
761 } 2458 }
762#endif
763 2459
764 { 2460 if (o_reify & EV__IOFDSET)
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events); 2461 backend_modify (EV_A_ fd, o_events, anfd->events);
773 } 2462 }
774 }
775 2463
2464 /* normally, fdchangecnt hasn't changed. if it has, then new fds have been added.
2465 * this is a rare case (see beginning comment in this function), so we copy them to the
2466 * front and hope the backend handles this case.
2467 */
2468 if (ecb_expect_false (fdchangecnt != changecnt))
2469 memmove (fdchanges, fdchanges + changecnt, (fdchangecnt - changecnt) * sizeof (*fdchanges));
2470
776 fdchangecnt = 0; 2471 fdchangecnt -= changecnt;
777} 2472}
778 2473
2474/* something about the given fd changed */
779void inline_size 2475inline_size
2476void
780fd_change (EV_P_ int fd, int flags) 2477fd_change (EV_P_ int fd, int flags)
781{ 2478{
782 unsigned char reify = anfds [fd].reify; 2479 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 2480 anfds [fd].reify = reify | flags;
784 2481
785 if (expect_true (!reify)) 2482 if (ecb_expect_true (!reify))
786 { 2483 {
787 ++fdchangecnt; 2484 ++fdchangecnt;
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, array_needsize_noinit);
789 fdchanges [fdchangecnt - 1] = fd; 2486 fdchanges [fdchangecnt - 1] = fd;
790 } 2487 }
791} 2488}
792 2489
793void inline_speed 2490/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2491inline_speed ecb_cold void
794fd_kill (EV_P_ int fd) 2492fd_kill (EV_P_ int fd)
795{ 2493{
796 ev_io *w; 2494 ev_io *w;
797 2495
798 while ((w = (ev_io *)anfds [fd].head)) 2496 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 2498 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2499 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 2500 }
803} 2501}
804 2502
805int inline_size 2503/* check whether the given fd is actually valid, for error recovery */
2504inline_size ecb_cold int
806fd_valid (int fd) 2505fd_valid (int fd)
807{ 2506{
808#ifdef _WIN32 2507#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 2508 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
810#else 2509#else
811 return fcntl (fd, F_GETFD) != -1; 2510 return fcntl (fd, F_GETFD) != -1;
812#endif 2511#endif
813} 2512}
814 2513
815/* called on EBADF to verify fds */ 2514/* called on EBADF to verify fds */
816static void noinline 2515ecb_noinline ecb_cold
2516static void
817fd_ebadf (EV_P) 2517fd_ebadf (EV_P)
818{ 2518{
819 int fd; 2519 int fd;
820 2520
821 for (fd = 0; fd < anfdmax; ++fd) 2521 for (fd = 0; fd < anfdmax; ++fd)
823 if (!fd_valid (fd) && errno == EBADF) 2523 if (!fd_valid (fd) && errno == EBADF)
824 fd_kill (EV_A_ fd); 2524 fd_kill (EV_A_ fd);
825} 2525}
826 2526
827/* called on ENOMEM in select/poll to kill some fds and retry */ 2527/* called on ENOMEM in select/poll to kill some fds and retry */
828static void noinline 2528ecb_noinline ecb_cold
2529static void
829fd_enomem (EV_P) 2530fd_enomem (EV_P)
830{ 2531{
831 int fd; 2532 int fd;
832 2533
833 for (fd = anfdmax; fd--; ) 2534 for (fd = anfdmax; fd--; )
834 if (anfds [fd].events) 2535 if (anfds [fd].events)
835 { 2536 {
836 fd_kill (EV_A_ fd); 2537 fd_kill (EV_A_ fd);
837 return; 2538 break;
838 } 2539 }
839} 2540}
840 2541
841/* usually called after fork if backend needs to re-arm all fds from scratch */ 2542/* usually called after fork if backend needs to re-arm all fds from scratch */
842static void noinline 2543ecb_noinline
2544static void
843fd_rearm_all (EV_P) 2545fd_rearm_all (EV_P)
844{ 2546{
845 int fd; 2547 int fd;
846 2548
847 for (fd = 0; fd < anfdmax; ++fd) 2549 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 2550 if (anfds [fd].events)
849 { 2551 {
850 anfds [fd].events = 0; 2552 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 2553 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 2554 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 2555 }
854} 2556}
855 2557
2558/* used to prepare libev internal fd's */
2559/* this is not fork-safe */
2560inline_speed void
2561fd_intern (int fd)
2562{
2563#ifdef _WIN32
2564 unsigned long arg = 1;
2565 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2566#else
2567 fcntl (fd, F_SETFD, FD_CLOEXEC);
2568 fcntl (fd, F_SETFL, O_NONBLOCK);
2569#endif
2570}
2571
856/*****************************************************************************/ 2572/*****************************************************************************/
857 2573
858/* 2574/*
859 * the heap functions want a real array index. array index 0 uis guaranteed to not 2575 * the heap functions want a real array index. array index 0 is guaranteed to not
860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2576 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
861 * the branching factor of the d-tree. 2577 * the branching factor of the d-tree.
862 */ 2578 */
863 2579
864/* 2580/*
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 2589#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 2590#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 2591#define UPHEAP_DONE(p,k) ((p) == (k))
876 2592
877/* away from the root */ 2593/* away from the root */
878void inline_speed 2594inline_speed void
879downheap (ANHE *heap, int N, int k) 2595downheap (ANHE *heap, int N, int k)
880{ 2596{
881 ANHE he = heap [k]; 2597 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 2598 ANHE *E = heap + N + HEAP0;
883 2599
886 ev_tstamp minat; 2602 ev_tstamp minat;
887 ANHE *minpos; 2603 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1; 2604 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
889 2605
890 /* find minimum child */ 2606 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E)) 2607 if (ecb_expect_true (pos + DHEAP - 1 < E))
892 { 2608 {
893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2609 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2610 if ( minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2611 if ( minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2612 if ( minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 } 2613 }
898 else if (pos < E) 2614 else if (pos < E)
899 { 2615 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 2616 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 2617 if (pos + 1 < E && minat > ANHE_at (pos [1])) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 2618 if (pos + 2 < E && minat > ANHE_at (pos [2])) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 2619 if (pos + 3 < E && minat > ANHE_at (pos [3])) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 } 2620 }
905 else 2621 else
906 break; 2622 break;
907 2623
908 if (ANHE_at (he) <= minat) 2624 if (ANHE_at (he) <= minat)
916 2632
917 heap [k] = he; 2633 heap [k] = he;
918 ev_active (ANHE_w (he)) = k; 2634 ev_active (ANHE_w (he)) = k;
919} 2635}
920 2636
921#else /* 4HEAP */ 2637#else /* not 4HEAP */
922 2638
923#define HEAP0 1 2639#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 2640#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 2641#define UPHEAP_DONE(p,k) (!(p))
926 2642
927/* away from the root */ 2643/* away from the root */
928void inline_speed 2644inline_speed void
929downheap (ANHE *heap, int N, int k) 2645downheap (ANHE *heap, int N, int k)
930{ 2646{
931 ANHE he = heap [k]; 2647 ANHE he = heap [k];
932 2648
933 for (;;) 2649 for (;;)
934 { 2650 {
935 int c = k << 1; 2651 int c = k << 1;
936 2652
937 if (c > N + HEAP0 - 1) 2653 if (c >= N + HEAP0)
938 break; 2654 break;
939 2655
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 2656 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0; 2657 ? 1 : 0;
942 2658
953 ev_active (ANHE_w (he)) = k; 2669 ev_active (ANHE_w (he)) = k;
954} 2670}
955#endif 2671#endif
956 2672
957/* towards the root */ 2673/* towards the root */
958void inline_speed 2674inline_speed void
959upheap (ANHE *heap, int k) 2675upheap (ANHE *heap, int k)
960{ 2676{
961 ANHE he = heap [k]; 2677 ANHE he = heap [k];
962 2678
963 for (;;) 2679 for (;;)
974 2690
975 heap [k] = he; 2691 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 2692 ev_active (ANHE_w (he)) = k;
977} 2693}
978 2694
979void inline_size 2695/* move an element suitably so it is in a correct place */
2696inline_size void
980adjustheap (ANHE *heap, int N, int k) 2697adjustheap (ANHE *heap, int N, int k)
981{ 2698{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2699 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
983 upheap (heap, k); 2700 upheap (heap, k);
984 else 2701 else
985 downheap (heap, N, k); 2702 downheap (heap, N, k);
986} 2703}
987 2704
988/* rebuild the heap: this function is used only once and executed rarely */ 2705/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 2706inline_size void
990reheap (ANHE *heap, int N) 2707reheap (ANHE *heap, int N)
991{ 2708{
992 int i; 2709 int i;
993 2710
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 2711 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 2714 upheap (heap, i + HEAP0);
998} 2715}
999 2716
1000/*****************************************************************************/ 2717/*****************************************************************************/
1001 2718
2719/* associate signal watchers to a signal */
1002typedef struct 2720typedef struct
1003{ 2721{
2722 EV_ATOMIC_T pending;
2723#if EV_MULTIPLICITY
2724 EV_P;
2725#endif
1004 WL head; 2726 WL head;
1005 EV_ATOMIC_T gotsig;
1006} ANSIG; 2727} ANSIG;
1007 2728
1008static ANSIG *signals; 2729static ANSIG signals [EV_NSIG - 1];
1009static int signalmax;
1010
1011static EV_ATOMIC_T gotsig;
1012 2730
1013/*****************************************************************************/ 2731/*****************************************************************************/
1014 2732
1015void inline_speed 2733#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026 2734
1027static void noinline 2735ecb_noinline ecb_cold
2736static void
1028evpipe_init (EV_P) 2737evpipe_init (EV_P)
1029{ 2738{
1030 if (!ev_is_active (&pipeev)) 2739 if (!ev_is_active (&pipe_w))
2740 {
2741 int fds [2];
2742
2743# if EV_USE_EVENTFD
2744 fds [0] = -1;
2745 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2746 if (fds [1] < 0 && errno == EINVAL)
2747 fds [1] = eventfd (0, 0);
2748
2749 if (fds [1] < 0)
2750# endif
2751 {
2752 while (pipe (fds))
2753 ev_syserr ("(libev) error creating signal/async pipe");
2754
2755 fd_intern (fds [0]);
2756 }
2757
2758 evpipe [0] = fds [0];
2759
2760 if (evpipe [1] < 0)
2761 evpipe [1] = fds [1]; /* first call, set write fd */
2762 else
2763 {
2764 /* on subsequent calls, do not change evpipe [1] */
2765 /* so that evpipe_write can always rely on its value. */
2766 /* this branch does not do anything sensible on windows, */
2767 /* so must not be executed on windows */
2768
2769 dup2 (fds [1], evpipe [1]);
2770 close (fds [1]);
2771 }
2772
2773 fd_intern (evpipe [1]);
2774
2775 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2776 ev_io_start (EV_A_ &pipe_w);
2777 ev_unref (EV_A); /* watcher should not keep loop alive */
1031 { 2778 }
2779}
2780
2781inline_speed void
2782evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2783{
2784 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2785
2786 if (ecb_expect_true (*flag))
2787 return;
2788
2789 *flag = 1;
2790 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2791
2792 pipe_write_skipped = 1;
2793
2794 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2795
2796 if (pipe_write_wanted)
2797 {
2798 int old_errno;
2799
2800 pipe_write_skipped = 0;
2801 ECB_MEMORY_FENCE_RELEASE;
2802
2803 old_errno = errno; /* save errno because write will clobber it */
2804
1032#if EV_USE_EVENTFD 2805#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 2806 if (evpipe [0] < 0)
1034 { 2807 {
1035 evpipe [0] = -1; 2808 uint64_t counter = 1;
1036 fd_intern (evfd); 2809 write (evpipe [1], &counter, sizeof (uint64_t));
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 } 2810 }
1039 else 2811 else
1040#endif 2812#endif
1041 { 2813 {
1042 while (pipe (evpipe)) 2814#ifdef _WIN32
1043 ev_syserr ("(libev) error creating signal/async pipe"); 2815 WSABUF buf;
1044 2816 DWORD sent;
1045 fd_intern (evpipe [0]); 2817 buf.buf = (char *)&buf;
1046 fd_intern (evpipe [1]); 2818 buf.len = 1;
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 2819 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2820#else
2821 write (evpipe [1], &(evpipe [1]), 1);
2822#endif
1048 } 2823 }
1049 2824
1050 ev_io_start (EV_A_ &pipeev); 2825 errno = old_errno;
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 { 2826 }
1060 int old_errno = errno; /* save errno because write might clobber it */ 2827}
1061 2828
1062 *flag = 1; 2829/* called whenever the libev signal pipe */
2830/* got some events (signal, async) */
2831static void
2832pipecb (EV_P_ ev_io *iow, int revents)
2833{
2834 int i;
1063 2835
2836 if (revents & EV_READ)
2837 {
1064#if EV_USE_EVENTFD 2838#if EV_USE_EVENTFD
1065 if (evfd >= 0) 2839 if (evpipe [0] < 0)
1066 { 2840 {
1067 uint64_t counter = 1; 2841 uint64_t counter;
1068 write (evfd, &counter, sizeof (uint64_t)); 2842 read (evpipe [1], &counter, sizeof (uint64_t));
1069 } 2843 }
1070 else 2844 else
1071#endif 2845#endif
1072 write (evpipe [1], &old_errno, 1); 2846 {
1073
1074 errno = old_errno;
1075 }
1076}
1077
1078static void
1079pipecb (EV_P_ ev_io *iow, int revents)
1080{
1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
1086 }
1087 else
1088#endif
1089 {
1090 char dummy; 2847 char dummy[4];
2848#ifdef _WIN32
2849 WSABUF buf;
2850 DWORD recvd;
2851 DWORD flags = 0;
2852 buf.buf = dummy;
2853 buf.len = sizeof (dummy);
2854 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2855#else
1091 read (evpipe [0], &dummy, 1); 2856 read (evpipe [0], &dummy, sizeof (dummy));
2857#endif
2858 }
2859 }
2860
2861 pipe_write_skipped = 0;
2862
2863 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2864
2865#if EV_SIGNAL_ENABLE
2866 if (sig_pending)
1092 } 2867 {
2868 sig_pending = 0;
1093 2869
1094 if (gotsig && ev_is_default_loop (EV_A)) 2870 ECB_MEMORY_FENCE;
1095 {
1096 int signum;
1097 gotsig = 0;
1098 2871
1099 for (signum = signalmax; signum--; ) 2872 for (i = EV_NSIG - 1; i--; )
1100 if (signals [signum].gotsig) 2873 if (ecb_expect_false (signals [i].pending))
1101 ev_feed_signal_event (EV_A_ signum + 1); 2874 ev_feed_signal_event (EV_A_ i + 1);
1102 } 2875 }
2876#endif
1103 2877
1104#if EV_ASYNC_ENABLE 2878#if EV_ASYNC_ENABLE
1105 if (gotasync) 2879 if (async_pending)
1106 { 2880 {
1107 int i; 2881 async_pending = 0;
1108 gotasync = 0; 2882
2883 ECB_MEMORY_FENCE;
1109 2884
1110 for (i = asynccnt; i--; ) 2885 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent) 2886 if (asyncs [i]->sent)
