ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC vs.
Revision 1.54 by root, Sun Nov 4 00:24:16 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
31#endif 33#endif
32 34
33#include <math.h> 35#include <math.h>
34#include <stdlib.h> 36#include <stdlib.h>
40#include <stdio.h> 42#include <stdio.h>
41 43
42