1112 { 2887 {
1113 asyncs [i]->sent = 0; 2888 asyncs [i]->sent = 0;
2889 ECB_MEMORY_FENCE_RELEASE;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2890 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 } 2891 }
1116 } 2892 }
1117#endif 2893#endif
1118} 2894}
1119 2895
1120/*****************************************************************************/ 2896/*****************************************************************************/
1121 2897
2898void
2899ev_feed_signal (int signum) EV_NOEXCEPT
2900{
2901#if EV_MULTIPLICITY
2902 EV_P;
2903 ECB_MEMORY_FENCE_ACQUIRE;
2904 EV_A = signals [signum - 1].loop;
2905
2906 if (!EV_A)
2907 return;
2908#endif
2909
2910 signals [signum - 1].pending = 1;
2911 evpipe_write (EV_A_ &sig_pending);
2912}
2913
1122static void 2914static void
1123ev_sighandler (int signum) 2915ev_sighandler (int signum)
1124{ 2916{
2917#ifdef _WIN32
2918 signal (signum, ev_sighandler);
2919#endif
2920
2921 ev_feed_signal (signum);
2922}
2923
2924ecb_noinline
2925void
2926ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2927{
2928 WL w;
2929
2930 if (ecb_expect_false (signum <= 0 || signum >= EV_NSIG))
2931 return;
2932
2933 --signum;
2934
1125#if EV_MULTIPLICITY 2935#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct; 2936 /* it is permissible to try to feed a signal to the wrong loop */
1127#endif 2937 /* or, likely more useful, feeding a signal nobody is waiting for */
1128 2938
1129#if _WIN32 2939 if (ecb_expect_false (signals [signum].loop != EV_A))
1130 signal (signum, ev_sighandler);
1131#endif
1132
1133 signals [signum - 1].gotsig = 1;
1134 evpipe_write (EV_A_ &gotsig);
1135}
1136
1137void noinline
1138ev_feed_signal_event (EV_P_ int signum)
1139{
1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
1146 --signum;
1147
1148 if (signum < 0 || signum >= signalmax)
1149 return; 2940 return;
2941#endif
1150 2942
1151 signals [signum].gotsig = 0; 2943 signals [signum].pending = 0;
2944 ECB_MEMORY_FENCE_RELEASE;
1152 2945
1153 for (w = signals [signum].head; w; w = w->next) 2946 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2947 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 2948}
1156 2949
2950#if EV_USE_SIGNALFD
2951static void
2952sigfdcb (EV_P_ ev_io *iow, int revents)
2953{
2954 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2955
2956 for (;;)
2957 {
2958 ssize_t res = read (sigfd, si, sizeof (si));
2959
2960 /* not ISO-C, as res might be -1, but works with SuS */
2961 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2962 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2963
2964 if (res < (ssize_t)sizeof (si))
2965 break;
2966 }
2967}
2968#endif
2969
2970#endif
2971
1157/*****************************************************************************/ 2972/*****************************************************************************/
1158 2973
2974#if EV_CHILD_ENABLE
1159static WL childs [EV_PID_HASHSIZE]; 2975static WL childs [EV_PID_HASHSIZE];
1160
1161#ifndef _WIN32
1162 2976
1163static ev_signal childev; 2977static ev_signal childev;
1164 2978
1165#ifndef WIFCONTINUED 2979#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 2980# define WIFCONTINUED(status) 0
1167#endif 2981#endif
1168 2982
1169void inline_speed 2983/* handle a single child status event */
2984inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 2985child_reap (EV_P_ int chain, int pid, int status)
1171{ 2986{
1172 ev_child *w; 2987 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2988 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 2989
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2990 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 { 2991 {
1177 if ((w->pid == pid || !w->pid) 2992 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1))) 2993 && (!traced || (w->flags & 1)))
1179 { 2994 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2995 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1187 3002
1188#ifndef WCONTINUED 3003#ifndef WCONTINUED
1189# define WCONTINUED 0 3004# define WCONTINUED 0
1190#endif 3005#endif
1191 3006
3007/* called on sigchld etc., calls waitpid */
1192static void 3008static void
1193childcb (EV_P_ ev_signal *sw, int revents) 3009childcb (EV_P_ ev_signal *sw, int revents)
1194{ 3010{
1195 int pid, status; 3011 int pid, status;
1196 3012
1204 /* make sure we are called again until all children have been reaped */ 3020 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */ 3021 /* we need to do it this way so that the callback gets called before we continue */
1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 3022 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1207 3023
1208 child_reap (EV_A_ pid, pid, status); 3024 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1) 3025 if ((EV_PID_HASHSIZE) > 1)
1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 3026 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1211} 3027}
1212 3028
1213#endif 3029#endif
1214 3030
1215/*****************************************************************************/ 3031/*****************************************************************************/
1216 3032
3033#if EV_USE_TIMERFD
3034
3035static void periodics_reschedule (EV_P);
3036
3037static void
3038timerfdcb (EV_P_ ev_io *iow, int revents)
3039{
3040 struct itimerspec its = { 0 };
3041
3042 its.it_value.tv_sec = ev_rt_now + (int)MAX_BLOCKTIME2;
3043 timerfd_settime (timerfd, TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET, &its, 0);
3044
3045 ev_rt_now = ev_time ();
3046 /* periodics_reschedule only needs ev_rt_now */
3047 /* but maybe in the future we want the full treatment. */
3048 /*
3049 now_floor = EV_TS_CONST (0.);
3050 time_update (EV_A_ EV_TSTAMP_HUGE);
3051 */
3052#if EV_PERIODIC_ENABLE
3053 periodics_reschedule (EV_A);
3054#endif
3055}
3056
3057ecb_noinline ecb_cold
3058static void
3059evtimerfd_init (EV_P)
3060{
3061 if (!ev_is_active (&timerfd_w))
3062 {
3063 timerfd = timerfd_create (CLOCK_REALTIME, TFD_NONBLOCK | TFD_CLOEXEC);
3064
3065 if (timerfd >= 0)
3066 {
3067 fd_intern (timerfd); /* just to be sure */
3068
3069 ev_io_init (&timerfd_w, timerfdcb, timerfd, EV_READ);
3070 ev_set_priority (&timerfd_w, EV_MINPRI);
3071 ev_io_start (EV_A_ &timerfd_w);
3072 ev_unref (EV_A); /* watcher should not keep loop alive */
3073
3074 /* (re-) arm timer */
3075 timerfdcb (EV_A_ 0, 0);
3076 }
3077 }
3078}
3079
3080#endif
3081
3082/*****************************************************************************/
3083
3084#if EV_USE_IOCP
3085# include "ev_iocp.c"
3086#endif
1217#if EV_USE_PORT 3087#if EV_USE_PORT
1218# include "ev_port.c" 3088# include "ev_port.c"
1219#endif 3089#endif
1220#if EV_USE_KQUEUE 3090#if EV_USE_KQUEUE
1221# include "ev_kqueue.c" 3091# include "ev_kqueue.c"
1222#endif 3092#endif
1223#if EV_USE_EPOLL 3093#if EV_USE_EPOLL
1224# include "ev_epoll.c" 3094# include "ev_epoll.c"
1225#endif 3095#endif
3096#if EV_USE_LINUXAIO
3097# include "ev_linuxaio.c"
3098#endif
3099#if EV_USE_IOURING
3100# include "ev_iouring.c"
3101#endif
1226#if EV_USE_POLL 3102#if EV_USE_POLL
1227# include "ev_poll.c" 3103# include "ev_poll.c"
1228#endif 3104#endif
1229#if EV_USE_SELECT 3105#if EV_USE_SELECT
1230# include "ev_select.c" 3106# include "ev_select.c"
1231#endif 3107#endif
1232 3108
1233int 3109ecb_cold int
1234ev_version_major (void) 3110ev_version_major (void) EV_NOEXCEPT
1235{ 3111{
1236 return EV_VERSION_MAJOR; 3112 return EV_VERSION_MAJOR;
1237} 3113}
1238 3114
1239int 3115ecb_cold int
1240ev_version_minor (void) 3116ev_version_minor (void) EV_NOEXCEPT
1241{ 3117{
1242 return EV_VERSION_MINOR; 3118 return EV_VERSION_MINOR;
1243} 3119}
1244 3120
1245/* return true if we are running with elevated privileges and should ignore env variables */ 3121/* return true if we are running with elevated privileges and should ignore env variables */
1246int inline_size 3122inline_size ecb_cold int
1247enable_secure (void) 3123enable_secure (void)
1248{ 3124{
1249#ifdef _WIN32 3125#ifdef _WIN32
1250 return 0; 3126 return 0;
1251#else 3127#else
1252 return getuid () != geteuid () 3128 return getuid () != geteuid ()
1253 || getgid () != getegid (); 3129 || getgid () != getegid ();
1254#endif 3130#endif
1255} 3131}
1256 3132
3133ecb_cold
1257unsigned int 3134unsigned int
1258ev_supported_backends (void) 3135ev_supported_backends (void) EV_NOEXCEPT
1259{ 3136{
1260 unsigned int flags = 0; 3137 unsigned int flags = 0;
1261 3138
1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 3139 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 3140 if (EV_USE_KQUEUE ) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 3141 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 3142 if (EV_USE_LINUXAIO ) flags |= EVBACKEND_LINUXAIO;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 3143 if (EV_USE_IOURING && ev_linux_version () >= 0x050601) flags |= EVBACKEND_IOURING; /* 5.6.1+ */
1267 3144 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
3145 if (EV_USE_SELECT ) flags |= EVBACKEND_SELECT;
3146
1268 return flags; 3147 return flags;
1269} 3148}
1270 3149
3150ecb_cold
1271unsigned int 3151unsigned int
1272ev_recommended_backends (void) 3152ev_recommended_backends (void) EV_NOEXCEPT
1273{ 3153{
1274 unsigned int flags = ev_supported_backends (); 3154 unsigned int flags = ev_supported_backends ();
1275 3155
1276#ifndef __NetBSD__ 3156#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */ 3157 /* kqueue is borked on everything but netbsd apparently */
1281#ifdef __APPLE__ 3161#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */ 3162 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 3163 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 3164 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif 3165#endif
3166#ifdef __FreeBSD__
3167 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
3168#endif
3169
3170 /* TODO: linuxaio is very experimental */
3171#if !EV_RECOMMEND_LINUXAIO
3172 flags &= ~EVBACKEND_LINUXAIO;
3173#endif
3174 /* TODO: iouring is super experimental */
3175#if !EV_RECOMMEND_IOURING
3176 flags &= ~EVBACKEND_IOURING;
3177#endif
1286 3178
1287 return flags; 3179 return flags;
1288} 3180}
1289 3181
3182ecb_cold
1290unsigned int 3183unsigned int
1291ev_embeddable_backends (void) 3184ev_embeddable_backends (void) EV_NOEXCEPT
1292{ 3185{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 3186 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT | EVBACKEND_IOURING;
1294 3187
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 3188 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */ 3189 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1297 flags &= ~EVBACKEND_EPOLL; 3190 flags &= ~EVBACKEND_EPOLL;
3191
3192 /* EVBACKEND_LINUXAIO is theoretically embeddable, but suffers from a performance overhead */
1298 3193
1299 return flags; 3194 return flags;
1300} 3195}
1301 3196
1302unsigned int 3197unsigned int
1303ev_backend (EV_P) 3198ev_backend (EV_P) EV_NOEXCEPT
1304{ 3199{
1305 return backend; 3200 return backend;
1306} 3201}
1307 3202
3203#if EV_FEATURE_API
1308unsigned int 3204unsigned int
1309ev_loop_count (EV_P) 3205ev_iteration (EV_P) EV_NOEXCEPT
1310{ 3206{
1311 return loop_count; 3207 return loop_count;
1312} 3208}
1313 3209
3210unsigned int
3211ev_depth (EV_P) EV_NOEXCEPT
3212{
3213 return loop_depth;
3214}
3215
1314void 3216void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 3217ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1316{ 3218{
1317 io_blocktime = interval; 3219 io_blocktime = interval;
1318} 3220}
1319 3221
1320void 3222void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 3223ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
1322{ 3224{
1323 timeout_blocktime = interval; 3225 timeout_blocktime = interval;
1324} 3226}
1325 3227
1326static void noinline 3228void
3229ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
3230{
3231 userdata = data;
3232}
3233
3234void *
3235ev_userdata (EV_P) EV_NOEXCEPT
3236{
3237 return userdata;
3238}
3239
3240void
3241ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
3242{
3243 invoke_cb = invoke_pending_cb;
3244}
3245
3246void
3247ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
3248{
3249 release_cb = release;
3250 acquire_cb = acquire;
3251}
3252#endif
3253
3254/* initialise a loop structure, must be zero-initialised */
3255ecb_noinline ecb_cold
3256static void
1327loop_init (EV_P_ unsigned int flags) 3257loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
1328{ 3258{
1329 if (!backend) 3259 if (!backend)
1330 { 3260 {
3261 origflags = flags;
3262
1331#if EV_USE_REALTIME 3263#if EV_USE_REALTIME
1332 if (!have_realtime) 3264 if (!have_realtime)
1333 { 3265 {
1334 struct timespec ts; 3266 struct timespec ts;
1335 3267
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 3278 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1; 3279 have_monotonic = 1;
1348 } 3280 }
1349#endif 3281#endif
1350 3282
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */ 3283 /* pid check not overridable via env */
1366#ifndef _WIN32 3284#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 3285 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 3286 curpid = getpid ();
1369#endif 3287#endif
1371 if (!(flags & EVFLAG_NOENV) 3289 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure () 3290 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS")) 3291 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS")); 3292 flags = atoi (getenv ("LIBEV_FLAGS"));
1375 3293
1376 if (!(flags & 0x0000ffffU)) 3294 ev_rt_now = ev_time ();
3295 mn_now = get_clock ();
3296 now_floor = mn_now;
3297 rtmn_diff = ev_rt_now - mn_now;
3298#if EV_FEATURE_API
3299 invoke_cb = ev_invoke_pending;
3300#endif
3301
3302 io_blocktime = 0.;
3303 timeout_blocktime = 0.;
3304 backend = 0;
3305 backend_fd = -1;
3306 sig_pending = 0;
3307#if EV_ASYNC_ENABLE
3308 async_pending = 0;
3309#endif
3310 pipe_write_skipped = 0;
3311 pipe_write_wanted = 0;
3312 evpipe [0] = -1;
3313 evpipe [1] = -1;
3314#if EV_USE_INOTIFY
3315 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
3316#endif
3317#if EV_USE_SIGNALFD
3318 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
3319#endif
3320#if EV_USE_TIMERFD
3321 timerfd = flags & EVFLAG_NOTIMERFD ? -1 : -2;
3322#endif
3323
3324 if (!(flags & EVBACKEND_MASK))
1377 flags |= ev_recommended_backends (); 3325 flags |= ev_recommended_backends ();
1378 3326
3327#if EV_USE_IOCP
3328 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
3329#endif
1379#if EV_USE_PORT 3330#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 3331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif 3332#endif
1382#if EV_USE_KQUEUE 3333#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 3334 if (!backend && (flags & EVBACKEND_KQUEUE )) backend = kqueue_init (EV_A_ flags);
3335#endif
3336#if EV_USE_IOURING
3337 if (!backend && (flags & EVBACKEND_IOURING )) backend = iouring_init (EV_A_ flags);
3338#endif
3339#if EV_USE_LINUXAIO
3340 if (!backend && (flags & EVBACKEND_LINUXAIO)) backend = linuxaio_init (EV_A_ flags);
1384#endif 3341#endif
1385#if EV_USE_EPOLL 3342#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags); 3343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif 3344#endif
1388#if EV_USE_POLL 3345#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags); 3346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif 3347#endif
1391#if EV_USE_SELECT 3348#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 3349 if (!backend && (flags & EVBACKEND_SELECT )) backend = select_init (EV_A_ flags);
1393#endif 3350#endif
1394 3351
3352 ev_prepare_init (&pending_w, pendingcb);
3353
3354#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1395 ev_init (&pipeev, pipecb); 3355 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 3356 ev_set_priority (&pipe_w, EV_MAXPRI);
3357#endif
1397 } 3358 }
1398} 3359}
1399 3360
1400static void noinline 3361/* free up a loop structure */
3362ecb_cold
3363void
1401loop_destroy (EV_P) 3364ev_loop_destroy (EV_P)
1402{ 3365{
1403 int i; 3366 int i;
1404 3367
3368#if EV_MULTIPLICITY
3369 /* mimic free (0) */
3370 if (!EV_A)
3371 return;
3372#endif
3373
3374#if EV_CLEANUP_ENABLE
3375 /* queue cleanup watchers (and execute them) */
3376 if (ecb_expect_false (cleanupcnt))
3377 {
3378 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
3379 EV_INVOKE_PENDING;
3380 }
3381#endif
3382
3383#if EV_CHILD_ENABLE
3384 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
3385 {
3386 ev_ref (EV_A); /* child watcher */
3387 ev_signal_stop (EV_A_ &childev);
3388 }
3389#endif
3390
1405 if (ev_is_active (&pipeev)) 3391 if (ev_is_active (&pipe_w))
1406 { 3392 {
1407 ev_ref (EV_A); /* signal watcher */ 3393 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 3394 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 3395
3396 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
3397 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
3398 }
3399
3400#if EV_USE_SIGNALFD
3401 if (ev_is_active (&sigfd_w))
3402 close (sigfd);
3403#endif
3404
1410#if EV_USE_EVENTFD 3405#if EV_USE_TIMERFD
1411 if (evfd >= 0) 3406 if (ev_is_active (&timerfd_w))
1412 close (evfd); 3407 close (timerfd);
1413#endif 3408#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421 3409
1422#if EV_USE_INOTIFY 3410#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 3411 if (fs_fd >= 0)
1424 close (fs_fd); 3412 close (fs_fd);
1425#endif 3413#endif
1426 3414
1427 if (backend_fd >= 0) 3415 if (backend_fd >= 0)
1428 close (backend_fd); 3416 close (backend_fd);
1429 3417
3418#if EV_USE_IOCP
3419 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3420#endif
1430#if EV_USE_PORT 3421#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3422 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif 3423#endif
1433#if EV_USE_KQUEUE 3424#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3425 if (backend == EVBACKEND_KQUEUE ) kqueue_destroy (EV_A);
3426#endif
3427#if EV_USE_IOURING
3428 if (backend == EVBACKEND_IOURING ) iouring_destroy (EV_A);
3429#endif
3430#if EV_USE_LINUXAIO
3431 if (backend == EVBACKEND_LINUXAIO) linuxaio_destroy (EV_A);
1435#endif 3432#endif
1436#if EV_USE_EPOLL 3433#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 3434 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif 3435#endif
1439#if EV_USE_POLL 3436#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A); 3437 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif 3438#endif
1442#if EV_USE_SELECT 3439#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 3440 if (backend == EVBACKEND_SELECT ) select_destroy (EV_A);
1444#endif 3441#endif
1445 3442
1446 for (i = NUMPRI; i--; ) 3443 for (i = NUMPRI; i--; )
1447 { 3444 {
1448 array_free (pending, [i]); 3445 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE 3446#if EV_IDLE_ENABLE
1450 array_free (idle, [i]); 3447 array_free (idle, [i]);
1451#endif 3448#endif
1452 } 3449 }
1453 3450
1454 ev_free (anfds); anfdmax = 0; 3451 ev_free (anfds); anfds = 0; anfdmax = 0;
1455 3452
1456 /* have to use the microsoft-never-gets-it-right macro */ 3453 /* have to use the microsoft-never-gets-it-right macro */
3454 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 3455 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 3456 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 3457#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 3458 array_free (periodic, EMPTY);
1461#endif 3459#endif
1462#if EV_FORK_ENABLE 3460#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY); 3461 array_free (fork, EMPTY);
1464#endif 3462#endif
3463#if EV_CLEANUP_ENABLE
3464 array_free (cleanup, EMPTY);
3465#endif
1465 array_free (prepare, EMPTY); 3466 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY); 3467 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE 3468#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY); 3469 array_free (async, EMPTY);
1469#endif 3470#endif
1470 3471
1471 backend = 0; 3472 backend = 0;
3473
3474#if EV_MULTIPLICITY
3475 if (ev_is_default_loop (EV_A))
3476#endif
3477 ev_default_loop_ptr = 0;
3478#if EV_MULTIPLICITY
3479 else
3480 ev_free (EV_A);
3481#endif
1472} 3482}
1473 3483
1474#if EV_USE_INOTIFY 3484#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 3485inline_size void infy_fork (EV_P);
1476#endif 3486#endif
1477 3487
1478void inline_size 3488inline_size void
1479loop_fork (EV_P) 3489loop_fork (EV_P)
1480{ 3490{
1481#if EV_USE_PORT 3491#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3492 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 3493#endif
1484#if EV_USE_KQUEUE 3494#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 3495 if (backend == EVBACKEND_KQUEUE ) kqueue_fork (EV_A);
3496#endif
3497#if EV_USE_IOURING
3498 if (backend == EVBACKEND_IOURING ) iouring_fork (EV_A);
3499#endif
3500#if EV_USE_LINUXAIO
3501 if (backend == EVBACKEND_LINUXAIO) linuxaio_fork (EV_A);
1486#endif 3502#endif
1487#if EV_USE_EPOLL 3503#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 3504 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif 3505#endif
1490#if EV_USE_INOTIFY 3506#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 3507 infy_fork (EV_A);
1492#endif 3508#endif
1493 3509
1494 if (ev_is_active (&pipeev)) 3510 if (postfork != 2)
1495 { 3511 {
1496 /* this "locks" the handlers against writing to the pipe */ 3512 #if EV_USE_SIGNALFD
1497 /* while we modify the fd vars */ 3513 /* surprisingly, nothing needs to be done for signalfd, according to docs, it does the right thing on fork */
1498 gotsig = 1; 3514 #endif
1499#if EV_ASYNC_ENABLE 3515
1500 gotasync = 1; 3516 #if EV_USE_TIMERFD
1501#endif 3517 if (ev_is_active (&timerfd_w))
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 { 3518 {
1513 close (evpipe [0]); 3519 ev_ref (EV_A);
1514 close (evpipe [1]); 3520 ev_io_stop (EV_A_ &timerfd_w);
3521
3522 close (timerfd);
3523 timerfd = -2;
3524
3525 evtimerfd_init (EV_A);
3526 /* reschedule periodics, in case we missed something */
3527 ev_feed_event (EV_A_ &timerfd_w, EV_CUSTOM);
1515 } 3528 }
1516 3529 #endif
3530
3531 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3532 if (ev_is_active (&pipe_w))
3533 {
3534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3535
3536 ev_ref (EV_A);
3537 ev_io_stop (EV_A_ &pipe_w);
3538
3539 if (evpipe [0] >= 0)
3540 EV_WIN32_CLOSE_FD (evpipe [0]);
3541
1517 evpipe_init (EV_A); 3542 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 3543 /* iterate over everything, in case we missed something before */
1519 pipecb (EV_A_ &pipeev, EV_READ); 3544 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3545 }
3546 #endif
1520 } 3547 }
1521 3548
1522 postfork = 0; 3549 postfork = 0;
1523} 3550}
1524 3551
1525#if EV_MULTIPLICITY 3552#if EV_MULTIPLICITY
1526 3553
3554ecb_cold
1527struct ev_loop * 3555struct ev_loop *
1528ev_loop_new (unsigned int flags) 3556ev_loop_new (unsigned int flags) EV_NOEXCEPT
1529{ 3557{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3558 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 3559
1532 memset (loop, 0, sizeof (struct ev_loop)); 3560 memset (EV_A, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 3561 loop_init (EV_A_ flags);
1535 3562
1536 if (ev_backend (EV_A)) 3563 if (ev_backend (EV_A))
1537 return loop; 3564 return EV_A;
1538 3565
3566 ev_free (EV_A);
1539 return 0; 3567 return 0;
1540} 3568}
1541 3569
1542void 3570#endif /* multiplicity */
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554 3571
1555#if EV_VERIFY 3572#if EV_VERIFY
1556static void noinline 3573ecb_noinline ecb_cold
3574static void
1557verify_watcher (EV_P_ W w) 3575verify_watcher (EV_P_ W w)
1558{ 3576{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3577 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560 3578
1561 if (w->pending) 3579 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3580 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563} 3581}
1564 3582
1565static void noinline 3583ecb_noinline ecb_cold
3584static void
1566verify_heap (EV_P_ ANHE *heap, int N) 3585verify_heap (EV_P_ ANHE *heap, int N)
1567{ 3586{
1568 int i; 3587 int i;
1569 3588
1570 for (i = HEAP0; i < N + HEAP0; ++i) 3589 for (i = HEAP0; i < N + HEAP0; ++i)
1575 3594
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3595 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 } 3596 }
1578} 3597}
1579 3598
1580static void noinline 3599ecb_noinline ecb_cold
3600static void
1581array_verify (EV_P_ W *ws, int cnt) 3601array_verify (EV_P_ W *ws, int cnt)
1582{ 3602{
1583 while (cnt--) 3603 while (cnt--)
1584 { 3604 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3605 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]); 3606 verify_watcher (EV_A_ ws [cnt]);
1587 } 3607 }
1588} 3608}
1589#endif 3609#endif
1590 3610
1591void 3611#if EV_FEATURE_API
1592ev_loop_verify (EV_P) 3612void ecb_cold
3613ev_verify (EV_P) EV_NOEXCEPT
1593{ 3614{
1594#if EV_VERIFY 3615#if EV_VERIFY
1595 int i; 3616 int i;
1596 WL w; 3617 WL w, w2;
1597 3618
1598 assert (activecnt >= -1); 3619 assert (activecnt >= -1);
1599 3620
1600 assert (fdchangemax >= fdchangecnt); 3621 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i) 3622 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3623 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603 3624
1604 assert (anfdmax >= 0); 3625 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i) 3626 for (i = 0; i < anfdmax; ++i)
3627 {
3628 int j = 0;
3629
1606 for (w = anfds [i].head; w; w = w->next) 3630 for (w = w2 = anfds [i].head; w; w = w->next)
1607 { 3631 {
1608 verify_watcher (EV_A_ (W)w); 3632 verify_watcher (EV_A_ (W)w);
3633
3634 if (j++ & 1)
3635 {
3636 assert (("libev: io watcher list contains a loop", w != w2));
3637 w2 = w2->next;
3638 }
3639
1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3640 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3641 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1611 } 3642 }
3643 }
1612 3644
1613 assert (timermax >= timercnt); 3645 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt); 3646 verify_heap (EV_A_ timers, timercnt);
1615 3647
1616#if EV_PERIODIC_ENABLE 3648#if EV_PERIODIC_ENABLE
1631#if EV_FORK_ENABLE 3663#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt); 3664 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt); 3665 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif 3666#endif
1635 3667
3668#if EV_CLEANUP_ENABLE
3669 assert (cleanupmax >= cleanupcnt);
3670 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3671#endif
3672
1636#if EV_ASYNC_ENABLE 3673#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt); 3674 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt); 3675 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif 3676#endif
1640 3677
3678#if EV_PREPARE_ENABLE
1641 assert (preparemax >= preparecnt); 3679 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt); 3680 array_verify (EV_A_ (W *)prepares, preparecnt);
3681#endif
1643 3682
3683#if EV_CHECK_ENABLE
1644 assert (checkmax >= checkcnt); 3684 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt); 3685 array_verify (EV_A_ (W *)checks, checkcnt);
3686#endif
1646 3687
1647# if 0 3688# if 0
3689#if EV_CHILD_ENABLE
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3690 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 3691 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3692#endif
1650# endif 3693# endif
1651#endif 3694#endif
1652} 3695}
1653 3696#endif
1654#endif /* multiplicity */
1655 3697
1656#if EV_MULTIPLICITY 3698#if EV_MULTIPLICITY
3699ecb_cold
1657struct ev_loop * 3700struct ev_loop *
1658ev_default_loop_init (unsigned int flags)
1659#else 3701#else
1660int 3702int
3703#endif
1661ev_default_loop (unsigned int flags) 3704ev_default_loop (unsigned int flags) EV_NOEXCEPT
1662#endif
1663{ 3705{
1664 if (!ev_default_loop_ptr) 3706 if (!ev_default_loop_ptr)
1665 { 3707 {
1666#if EV_MULTIPLICITY 3708#if EV_MULTIPLICITY
1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3709 EV_P = ev_default_loop_ptr = &default_loop_struct;
1668#else 3710#else
1669 ev_default_loop_ptr = 1; 3711 ev_default_loop_ptr = 1;
1670#endif 3712#endif
1671 3713
1672 loop_init (EV_A_ flags); 3714 loop_init (EV_A_ flags);
1673 3715
1674 if (ev_backend (EV_A)) 3716 if (ev_backend (EV_A))
1675 { 3717 {
1676#ifndef _WIN32 3718#if EV_CHILD_ENABLE
1677 ev_signal_init (&childev, childcb, SIGCHLD); 3719 ev_signal_init (&childev, childcb, SIGCHLD);
1678 ev_set_priority (&childev, EV_MAXPRI); 3720 ev_set_priority (&childev, EV_MAXPRI);
1679 ev_signal_start (EV_A_ &childev); 3721 ev_signal_start (EV_A_ &childev);
1680 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3722 ev_unref (EV_A); /* child watcher should not keep loop alive */
1681#endif 3723#endif
1686 3728
1687 return ev_default_loop_ptr; 3729 return ev_default_loop_ptr;
1688} 3730}
1689 3731
1690void 3732void
1691ev_default_destroy (void) 3733ev_loop_fork (EV_P) EV_NOEXCEPT
1692{ 3734{
1693#if EV_MULTIPLICITY 3735 postfork = 1;
1694 struct ev_loop *loop = ev_default_loop_ptr;
1695#endif
1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
1700 ev_ref (EV_A); /* child watcher */
1701 ev_signal_stop (EV_A_ &childev);
1702#endif
1703
1704 loop_destroy (EV_A);
1705}
1706
1707void
1708ev_default_fork (void)
1709{
1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
1713
1714 postfork = 1; /* must be in line with ev_loop_fork */
1715} 3736}
1716 3737
1717/*****************************************************************************/ 3738/*****************************************************************************/
1718 3739
1719void 3740void
1720ev_invoke (EV_P_ void *w, int revents) 3741ev_invoke (EV_P_ void *w, int revents)
1721{ 3742{
1722 EV_CB_INVOKE ((W)w, revents); 3743 EV_CB_INVOKE ((W)w, revents);
1723} 3744}
1724 3745
1725void inline_speed 3746unsigned int
1726call_pending (EV_P) 3747ev_pending_count (EV_P) EV_NOEXCEPT
1727{ 3748{
1728 int pri; 3749 int pri;
3750 unsigned int count = 0;
1729 3751
1730 for (pri = NUMPRI; pri--; ) 3752 for (pri = NUMPRI; pri--; )
3753 count += pendingcnt [pri];
3754
3755 return count;
3756}
3757
3758ecb_noinline
3759void
3760ev_invoke_pending (EV_P)
3761{
3762 pendingpri = NUMPRI;
3763
3764 do
3765 {
3766 --pendingpri;
3767
3768 /* pendingpri possibly gets modified in the inner loop */
1731 while (pendingcnt [pri]) 3769 while (pendingcnt [pendingpri])
1732 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734
1735 if (expect_true (p->w))
1736 { 3770 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 3771 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1738 3772
1739 p->w->pending = 0; 3773 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 3774 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 3775 EV_FREQUENT_CHECK;
1742 } 3776 }
1743 } 3777 }
3778 while (pendingpri);
1744} 3779}
1745 3780
1746#if EV_IDLE_ENABLE 3781#if EV_IDLE_ENABLE
1747void inline_size 3782/* make idle watchers pending. this handles the "call-idle */
3783/* only when higher priorities are idle" logic */
3784inline_size void
1748idle_reify (EV_P) 3785idle_reify (EV_P)
1749{ 3786{
1750 if (expect_false (idleall)) 3787 if (ecb_expect_false (idleall))
1751 { 3788 {
1752 int pri; 3789 int pri;
1753 3790
1754 for (pri = NUMPRI; pri--; ) 3791 for (pri = NUMPRI; pri--; )
1755 { 3792 {
1764 } 3801 }
1765 } 3802 }
1766} 3803}
1767#endif 3804#endif
1768 3805
1769void inline_size 3806/* make timers pending */
3807inline_size void
1770timers_reify (EV_P) 3808timers_reify (EV_P)
1771{ 3809{
1772 EV_FREQUENT_CHECK; 3810 EV_FREQUENT_CHECK;
1773 3811
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 3812 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 3813 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 3814 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 3815 {
3816 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3817
3818 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3819
3820 /* first reschedule or stop timer */
3821 if (w->repeat)
3822 {
1783 ev_at (w) += w->repeat; 3823 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 3824 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 3825 ev_at (w) = mn_now;
1786 3826
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3827 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > EV_TS_CONST (0.)));
1788 3828
1789 ANHE_at_cache (timers [HEAP0]); 3829 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 3830 downheap (timers, timercnt, HEAP0);
3831 }
3832 else
3833 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3834
3835 EV_FREQUENT_CHECK;
3836 feed_reverse (EV_A_ (W)w);
1791 } 3837 }
1792 else 3838 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 3839
1795 EV_FREQUENT_CHECK; 3840 feed_reverse_done (EV_A_ EV_TIMER);
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1797 } 3841 }
1798} 3842}
1799 3843
1800#if EV_PERIODIC_ENABLE 3844#if EV_PERIODIC_ENABLE
1801void inline_size 3845
3846ecb_noinline
3847static void
3848periodic_recalc (EV_P_ ev_periodic *w)
3849{
3850 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3851 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3852
3853 /* the above almost always errs on the low side */
3854 while (at <= ev_rt_now)
3855 {
3856 ev_tstamp nat = at + w->interval;
3857
3858 /* when resolution fails us, we use ev_rt_now */
3859 if (ecb_expect_false (nat == at))
3860 {
3861 at = ev_rt_now;
3862 break;
3863 }
3864
3865 at = nat;
3866 }
3867
3868 ev_at (w) = at;
3869}
3870
3871/* make periodics pending */
3872inline_size void
1802periodics_reify (EV_P) 3873periodics_reify (EV_P)
1803{ 3874{
1804 EV_FREQUENT_CHECK; 3875 EV_FREQUENT_CHECK;
1805 3876
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3877 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 3878 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3879 do
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 3880 {
3881 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3882
3883 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3884
3885 /* first reschedule or stop timer */
3886 if (w->reschedule_cb)
3887 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3888 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 3889
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 3890 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 3891
1819 ANHE_at_cache (periodics [HEAP0]); 3892 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 3893 downheap (periodics, periodiccnt, HEAP0);
3894 }
3895 else if (w->interval)
3896 {
3897 periodic_recalc (EV_A_ w);
3898 ANHE_at_cache (periodics [HEAP0]);
3899 downheap (periodics, periodiccnt, HEAP0);
3900 }
3901 else
3902 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3903
3904 EV_FREQUENT_CHECK;
3905 feed_reverse (EV_A_ (W)w);
1821 } 3906 }
1822 else if (w->interval) 3907 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 3908
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 3909 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 3910 }
1847} 3911}
1848 3912
1849static void noinline 3913/* simply recalculate all periodics */
3914/* TODO: maybe ensure that at least one event happens when jumping forward? */
3915ecb_noinline ecb_cold
3916static void
1850periodics_reschedule (EV_P) 3917periodics_reschedule (EV_P)
1851{ 3918{
1852 int i; 3919 int i;
1853 3920
1854 /* adjust periodics after time jump */ 3921 /* adjust periodics after time jump */
1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3924 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1858 3925
1859 if (w->reschedule_cb) 3926 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3927 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1861 else if (w->interval) 3928 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3929 periodic_recalc (EV_A_ w);
1863 3930
1864 ANHE_at_cache (periodics [i]); 3931 ANHE_at_cache (periodics [i]);
1865 } 3932 }
1866 3933
1867 reheap (periodics, periodiccnt); 3934 reheap (periodics, periodiccnt);
1868} 3935}
1869#endif 3936#endif
1870 3937
1871void inline_speed 3938/* adjust all timers by a given offset */
3939ecb_noinline ecb_cold
3940static void
3941timers_reschedule (EV_P_ ev_tstamp adjust)
3942{
3943 int i;
3944
3945 for (i = 0; i < timercnt; ++i)
3946 {
3947 ANHE *he = timers + i + HEAP0;
3948 ANHE_w (*he)->at += adjust;
3949 ANHE_at_cache (*he);
3950 }
3951}
3952
3953/* fetch new monotonic and realtime times from the kernel */
3954/* also detect if there was a timejump, and act accordingly */
3955inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 3956time_update (EV_P_ ev_tstamp max_block)
1873{ 3957{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 3958#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 3959 if (ecb_expect_true (have_monotonic))
1878 { 3960 {
3961 int i;
1879 ev_tstamp odiff = rtmn_diff; 3962 ev_tstamp odiff = rtmn_diff;
1880 3963
1881 mn_now = get_clock (); 3964 mn_now = get_clock ();
1882 3965
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3966 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */ 3967 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3968 if (ecb_expect_true (mn_now - now_floor < EV_TS_CONST (MIN_TIMEJUMP * .5)))
1886 { 3969 {
1887 ev_rt_now = rtmn_diff + mn_now; 3970 ev_rt_now = rtmn_diff + mn_now;
1888 return; 3971 return;
1889 } 3972 }
1890 3973
1899 * doesn't hurt either as we only do this on time-jumps or 3982 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here. 3983 * in the unlikely event of having been preempted here.
1901 */ 3984 */
1902 for (i = 4; --i; ) 3985 for (i = 4; --i; )
1903 { 3986 {
3987 ev_tstamp diff;
1904 rtmn_diff = ev_rt_now - mn_now; 3988 rtmn_diff = ev_rt_now - mn_now;
1905 3989
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3990 diff = odiff - rtmn_diff;
3991
3992 if (ecb_expect_true ((diff < EV_TS_CONST (0.) ? -diff : diff) < EV_TS_CONST (MIN_TIMEJUMP)))
1907 return; /* all is well */ 3993 return; /* all is well */
1908 3994
1909 ev_rt_now = ev_time (); 3995 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 3996 mn_now = get_clock ();
1911 now_floor = mn_now; 3997 now_floor = mn_now;
1912 } 3998 }
1913 3999
4000 /* no timer adjustment, as the monotonic clock doesn't jump */
4001 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 4002# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 4003 periodics_reschedule (EV_A);
1916# endif 4004# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 4005 }
1920 else 4006 else
1921#endif 4007#endif
1922 { 4008 {
1923 ev_rt_now = ev_time (); 4009 ev_rt_now = ev_time ();
1924 4010
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 4011 if (ecb_expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + EV_TS_CONST (MIN_TIMEJUMP)))
1926 { 4012 {
4013 /* adjust timers. this is easy, as the offset is the same for all of them */
4014 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 4015#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 4016 periodics_reschedule (EV_A);
1929#endif 4017#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 4018 }
1938 4019
1939 mn_now = ev_rt_now; 4020 mn_now = ev_rt_now;
1940 } 4021 }
1941} 4022}
1942 4023
1943void 4024int
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 4025ev_run (EV_P_ int flags)
1965{ 4026{
4027#if EV_FEATURE_API
4028 ++loop_depth;
4029#endif
4030
4031 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
4032
1966 loop_done = EVUNLOOP_CANCEL; 4033 loop_done = EVBREAK_CANCEL;
1967 4034
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 4035 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 4036
1970 do 4037 do
1971 { 4038 {
1972#if EV_VERIFY >= 2 4039#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 4040 ev_verify (EV_A);
1974#endif 4041#endif
1975 4042
1976#ifndef _WIN32 4043#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */ 4044 if (ecb_expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid)) 4045 if (ecb_expect_false (getpid () != curpid))
1979 { 4046 {
1980 curpid = getpid (); 4047 curpid = getpid ();
1981 postfork = 1; 4048 postfork = 1;
1982 } 4049 }
1983#endif 4050#endif
1984 4051
1985#if EV_FORK_ENABLE 4052#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */ 4053 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 4054 if (ecb_expect_false (postfork))
1988 if (forkcnt) 4055 if (forkcnt)
1989 { 4056 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 4057 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 4058 EV_INVOKE_PENDING;
1992 } 4059 }
1993#endif 4060#endif
1994 4061
4062#if EV_PREPARE_ENABLE
1995 /* queue prepare watchers (and execute them) */ 4063 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 4064 if (ecb_expect_false (preparecnt))
1997 { 4065 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 4066 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 4067 EV_INVOKE_PENDING;
2000 } 4068 }
4069#endif
2001 4070
2002 if (expect_false (!activecnt)) 4071 if (ecb_expect_false (loop_done))
2003 break; 4072 break;
2004 4073
2005 /* we might have forked, so reify kernel state if necessary */ 4074 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 4075 if (ecb_expect_false (postfork))
2007 loop_fork (EV_A); 4076 loop_fork (EV_A);
2008 4077
2009 /* update fd-related kernel structures */ 4078 /* update fd-related kernel structures */
2010 fd_reify (EV_A); 4079 fd_reify (EV_A);
2011 4080
2012 /* calculate blocking time */ 4081 /* calculate blocking time */
2013 { 4082 {
2014 ev_tstamp waittime = 0.; 4083 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 4084 ev_tstamp sleeptime = 0.;
2016 4085
4086 /* remember old timestamp for io_blocktime calculation */
4087 ev_tstamp prev_mn_now = mn_now;
4088
4089 /* update time to cancel out callback processing overhead */
4090 time_update (EV_A_ EV_TS_CONST (EV_TSTAMP_HUGE));
4091
4092 /* from now on, we want a pipe-wake-up */
4093 pipe_write_wanted = 1;
4094
4095 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
4096
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 4097 if (ecb_expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2018 { 4098 {
2019 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100);
2021
2022 waittime = MAX_BLOCKTIME; 4099 waittime = EV_TS_CONST (MAX_BLOCKTIME);
4100
4101#if EV_USE_MONOTONIC
4102 if (ecb_expect_true (have_monotonic))
4103 {
4104#if EV_USE_TIMERFD
4105 /* sleep a lot longer when we can reliably detect timejumps */
4106 if (ecb_expect_true (timerfd != -1))
4107 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4108#endif
4109#if !EV_PERIODIC_ENABLE
4110 /* without periodics but with monotonic clock there is no need */
4111 /* for any time jump detection, so sleep longer */
4112 waittime = EV_TS_CONST (MAX_BLOCKTIME2);
4113#endif
4114 }
4115#endif
2023 4116
2024 if (timercnt) 4117 if (timercnt)
2025 { 4118 {
2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 4119 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2027 if (waittime > to) waittime = to; 4120 if (waittime > to) waittime = to;
2028 } 4121 }
2029 4122
2030#if EV_PERIODIC_ENABLE 4123#if EV_PERIODIC_ENABLE
2031 if (periodiccnt) 4124 if (periodiccnt)
2032 { 4125 {
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 4126 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2034 if (waittime > to) waittime = to; 4127 if (waittime > to) waittime = to;
2035 } 4128 }
2036#endif 4129#endif
2037 4130
4131 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 4132 if (ecb_expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 4133 waittime = timeout_blocktime;
2040 4134
2041 sleeptime = waittime - backend_fudge; 4135 /* now there are two more special cases left, either we have
4136 * already-expired timers, so we should not sleep, or we have timers
4137 * that expire very soon, in which case we need to wait for a minimum
4138 * amount of time for some event loop backends.
4139 */
4140 if (ecb_expect_false (waittime < backend_mintime))
4141 waittime = waittime <= EV_TS_CONST (0.)
4142 ? EV_TS_CONST (0.)
4143 : backend_mintime;
2042 4144
4145 /* extra check because io_blocktime is commonly 0 */
2043 if (expect_true (sleeptime > io_blocktime)) 4146 if (ecb_expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 4147 {
4148 sleeptime = io_blocktime - (mn_now - prev_mn_now);
4149
4150 if (sleeptime > waittime - backend_mintime)
4151 sleeptime = waittime - backend_mintime;
4152
4153 if (ecb_expect_true (sleeptime > EV_TS_CONST (0.)))
4154 {
2048 ev_sleep (sleeptime); 4155 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 4156 waittime -= sleeptime;
4157 }
2050 } 4158 }
2051 } 4159 }
2052 4160
4161#if EV_FEATURE_API
2053 ++loop_count; 4162 ++loop_count;
4163#endif
4164 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 4165 backend_poll (EV_A_ waittime);
4166 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
4167
4168 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
4169
4170 ECB_MEMORY_FENCE_ACQUIRE;
4171 if (pipe_write_skipped)
4172 {
4173 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
4174 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
4175 }
2055 4176
2056 /* update ev_rt_now, do magic */ 4177 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 4178 time_update (EV_A_ waittime + sleeptime);
2058 } 4179 }
2059 4180
2066#if EV_IDLE_ENABLE 4187#if EV_IDLE_ENABLE
2067 /* queue idle watchers unless other events are pending */ 4188 /* queue idle watchers unless other events are pending */
2068 idle_reify (EV_A); 4189 idle_reify (EV_A);
2069#endif 4190#endif
2070 4191
4192#if EV_CHECK_ENABLE
2071 /* queue check watchers, to be executed first */ 4193 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 4194 if (ecb_expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 4195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
4196#endif
2074 4197
2075 call_pending (EV_A); 4198 EV_INVOKE_PENDING;
2076 } 4199 }
2077 while (expect_true ( 4200 while (ecb_expect_true (
2078 activecnt 4201 activecnt
2079 && !loop_done 4202 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 4203 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2081 )); 4204 ));
2082 4205
2083 if (loop_done == EVUNLOOP_ONE) 4206 if (loop_done == EVBREAK_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 4207 loop_done = EVBREAK_CANCEL;
4208
4209#if EV_FEATURE_API
4210 --loop_depth;
4211#endif
4212
4213 return activecnt;
2085} 4214}
2086 4215
2087void 4216void
2088ev_unloop (EV_P_ int how) 4217ev_break (EV_P_ int how) EV_NOEXCEPT
2089{ 4218{
2090 loop_done = how; 4219 loop_done = how;
2091} 4220}
2092 4221
4222void
4223ev_ref (EV_P) EV_NOEXCEPT
4224{
4225 ++activecnt;
4226}
4227
4228void
4229ev_unref (EV_P) EV_NOEXCEPT
4230{
4231 --activecnt;
4232}
4233
4234void
4235ev_now_update (EV_P) EV_NOEXCEPT
4236{
4237 time_update (EV_A_ EV_TSTAMP_HUGE);
4238}
4239
4240void
4241ev_suspend (EV_P) EV_NOEXCEPT
4242{
4243 ev_now_update (EV_A);
4244}
4245
4246void
4247ev_resume (EV_P) EV_NOEXCEPT
4248{
4249 ev_tstamp mn_prev = mn_now;
4250
4251 ev_now_update (EV_A);
4252 timers_reschedule (EV_A_ mn_now - mn_prev);
4253#if EV_PERIODIC_ENABLE
4254 /* TODO: really do this? */
4255 periodics_reschedule (EV_A);
4256#endif
4257}
4258
2093/*****************************************************************************/ 4259/*****************************************************************************/
4260/* singly-linked list management, used when the expected list length is short */
2094 4261
2095void inline_size 4262inline_size void
2096wlist_add (WL *head, WL elem) 4263wlist_add (WL *head, WL elem)
2097{ 4264{
2098 elem->next = *head; 4265 elem->next = *head;
2099 *head = elem; 4266 *head = elem;
2100} 4267}
2101 4268
2102void inline_size 4269inline_size void
2103wlist_del (WL *head, WL elem) 4270wlist_del (WL *head, WL elem)
2104{ 4271{
2105 while (*head) 4272 while (*head)
2106 { 4273 {
2107 if (*head == elem) 4274 if (ecb_expect_true (*head == elem))
2108 { 4275 {
2109 *head = elem->next; 4276 *head = elem->next;
2110 return; 4277 break;
2111 } 4278 }
2112 4279
2113 head = &(*head)->next; 4280 head = &(*head)->next;
2114 } 4281 }
2115} 4282}
2116 4283
2117void inline_speed 4284/* internal, faster, version of ev_clear_pending */
4285inline_speed void
2118clear_pending (EV_P_ W w) 4286clear_pending (EV_P_ W w)
2119{ 4287{
2120 if (w->pending) 4288 if (w->pending)
2121 { 4289 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 4290 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 4291 w->pending = 0;
2124 } 4292 }
2125} 4293}
2126 4294
2127int 4295int
2128ev_clear_pending (EV_P_ void *w) 4296ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
2129{ 4297{
2130 W w_ = (W)w; 4298 W w_ = (W)w;
2131 int pending = w_->pending; 4299 int pending = w_->pending;
2132 4300
2133 if (expect_true (pending)) 4301 if (ecb_expect_true (pending))
2134 { 4302 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 4303 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
4304 p->w = (W)&pending_w;
2136 w_->pending = 0; 4305 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 4306 return p->events;
2139 } 4307 }
2140 else 4308 else
2141 return 0; 4309 return 0;
2142} 4310}
2143 4311
2144void inline_size 4312inline_size void
2145pri_adjust (EV_P_ W w) 4313pri_adjust (EV_P_ W w)
2146{ 4314{
2147 int pri = w->priority; 4315 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 4316 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 4317 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 4318 ev_set_priority (w, pri);
2151} 4319}
2152 4320
2153void inline_speed 4321inline_speed void
2154ev_start (EV_P_ W w, int active) 4322ev_start (EV_P_ W w, int active)
2155{ 4323{
2156 pri_adjust (EV_A_ w); 4324 pri_adjust (EV_A_ w);
2157 w->active = active; 4325 w->active = active;
2158 ev_ref (EV_A); 4326 ev_ref (EV_A);
2159} 4327}
2160 4328
2161void inline_size 4329inline_size void
2162ev_stop (EV_P_ W w) 4330ev_stop (EV_P_ W w)
2163{ 4331{
2164 ev_unref (EV_A); 4332 ev_unref (EV_A);
2165 w->active = 0; 4333 w->active = 0;
2166} 4334}
2167 4335
2168/*****************************************************************************/ 4336/*****************************************************************************/
2169 4337
2170void noinline 4338ecb_noinline
4339void
2171ev_io_start (EV_P_ ev_io *w) 4340ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
2172{ 4341{
2173 int fd = w->fd; 4342 int fd = w->fd;
2174 4343
2175 if (expect_false (ev_is_active (w))) 4344 if (ecb_expect_false (ev_is_active (w)))
2176 return; 4345 return;
2177 4346
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 4347 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 4348 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180 4349
4350#if EV_VERIFY >= 2
4351 assert (("libev: ev_io_start called on watcher with invalid fd", fd_valid (fd)));
4352#endif
2181 EV_FREQUENT_CHECK; 4353 EV_FREQUENT_CHECK;
2182 4354
2183 ev_start (EV_A_ (W)w, 1); 4355 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 4356 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_needsize_zerofill);
2185 wlist_add (&anfds[fd].head, (WL)w); 4357 wlist_add (&anfds[fd].head, (WL)w);
2186 4358
4359 /* common bug, apparently */
4360 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
4361
2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 4362 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV__IOFDSET; 4363 w->events &= ~EV__IOFDSET;
2189 4364
2190 EV_FREQUENT_CHECK; 4365 EV_FREQUENT_CHECK;
2191} 4366}
2192 4367
2193void noinline 4368ecb_noinline
4369void
2194ev_io_stop (EV_P_ ev_io *w) 4370ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
2195{ 4371{
2196 clear_pending (EV_A_ (W)w); 4372 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 4373 if (ecb_expect_false (!ev_is_active (w)))
2198 return; 4374 return;
2199 4375
2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 4376 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2201 4377
4378#if EV_VERIFY >= 2
4379 assert (("libev: ev_io_stop called on watcher with invalid fd", fd_valid (w->fd)));
4380#endif
2202 EV_FREQUENT_CHECK; 4381 EV_FREQUENT_CHECK;
2203 4382
2204 wlist_del (&anfds[w->fd].head, (WL)w); 4383 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w); 4384 ev_stop (EV_A_ (W)w);
2206 4385
2207 fd_change (EV_A_ w->fd, 1); 4386 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2208 4387
2209 EV_FREQUENT_CHECK; 4388 EV_FREQUENT_CHECK;
2210} 4389}
2211 4390
2212void noinline 4391ecb_noinline
4392void
2213ev_timer_start (EV_P_ ev_timer *w) 4393ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
2214{ 4394{
2215 if (expect_false (ev_is_active (w))) 4395 if (ecb_expect_false (ev_is_active (w)))
2216 return; 4396 return;
2217 4397
2218 ev_at (w) += mn_now; 4398 ev_at (w) += mn_now;
2219 4399
2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 4400 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2221 4401
2222 EV_FREQUENT_CHECK; 4402 EV_FREQUENT_CHECK;
2223 4403
2224 ++timercnt; 4404 ++timercnt;
2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1); 4405 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 4406 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, array_needsize_noinit);
2227 ANHE_w (timers [ev_active (w)]) = (WT)w; 4407 ANHE_w (timers [ev_active (w)]) = (WT)w;
2228 ANHE_at_cache (timers [ev_active (w)]); 4408 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w)); 4409 upheap (timers, ev_active (w));
2230 4410
2231 EV_FREQUENT_CHECK; 4411 EV_FREQUENT_CHECK;
2232 4412
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 4413 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234} 4414}
2235 4415
2236void noinline 4416ecb_noinline
4417void
2237ev_timer_stop (EV_P_ ev_timer *w) 4418ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
2238{ 4419{
2239 clear_pending (EV_A_ (W)w); 4420 clear_pending (EV_A_ (W)w);
2240 if (expect_false (!ev_is_active (w))) 4421 if (ecb_expect_false (!ev_is_active (w)))
2241 return; 4422 return;
2242 4423
2243 EV_FREQUENT_CHECK; 4424 EV_FREQUENT_CHECK;
2244 4425
2245 { 4426 {
2247 4428
2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 4429 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2249 4430
2250 --timercnt; 4431 --timercnt;
2251 4432
2252 if (expect_true (active < timercnt + HEAP0)) 4433 if (ecb_expect_true (active < timercnt + HEAP0))
2253 { 4434 {
2254 timers [active] = timers [timercnt + HEAP0]; 4435 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active); 4436 adjustheap (timers, timercnt, active);
2256 } 4437 }
2257 } 4438 }
2258 4439
4440 ev_at (w) -= mn_now;
4441
4442 ev_stop (EV_A_ (W)w);
4443
2259 EV_FREQUENT_CHECK; 4444 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
2262
2263 ev_stop (EV_A_ (W)w);
2264} 4445}
2265 4446
2266void noinline 4447ecb_noinline
4448void
2267ev_timer_again (EV_P_ ev_timer *w) 4449ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
2268{ 4450{
2269 EV_FREQUENT_CHECK; 4451 EV_FREQUENT_CHECK;
4452
4453 clear_pending (EV_A_ (W)w);
2270 4454
2271 if (ev_is_active (w)) 4455 if (ev_is_active (w))
2272 { 4456 {
2273 if (w->repeat) 4457 if (w->repeat)
2274 { 4458 {
2286 } 4470 }
2287 4471
2288 EV_FREQUENT_CHECK; 4472 EV_FREQUENT_CHECK;
2289} 4473}
2290 4474
4475ev_tstamp
4476ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
4477{
4478 return ev_at (w) - (ev_is_active (w) ? mn_now : EV_TS_CONST (0.));
4479}
4480
2291#if EV_PERIODIC_ENABLE 4481#if EV_PERIODIC_ENABLE
2292void noinline 4482ecb_noinline
4483void
2293ev_periodic_start (EV_P_ ev_periodic *w) 4484ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
2294{ 4485{
2295 if (expect_false (ev_is_active (w))) 4486 if (ecb_expect_false (ev_is_active (w)))
2296 return; 4487 return;
4488
4489#if EV_USE_TIMERFD
4490 if (timerfd == -2)
4491 evtimerfd_init (EV_A);
4492#endif
2297 4493
2298 if (w->reschedule_cb) 4494 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 4495 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval) 4496 else if (w->interval)
2301 { 4497 {
2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 4498 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2303 /* this formula differs from the one in periodic_reify because we do not always round up */ 4499 periodic_recalc (EV_A_ w);
2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 } 4500 }
2306 else 4501 else
2307 ev_at (w) = w->offset; 4502 ev_at (w) = w->offset;
2308 4503
2309 EV_FREQUENT_CHECK; 4504 EV_FREQUENT_CHECK;
2310 4505
2311 ++periodiccnt; 4506 ++periodiccnt;
2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1); 4507 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 4508 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, array_needsize_noinit);
2314 ANHE_w (periodics [ev_active (w)]) = (WT)w; 4509 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2315 ANHE_at_cache (periodics [ev_active (w)]); 4510 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w)); 4511 upheap (periodics, ev_active (w));
2317 4512
2318 EV_FREQUENT_CHECK; 4513 EV_FREQUENT_CHECK;
2319 4514
2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 4515 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2321} 4516}
2322 4517
2323void noinline 4518ecb_noinline
4519void
2324ev_periodic_stop (EV_P_ ev_periodic *w) 4520ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
2325{ 4521{
2326 clear_pending (EV_A_ (W)w); 4522 clear_pending (EV_A_ (W)w);
2327 if (expect_false (!ev_is_active (w))) 4523 if (ecb_expect_false (!ev_is_active (w)))
2328 return; 4524 return;
2329 4525
2330 EV_FREQUENT_CHECK; 4526 EV_FREQUENT_CHECK;
2331 4527
2332 { 4528 {
2334 4530
2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 4531 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2336 4532
2337 --periodiccnt; 4533 --periodiccnt;
2338 4534
2339 if (expect_true (active < periodiccnt + HEAP0)) 4535 if (ecb_expect_true (active < periodiccnt + HEAP0))
2340 { 4536 {
2341 periodics [active] = periodics [periodiccnt + HEAP0]; 4537 periodics [active] = periodics [periodiccnt + HEAP0];
2342 adjustheap (periodics, periodiccnt, active); 4538 adjustheap (periodics, periodiccnt, active);
2343 } 4539 }
2344 } 4540 }
2345 4541
4542 ev_stop (EV_A_ (W)w);
4543
2346 EV_FREQUENT_CHECK; 4544 EV_FREQUENT_CHECK;
2347
2348 ev_stop (EV_A_ (W)w);
2349} 4545}
2350 4546
2351void noinline 4547ecb_noinline
4548void
2352ev_periodic_again (EV_P_ ev_periodic *w) 4549ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
2353{ 4550{
2354 /* TODO: use adjustheap and recalculation */ 4551 /* TODO: use adjustheap and recalculation */
2355 ev_periodic_stop (EV_A_ w); 4552 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w); 4553 ev_periodic_start (EV_A_ w);
2357} 4554}
2359 4556
2360#ifndef SA_RESTART 4557#ifndef SA_RESTART
2361# define SA_RESTART 0 4558# define SA_RESTART 0
2362#endif 4559#endif
2363 4560
2364void noinline 4561#if EV_SIGNAL_ENABLE
4562
4563ecb_noinline
4564void
2365ev_signal_start (EV_P_ ev_signal *w) 4565ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
2366{ 4566{
4567 if (ecb_expect_false (ev_is_active (w)))
4568 return;
4569
4570 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4571
2367#if EV_MULTIPLICITY 4572#if EV_MULTIPLICITY
2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4573 assert (("libev: a signal must not be attached to two different loops",
2369#endif 4574 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2370 if (expect_false (ev_is_active (w)))
2371 return;
2372 4575
2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 4576 signals [w->signum - 1].loop = EV_A;
2374 4577 ECB_MEMORY_FENCE_RELEASE;
2375 evpipe_init (EV_A); 4578#endif
2376 4579
2377 EV_FREQUENT_CHECK; 4580 EV_FREQUENT_CHECK;
2378 4581
4582#if EV_USE_SIGNALFD
4583 if (sigfd == -2)
2379 { 4584 {
2380#ifndef _WIN32 4585 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2381 sigset_t full, prev; 4586 if (sigfd < 0 && errno == EINVAL)
2382 sigfillset (&full); 4587 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385 4588
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 4589 if (sigfd >= 0)
4590 {
4591 fd_intern (sigfd); /* doing it twice will not hurt */
2387 4592
2388#ifndef _WIN32 4593 sigemptyset (&sigfd_set);
2389 sigprocmask (SIG_SETMASK, &prev, 0); 4594
2390#endif 4595 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4596 ev_set_priority (&sigfd_w, EV_MAXPRI);
4597 ev_io_start (EV_A_ &sigfd_w);
4598 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4599 }
2391 } 4600 }
4601
4602 if (sigfd >= 0)
4603 {
4604 /* TODO: check .head */
4605 sigaddset (&sigfd_set, w->signum);
4606 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4607
4608 signalfd (sigfd, &sigfd_set, 0);
4609 }
4610#endif
2392 4611
2393 ev_start (EV_A_ (W)w, 1); 4612 ev_start (EV_A_ (W)w, 1);
2394 wlist_add (&signals [w->signum - 1].head, (WL)w); 4613 wlist_add (&signals [w->signum - 1].head, (WL)w);
2395 4614
2396 if (!((WL)w)->next) 4615 if (!((WL)w)->next)
4616# if EV_USE_SIGNALFD
4617 if (sigfd < 0) /*TODO*/
4618# endif
2397 { 4619 {
2398#if _WIN32 4620# ifdef _WIN32
4621 evpipe_init (EV_A);
4622
2399 signal (w->signum, ev_sighandler); 4623 signal (w->signum, ev_sighandler);
2400#else 4624# else
2401 struct sigaction sa; 4625 struct sigaction sa;
4626
4627 evpipe_init (EV_A);
4628
2402 sa.sa_handler = ev_sighandler; 4629 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 4630 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 4632 sigaction (w->signum, &sa, 0);
4633
4634 if (origflags & EVFLAG_NOSIGMASK)
4635 {
4636 sigemptyset (&sa.sa_mask);
4637 sigaddset (&sa.sa_mask, w->signum);
4638 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4639 }
2406#endif 4640#endif
2407 } 4641 }
2408 4642
2409 EV_FREQUENT_CHECK; 4643 EV_FREQUENT_CHECK;
2410} 4644}
2411 4645
2412void noinline 4646ecb_noinline
4647void
2413ev_signal_stop (EV_P_ ev_signal *w) 4648ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
2414{ 4649{
2415 clear_pending (EV_A_ (W)w); 4650 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 4651 if (ecb_expect_false (!ev_is_active (w)))
2417 return; 4652 return;
2418 4653
2419 EV_FREQUENT_CHECK; 4654 EV_FREQUENT_CHECK;
2420 4655
2421 wlist_del (&signals [w->signum - 1].head, (WL)w); 4656 wlist_del (&signals [w->signum - 1].head, (WL)w);
2422 ev_stop (EV_A_ (W)w); 4657 ev_stop (EV_A_ (W)w);
2423 4658
2424 if (!signals [w->signum - 1].head) 4659 if (!signals [w->signum - 1].head)
4660 {
4661#if EV_MULTIPLICITY
4662 signals [w->signum - 1].loop = 0; /* unattach from signal */
4663#endif
4664#if EV_USE_SIGNALFD
4665 if (sigfd >= 0)
4666 {
4667 sigset_t ss;
4668
4669 sigemptyset (&ss);
4670 sigaddset (&ss, w->signum);
4671 sigdelset (&sigfd_set, w->signum);
4672
4673 signalfd (sigfd, &sigfd_set, 0);
4674 sigprocmask (SIG_UNBLOCK, &ss, 0);
4675 }
4676 else
4677#endif
2425 signal (w->signum, SIG_DFL); 4678 signal (w->signum, SIG_DFL);
4679 }
2426 4680
2427 EV_FREQUENT_CHECK; 4681 EV_FREQUENT_CHECK;
2428} 4682}
2429 4683
4684#endif
4685
4686#if EV_CHILD_ENABLE
4687
2430void 4688void
2431ev_child_start (EV_P_ ev_child *w) 4689ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
2432{ 4690{
2433#if EV_MULTIPLICITY 4691#if EV_MULTIPLICITY
2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4692 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2435#endif 4693#endif
2436 if (expect_false (ev_is_active (w))) 4694 if (ecb_expect_false (ev_is_active (w)))
2437 return; 4695 return;
2438 4696
2439 EV_FREQUENT_CHECK; 4697 EV_FREQUENT_CHECK;
2440 4698
2441 ev_start (EV_A_ (W)w, 1); 4699 ev_start (EV_A_ (W)w, 1);
2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4700 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2443 4701
2444 EV_FREQUENT_CHECK; 4702 EV_FREQUENT_CHECK;
2445} 4703}
2446 4704
2447void 4705void
2448ev_child_stop (EV_P_ ev_child *w) 4706ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
2449{ 4707{
2450 clear_pending (EV_A_ (W)w); 4708 clear_pending (EV_A_ (W)w);
2451 if (expect_false (!ev_is_active (w))) 4709 if (ecb_expect_false (!ev_is_active (w)))
2452 return; 4710 return;
2453 4711
2454 EV_FREQUENT_CHECK; 4712 EV_FREQUENT_CHECK;
2455 4713
2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4714 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2457 ev_stop (EV_A_ (W)w); 4715 ev_stop (EV_A_ (W)w);
2458 4716
2459 EV_FREQUENT_CHECK; 4717 EV_FREQUENT_CHECK;
2460} 4718}
4719
4720#endif
2461 4721
2462#if EV_STAT_ENABLE 4722#if EV_STAT_ENABLE
2463 4723
2464# ifdef _WIN32 4724# ifdef _WIN32
2465# undef lstat 4725# undef lstat
2468 4728
2469#define DEF_STAT_INTERVAL 5.0074891 4729#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */ 4730#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891 4731#define MIN_STAT_INTERVAL 0.1074891
2472 4732
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4733ecb_noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474 4734
2475#if EV_USE_INOTIFY 4735#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477 4736
2478static void noinline 4737/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4738# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4739
4740ecb_noinline
4741static void
2479infy_add (EV_P_ ev_stat *w) 4742infy_add (EV_P_ ev_stat *w)
2480{ 4743{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4744 w->wd = inotify_add_watch (fs_fd, w->path,
4745 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4746 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4747 | IN_DONT_FOLLOW | IN_MASK_ADD);
2482 4748
2483 if (w->wd < 0) 4749 if (w->wd >= 0)
4750 {
4751 struct statfs sfs;
4752
4753 /* now local changes will be tracked by inotify, but remote changes won't */
4754 /* unless the filesystem is known to be local, we therefore still poll */
4755 /* also do poll on <2.6.25, but with normal frequency */
4756
4757 if (!fs_2625)
4758 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4759 else if (!statfs (w->path, &sfs)
4760 && (sfs.f_type == 0x1373 /* devfs */
4761 || sfs.f_type == 0x4006 /* fat */
4762 || sfs.f_type == 0x4d44 /* msdos */
4763 || sfs.f_type == 0xEF53 /* ext2/3 */
4764 || sfs.f_type == 0x72b6 /* jffs2 */
4765 || sfs.f_type == 0x858458f6 /* ramfs */
4766 || sfs.f_type == 0x5346544e /* ntfs */
4767 || sfs.f_type == 0x3153464a /* jfs */
4768 || sfs.f_type == 0x9123683e /* btrfs */
4769 || sfs.f_type == 0x52654973 /* reiser3 */
4770 || sfs.f_type == 0x01021994 /* tmpfs */
4771 || sfs.f_type == 0x58465342 /* xfs */))
4772 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4773 else
4774 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2484 { 4775 }
4776 else
4777 {
4778 /* can't use inotify, continue to stat */
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4779 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487 4780
2488 /* monitor some parent directory for speedup hints */ 4781 /* if path is not there, monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4782 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */ 4783 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4784 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 { 4785 {
2493 char path [4096]; 4786 char path [4096];
2503 if (!pend || pend == path) 4796 if (!pend || pend == path)
2504 break; 4797 break;
2505 4798
2506 *pend = 0; 4799 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask); 4800 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 } 4801 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4802 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 } 4803 }
2511 } 4804 }
2512 4805
2513 if (w->wd >= 0) 4806 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4807 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2516 4808
2517 /* now local changes will be tracked by inotify, but remote changes won't */ 4809 /* now re-arm timer, if required */
2518 /* unless the filesystem it known to be local, we therefore still poll */ 4810 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer); 4811 ev_timer_again (EV_A_ &w->timer);
2533 } 4812 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2534} 4813}
2535 4814
2536static void noinline 4815ecb_noinline
4816static void
2537infy_del (EV_P_ ev_stat *w) 4817infy_del (EV_P_ ev_stat *w)
2538{ 4818{
2539 int slot; 4819 int slot;
2540 int wd = w->wd; 4820 int wd = w->wd;
2541 4821
2542 if (wd < 0) 4822 if (wd < 0)
2543 return; 4823 return;
2544 4824
2545 w->wd = -2; 4825 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4826 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w); 4827 wlist_del (&fs_hash [slot].head, (WL)w);
2548 4828
2549 /* remove this watcher, if others are watching it, they will rearm */ 4829 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd); 4830 inotify_rm_watch (fs_fd, wd);
2551} 4831}
2552 4832
2553static void noinline 4833ecb_noinline
4834static void
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4835infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{ 4836{
2556 if (slot < 0) 4837 if (slot < 0)
2557 /* overflow, need to check for all hash slots */ 4838 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4839 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2559 infy_wd (EV_A_ slot, wd, ev); 4840 infy_wd (EV_A_ slot, wd, ev);
2560 else 4841 else
2561 { 4842 {
2562 WL w_; 4843 WL w_;
2563 4844
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4845 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2565 { 4846 {
2566 ev_stat *w = (ev_stat *)w_; 4847 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */ 4848 w_ = w_->next; /* lets us remove this watcher and all before it */
2568 4849
2569 if (w->wd == wd || wd == -1) 4850 if (w->wd == wd || wd == -1)
2570 { 4851 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4852 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 { 4853 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4854 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2574 w->wd = -1; 4855 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */ 4856 infy_add (EV_A_ w); /* re-add, no matter what */
2576 } 4857 }
2577 4858
2578 stat_timer_cb (EV_A_ &w->timer, 0); 4859 stat_timer_cb (EV_A_ &w->timer, 0);
2583 4864
2584static void 4865static void
2585infy_cb (EV_P_ ev_io *w, int revents) 4866infy_cb (EV_P_ ev_io *w, int revents)
2586{ 4867{
2587 char buf [EV_INOTIFY_BUFSIZE]; 4868 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs; 4869 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf)); 4870 int len = read (fs_fd, buf, sizeof (buf));
2591 4871
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4872 for (ofs = 0; ofs < len; )
4873 {
4874 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4875 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4876 ofs += sizeof (struct inotify_event) + ev->len;
4877 }
2594} 4878}
2595 4879
2596void inline_size 4880inline_size ecb_cold
4881void
2597check_2625 (EV_P) 4882ev_check_2625 (EV_P)
2598{ 4883{
2599 /* kernels < 2.6.25 are borked 4884 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4885 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 4886 */
2602 struct utsname buf; 4887 if (ev_linux_version () < 0x020619)
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return; 4888 return;
2607 4889
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1; 4890 fs_2625 = 1;
2617} 4891}
2618 4892
2619void inline_size 4893inline_size int
4894infy_newfd (void)
4895{
4896#if defined IN_CLOEXEC && defined IN_NONBLOCK
4897 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4898 if (fd >= 0)
4899 return fd;
4900#endif
4901 return inotify_init ();
4902}
4903
4904inline_size void
2620infy_init (EV_P) 4905infy_init (EV_P)
2621{ 4906{
2622 if (fs_fd != -2) 4907 if (fs_fd != -2)
2623 return; 4908 return;
2624 4909
2625 fs_fd = -1; 4910 fs_fd = -1;
2626 4911
2627 check_2625 (EV_A); 4912 ev_check_2625 (EV_A);
2628 4913
2629 fs_fd = inotify_init (); 4914 fs_fd = infy_newfd ();
2630 4915
2631 if (fs_fd >= 0) 4916 if (fs_fd >= 0)
2632 { 4917 {
4918 fd_intern (fs_fd);
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4919 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI); 4920 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 4921 ev_io_start (EV_A_ &fs_w);
4922 ev_unref (EV_A);
2636 } 4923 }
2637} 4924}
2638 4925
2639void inline_size 4926inline_size void
2640infy_fork (EV_P) 4927infy_fork (EV_P)
2641{ 4928{
2642 int slot; 4929 int slot;
2643 4930
2644 if (fs_fd < 0) 4931 if (fs_fd < 0)
2645 return; 4932 return;
2646 4933
4934 ev_ref (EV_A);
4935 ev_io_stop (EV_A_ &fs_w);
2647 close (fs_fd); 4936 close (fs_fd);
2648 fs_fd = inotify_init (); 4937 fs_fd = infy_newfd ();
2649 4938
4939 if (fs_fd >= 0)
4940 {
4941 fd_intern (fs_fd);
4942 ev_io_set (&fs_w, fs_fd, EV_READ);
4943 ev_io_start (EV_A_ &fs_w);
4944 ev_unref (EV_A);
4945 }
4946
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4947 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2651 { 4948 {
2652 WL w_ = fs_hash [slot].head; 4949 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0; 4950 fs_hash [slot].head = 0;
2654 4951
2655 while (w_) 4952 while (w_)
2660 w->wd = -1; 4957 w->wd = -1;
2661 4958
2662 if (fs_fd >= 0) 4959 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */ 4960 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else 4961 else
4962 {
4963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4964 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2665 ev_timer_again (EV_A_ &w->timer); 4965 ev_timer_again (EV_A_ &w->timer);
4966 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4967 }
2666 } 4968 }
2667 } 4969 }
2668} 4970}
2669 4971
2670#endif 4972#endif
2674#else 4976#else
2675# define EV_LSTAT(p,b) lstat (p, b) 4977# define EV_LSTAT(p,b) lstat (p, b)
2676#endif 4978#endif
2677 4979
2678void 4980void
2679ev_stat_stat (EV_P_ ev_stat *w) 4981ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
2680{ 4982{
2681 if (lstat (w->path, &w->attr) < 0) 4983 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0; 4984 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink) 4985 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1; 4986 w->attr.st_nlink = 1;
2685} 4987}
2686 4988
2687static void noinline 4989ecb_noinline
4990static void
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4991stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{ 4992{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4993 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691 4994
2692 /* we copy this here each the time so that */ 4995 ev_statdata prev = w->attr;
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w); 4996 ev_stat_stat (EV_A_ w);
2696 4997
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4998 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if ( 4999 if (
2699 w->prev.st_dev != w->attr.st_dev 5000 prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino 5001 || prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode 5002 || prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink 5003 || prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid 5004 || prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid 5005 || prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev 5006 || prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size 5007 || prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime 5008 || prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime 5009 || prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime 5010 || prev.st_ctime != w->attr.st_ctime
2710 ) { 5011 ) {
5012 /* we only update w->prev on actual differences */
5013 /* in case we test more often than invoke the callback, */
5014 /* to ensure that prev is always different to attr */
5015 w->prev = prev;
5016
2711 #if EV_USE_INOTIFY 5017 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0) 5018 if (fs_fd >= 0)
2713 { 5019 {
2714 infy_del (EV_A_ w); 5020 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w); 5021 infy_add (EV_A_ w);
2720 ev_feed_event (EV_A_ w, EV_STAT); 5026 ev_feed_event (EV_A_ w, EV_STAT);
2721 } 5027 }
2722} 5028}
2723 5029
2724void 5030void
2725ev_stat_start (EV_P_ ev_stat *w) 5031ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2726{ 5032{
2727 if (expect_false (ev_is_active (w))) 5033 if (ecb_expect_false (ev_is_active (w)))
2728 return; 5034 return;
2729 5035
2730 ev_stat_stat (EV_A_ w); 5036 ev_stat_stat (EV_A_ w);
2731 5037
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval) 5038 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2740 5046
2741 if (fs_fd >= 0) 5047 if (fs_fd >= 0)
2742 infy_add (EV_A_ w); 5048 infy_add (EV_A_ w);
2743 else 5049 else
2744#endif 5050#endif
5051 {
2745 ev_timer_again (EV_A_ &w->timer); 5052 ev_timer_again (EV_A_ &w->timer);
5053 ev_unref (EV_A);
5054 }
2746 5055
2747 ev_start (EV_A_ (W)w, 1); 5056 ev_start (EV_A_ (W)w, 1);
2748 5057
2749 EV_FREQUENT_CHECK; 5058 EV_FREQUENT_CHECK;
2750} 5059}
2751 5060
2752void 5061void
2753ev_stat_stop (EV_P_ ev_stat *w) 5062ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2754{ 5063{
2755 clear_pending (EV_A_ (W)w); 5064 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w))) 5065 if (ecb_expect_false (!ev_is_active (w)))
2757 return; 5066 return;
2758 5067
2759 EV_FREQUENT_CHECK; 5068 EV_FREQUENT_CHECK;
2760 5069
2761#if EV_USE_INOTIFY 5070#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w); 5071 infy_del (EV_A_ w);
2763#endif 5072#endif
5073
5074 if (ev_is_active (&w->timer))
5075 {
5076 ev_ref (EV_A);
2764 ev_timer_stop (EV_A_ &w->timer); 5077 ev_timer_stop (EV_A_ &w->timer);
5078 }
2765 5079
2766 ev_stop (EV_A_ (W)w); 5080 ev_stop (EV_A_ (W)w);
2767 5081
2768 EV_FREQUENT_CHECK; 5082 EV_FREQUENT_CHECK;
2769} 5083}
2770#endif 5084#endif
2771 5085
2772#if EV_IDLE_ENABLE 5086#if EV_IDLE_ENABLE
2773void 5087void
2774ev_idle_start (EV_P_ ev_idle *w) 5088ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2775{ 5089{
2776 if (expect_false (ev_is_active (w))) 5090 if (ecb_expect_false (ev_is_active (w)))
2777 return; 5091 return;
2778 5092
2779 pri_adjust (EV_A_ (W)w); 5093 pri_adjust (EV_A_ (W)w);
2780 5094
2781 EV_FREQUENT_CHECK; 5095 EV_FREQUENT_CHECK;
2784 int active = ++idlecnt [ABSPRI (w)]; 5098 int active = ++idlecnt [ABSPRI (w)];
2785 5099
2786 ++idleall; 5100 ++idleall;
2787 ev_start (EV_A_ (W)w, active); 5101 ev_start (EV_A_ (W)w, active);
2788 5102
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 5103 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, array_needsize_noinit);
2790 idles [ABSPRI (w)][active - 1] = w; 5104 idles [ABSPRI (w)][active - 1] = w;
2791 } 5105 }
2792 5106
2793 EV_FREQUENT_CHECK; 5107 EV_FREQUENT_CHECK;
2794} 5108}
2795 5109
2796void 5110void
2797ev_idle_stop (EV_P_ ev_idle *w) 5111ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2798{ 5112{
2799 clear_pending (EV_A_ (W)w); 5113 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w))) 5114 if (ecb_expect_false (!ev_is_active (w)))
2801 return; 5115 return;
2802 5116
2803 EV_FREQUENT_CHECK; 5117 EV_FREQUENT_CHECK;
2804 5118
2805 { 5119 {
2814 5128
2815 EV_FREQUENT_CHECK; 5129 EV_FREQUENT_CHECK;
2816} 5130}
2817#endif 5131#endif
2818 5132
5133#if EV_PREPARE_ENABLE
2819void 5134void
2820ev_prepare_start (EV_P_ ev_prepare *w) 5135ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2821{ 5136{
2822 if (expect_false (ev_is_active (w))) 5137 if (ecb_expect_false (ev_is_active (w)))
2823 return; 5138 return;
2824 5139
2825 EV_FREQUENT_CHECK; 5140 EV_FREQUENT_CHECK;
2826 5141
2827 ev_start (EV_A_ (W)w, ++preparecnt); 5142 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 5143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, array_needsize_noinit);
2829 prepares [preparecnt - 1] = w; 5144 prepares [preparecnt - 1] = w;
2830 5145
2831 EV_FREQUENT_CHECK; 5146 EV_FREQUENT_CHECK;
2832} 5147}
2833 5148
2834void 5149void
2835ev_prepare_stop (EV_P_ ev_prepare *w) 5150ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2836{ 5151{
2837 clear_pending (EV_A_ (W)w); 5152 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w))) 5153 if (ecb_expect_false (!ev_is_active (w)))
2839 return; 5154 return;
2840 5155
2841 EV_FREQUENT_CHECK; 5156 EV_FREQUENT_CHECK;
2842 5157
2843 { 5158 {
2849 5164
2850 ev_stop (EV_A_ (W)w); 5165 ev_stop (EV_A_ (W)w);
2851 5166
2852 EV_FREQUENT_CHECK; 5167 EV_FREQUENT_CHECK;
2853} 5168}
5169#endif
2854 5170
5171#if EV_CHECK_ENABLE
2855void 5172void
2856ev_check_start (EV_P_ ev_check *w) 5173ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2857{ 5174{
2858 if (expect_false (ev_is_active (w))) 5175 if (ecb_expect_false (ev_is_active (w)))
2859 return; 5176 return;
2860 5177
2861 EV_FREQUENT_CHECK; 5178 EV_FREQUENT_CHECK;
2862 5179
2863 ev_start (EV_A_ (W)w, ++checkcnt); 5180 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 5181 array_needsize (ev_check *, checks, checkmax, checkcnt, array_needsize_noinit);
2865 checks [checkcnt - 1] = w; 5182 checks [checkcnt - 1] = w;
2866 5183
2867 EV_FREQUENT_CHECK; 5184 EV_FREQUENT_CHECK;
2868} 5185}
2869 5186
2870void 5187void
2871ev_check_stop (EV_P_ ev_check *w) 5188ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2872{ 5189{
2873 clear_pending (EV_A_ (W)w); 5190 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w))) 5191 if (ecb_expect_false (!ev_is_active (w)))
2875 return; 5192 return;
2876 5193
2877 EV_FREQUENT_CHECK; 5194 EV_FREQUENT_CHECK;
2878 5195
2879 { 5196 {
2885 5202
2886 ev_stop (EV_A_ (W)w); 5203 ev_stop (EV_A_ (W)w);
2887 5204
2888 EV_FREQUENT_CHECK; 5205 EV_FREQUENT_CHECK;
2889} 5206}
5207#endif
2890 5208
2891#if EV_EMBED_ENABLE 5209#if EV_EMBED_ENABLE
2892void noinline 5210ecb_noinline
5211void
2893ev_embed_sweep (EV_P_ ev_embed *w) 5212ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2894{ 5213{
2895 ev_loop (w->other, EVLOOP_NONBLOCK); 5214 ev_run (w->other, EVRUN_NOWAIT);
2896} 5215}
2897 5216
2898static void 5217static void
2899embed_io_cb (EV_P_ ev_io *io, int revents) 5218embed_io_cb (EV_P_ ev_io *io, int revents)
2900{ 5219{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 5220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902 5221
2903 if (ev_cb (w)) 5222 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED); 5223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else 5224 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK); 5225 ev_run (w->other, EVRUN_NOWAIT);
2907} 5226}
2908 5227
2909static void 5228static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 5229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{ 5230{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 5231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913 5232
2914 { 5233 {
2915 struct ev_loop *loop = w->other; 5234 EV_P = w->other;
2916 5235
2917 while (fdchangecnt) 5236 while (fdchangecnt)
2918 { 5237 {
2919 fd_reify (EV_A); 5238 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5239 ev_run (EV_A_ EVRUN_NOWAIT);
2921 } 5240 }
2922 } 5241 }
2923} 5242}
2924 5243
5244#if EV_FORK_ENABLE
2925static void 5245static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents) 5246embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{ 5247{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork)); 5248 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929 5249
2930 ev_embed_stop (EV_A_ w); 5250 ev_embed_stop (EV_A_ w);
2931 5251
2932 { 5252 {
2933 struct ev_loop *loop = w->other; 5253 EV_P = w->other;
2934 5254
2935 ev_loop_fork (EV_A); 5255 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK); 5256 ev_run (EV_A_ EVRUN_NOWAIT);
2937 } 5257 }
2938 5258
2939 ev_embed_start (EV_A_ w); 5259 ev_embed_start (EV_A_ w);
2940} 5260}
5261#endif
2941 5262
2942#if 0 5263#if 0
2943static void 5264static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents) 5265embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{ 5266{
2946 ev_idle_stop (EV_A_ idle); 5267 ev_idle_stop (EV_A_ idle);
2947} 5268}
2948#endif 5269#endif
2949 5270
2950void 5271void
2951ev_embed_start (EV_P_ ev_embed *w) 5272ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2952{ 5273{
2953 if (expect_false (ev_is_active (w))) 5274 if (ecb_expect_false (ev_is_active (w)))
2954 return; 5275 return;
2955 5276
2956 { 5277 {
2957 struct ev_loop *loop = w->other; 5278 EV_P = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 5279 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 5280 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 } 5281 }
2961 5282
2962 EV_FREQUENT_CHECK; 5283 EV_FREQUENT_CHECK;
2966 5287
2967 ev_prepare_init (&w->prepare, embed_prepare_cb); 5288 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI); 5289 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare); 5290 ev_prepare_start (EV_A_ &w->prepare);
2970 5291
5292#if EV_FORK_ENABLE
2971 ev_fork_init (&w->fork, embed_fork_cb); 5293 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork); 5294 ev_fork_start (EV_A_ &w->fork);
5295#endif
2973 5296
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 5297 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975 5298
2976 ev_start (EV_A_ (W)w, 1); 5299 ev_start (EV_A_ (W)w, 1);
2977 5300
2978 EV_FREQUENT_CHECK; 5301 EV_FREQUENT_CHECK;
2979} 5302}
2980 5303
2981void 5304void
2982ev_embed_stop (EV_P_ ev_embed *w) 5305ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2983{ 5306{
2984 clear_pending (EV_A_ (W)w); 5307 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w))) 5308 if (ecb_expect_false (!ev_is_active (w)))
2986 return; 5309 return;
2987 5310
2988 EV_FREQUENT_CHECK; 5311 EV_FREQUENT_CHECK;
2989 5312
2990 ev_io_stop (EV_A_ &w->io); 5313 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare); 5314 ev_prepare_stop (EV_A_ &w->prepare);
5315#if EV_FORK_ENABLE
2992 ev_fork_stop (EV_A_ &w->fork); 5316 ev_fork_stop (EV_A_ &w->fork);
5317#endif
5318
5319 ev_stop (EV_A_ (W)w);
2993 5320
2994 EV_FREQUENT_CHECK; 5321 EV_FREQUENT_CHECK;
2995} 5322}
2996#endif 5323#endif
2997 5324
2998#if EV_FORK_ENABLE 5325#if EV_FORK_ENABLE
2999void 5326void
3000ev_fork_start (EV_P_ ev_fork *w) 5327ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
3001{ 5328{
3002 if (expect_false (ev_is_active (w))) 5329 if (ecb_expect_false (ev_is_active (w)))
3003 return; 5330 return;
3004 5331
3005 EV_FREQUENT_CHECK; 5332 EV_FREQUENT_CHECK;
3006 5333
3007 ev_start (EV_A_ (W)w, ++forkcnt); 5334 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 5335 array_needsize (ev_fork *, forks, forkmax, forkcnt, array_needsize_noinit);
3009 forks [forkcnt - 1] = w; 5336 forks [forkcnt - 1] = w;
3010 5337
3011 EV_FREQUENT_CHECK; 5338 EV_FREQUENT_CHECK;
3012} 5339}
3013 5340
3014void 5341void
3015ev_fork_stop (EV_P_ ev_fork *w) 5342ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
3016{ 5343{
3017 clear_pending (EV_A_ (W)w); 5344 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w))) 5345 if (ecb_expect_false (!ev_is_active (w)))
3019 return; 5346 return;
3020 5347
3021 EV_FREQUENT_CHECK; 5348 EV_FREQUENT_CHECK;
3022 5349
3023 { 5350 {
3031 5358
3032 EV_FREQUENT_CHECK; 5359 EV_FREQUENT_CHECK;
3033} 5360}
3034#endif 5361#endif
3035 5362
5363#if EV_CLEANUP_ENABLE
5364void
5365ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5366{
5367 if (ecb_expect_false (ev_is_active (w)))
5368 return;
5369
5370 EV_FREQUENT_CHECK;
5371
5372 ev_start (EV_A_ (W)w, ++cleanupcnt);
5373 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, array_needsize_noinit);
5374 cleanups [cleanupcnt - 1] = w;
5375
5376 /* cleanup watchers should never keep a refcount on the loop */
5377 ev_unref (EV_A);
5378 EV_FREQUENT_CHECK;
5379}
5380
5381void
5382ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
5383{
5384 clear_pending (EV_A_ (W)w);
5385 if (ecb_expect_false (!ev_is_active (w)))
5386 return;
5387
5388 EV_FREQUENT_CHECK;
5389 ev_ref (EV_A);
5390
5391 {
5392 int active = ev_active (w);
5393
5394 cleanups [active - 1] = cleanups [--cleanupcnt];
5395 ev_active (cleanups [active - 1]) = active;
5396 }
5397
5398 ev_stop (EV_A_ (W)w);
5399
5400 EV_FREQUENT_CHECK;
5401}
5402#endif
5403
3036#if EV_ASYNC_ENABLE 5404#if EV_ASYNC_ENABLE
3037void 5405void
3038ev_async_start (EV_P_ ev_async *w) 5406ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
3039{ 5407{
3040 if (expect_false (ev_is_active (w))) 5408 if (ecb_expect_false (ev_is_active (w)))
3041 return; 5409 return;
3042 5410
5411 w->sent = 0;
5412
3043 evpipe_init (EV_A); 5413 evpipe_init (EV_A);
3044 5414
3045 EV_FREQUENT_CHECK; 5415 EV_FREQUENT_CHECK;
3046 5416
3047 ev_start (EV_A_ (W)w, ++asynccnt); 5417 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 5418 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, array_needsize_noinit);
3049 asyncs [asynccnt - 1] = w; 5419 asyncs [asynccnt - 1] = w;
3050 5420
3051 EV_FREQUENT_CHECK; 5421 EV_FREQUENT_CHECK;
3052} 5422}
3053 5423
3054void 5424void
3055ev_async_stop (EV_P_ ev_async *w) 5425ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
3056{ 5426{
3057 clear_pending (EV_A_ (W)w); 5427 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w))) 5428 if (ecb_expect_false (!ev_is_active (w)))
3059 return; 5429 return;
3060 5430
3061 EV_FREQUENT_CHECK; 5431 EV_FREQUENT_CHECK;
3062 5432
3063 { 5433 {
3071 5441
3072 EV_FREQUENT_CHECK; 5442 EV_FREQUENT_CHECK;
3073} 5443}
3074 5444
3075void 5445void
3076ev_async_send (EV_P_ ev_async *w) 5446ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
3077{ 5447{
3078 w->sent = 1; 5448 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync); 5449 evpipe_write (EV_A_ &async_pending);
3080} 5450}
3081#endif 5451#endif
3082 5452
3083/*****************************************************************************/ 5453/*****************************************************************************/
3084 5454
3118 5488
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 5489 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3120} 5490}
3121 5491
3122void 5492void
3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5493ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
3124{ 5494{
3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5495 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3126
3127 if (expect_false (!once))
3128 {
3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3130 return;
3131 }
3132 5496
3133 once->cb = cb; 5497 once->cb = cb;
3134 once->arg = arg; 5498 once->arg = arg;
3135 5499
3136 ev_init (&once->io, once_cb_io); 5500 ev_init (&once->io, once_cb_io);
3148 } 5512 }
3149} 5513}
3150 5514
3151/*****************************************************************************/ 5515/*****************************************************************************/
3152 5516
3153#if 0 5517#if EV_WALK_ENABLE
5518ecb_cold
3154void 5519void
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 5520ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
3156{ 5521{
3157 int i, j; 5522 int i, j;
3158 ev_watcher_list *wl, *wn; 5523 ev_watcher_list *wl, *wn;
3159 5524
3160 if (types & (EV_IO | EV_EMBED)) 5525 if (types & (EV_IO | EV_EMBED))
3174#if EV_USE_INOTIFY 5539#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb) 5540 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ; 5541 ;
3177 else 5542 else
3178#endif 5543#endif
3179 if ((ev_io *)wl != &pipeev) 5544 if ((ev_io *)wl != &pipe_w)
3180 if (types & EV_IO) 5545 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl); 5546 cb (EV_A_ EV_IO, wl);
3182 5547
3183 wl = wn; 5548 wl = wn;
3184 } 5549 }
3203 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5568 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3204#endif 5569#endif
3205 5570
3206#if EV_IDLE_ENABLE 5571#if EV_IDLE_ENABLE
3207 if (types & EV_IDLE) 5572 if (types & EV_IDLE)
3208 for (j = NUMPRI; i--; ) 5573 for (j = NUMPRI; j--; )
3209 for (i = idlecnt [j]; i--; ) 5574 for (i = idlecnt [j]; i--; )
3210 cb (EV_A_ EV_IDLE, idles [j][i]); 5575 cb (EV_A_ EV_IDLE, idles [j][i]);
3211#endif 5576#endif
3212 5577
3213#if EV_FORK_ENABLE 5578#if EV_FORK_ENABLE
3221 if (types & EV_ASYNC) 5586 if (types & EV_ASYNC)
3222 for (i = asynccnt; i--; ) 5587 for (i = asynccnt; i--; )
3223 cb (EV_A_ EV_ASYNC, asyncs [i]); 5588 cb (EV_A_ EV_ASYNC, asyncs [i]);
3224#endif 5589#endif
3225 5590
5591#if EV_PREPARE_ENABLE
3226 if (types & EV_PREPARE) 5592 if (types & EV_PREPARE)
3227 for (i = preparecnt; i--; ) 5593 for (i = preparecnt; i--; )
3228#if EV_EMBED_ENABLE 5594# if EV_EMBED_ENABLE
3229 if (ev_cb (prepares [i]) != embed_prepare_cb) 5595 if (ev_cb (prepares [i]) != embed_prepare_cb)
3230#endif 5596# endif
3231 cb (EV_A_ EV_PREPARE, prepares [i]); 5597 cb (EV_A_ EV_PREPARE, prepares [i]);
5598#endif
3232 5599
5600#if EV_CHECK_ENABLE
3233 if (types & EV_CHECK) 5601 if (types & EV_CHECK)
3234 for (i = checkcnt; i--; ) 5602 for (i = checkcnt; i--; )
3235 cb (EV_A_ EV_CHECK, checks [i]); 5603 cb (EV_A_ EV_CHECK, checks [i]);
5604#endif
3236 5605
5606#if EV_SIGNAL_ENABLE
3237 if (types & EV_SIGNAL) 5607 if (types & EV_SIGNAL)
3238 for (i = 0; i < signalmax; ++i) 5608 for (i = 0; i < EV_NSIG - 1; ++i)
3239 for (wl = signals [i].head; wl; ) 5609 for (wl = signals [i].head; wl; )
3240 { 5610 {
3241 wn = wl->next; 5611 wn = wl->next;
3242 cb (EV_A_ EV_SIGNAL, wl); 5612 cb (EV_A_ EV_SIGNAL, wl);
3243 wl = wn; 5613 wl = wn;
3244 } 5614 }
5615#endif
3245 5616
5617#if EV_CHILD_ENABLE
3246 if (types & EV_CHILD) 5618 if (types & EV_CHILD)
3247 for (i = EV_PID_HASHSIZE; i--; ) 5619 for (i = (EV_PID_HASHSIZE); i--; )
3248 for (wl = childs [i]; wl; ) 5620 for (wl = childs [i]; wl; )
3249 { 5621 {
3250 wn = wl->next; 5622 wn = wl->next;
3251 cb (EV_A_ EV_CHILD, wl); 5623 cb (EV_A_ EV_CHILD, wl);
3252 wl = wn; 5624 wl = wn;
3253 } 5625 }
5626#endif
3254/* EV_STAT 0x00001000 /* stat data changed */ 5627/* EV_STAT 0x00001000 /* stat data changed */
3255/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5628/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3256} 5629}
3257#endif 5630#endif
3258 5631
3259#if EV_MULTIPLICITY 5632#if EV_MULTIPLICITY
3260 #include "ev_wrap.h" 5633 #include "ev_wrap.h"
3261#endif 5634#endif
3262 5635
3263#ifdef __cplusplus
3264}
3265#endif
3266

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines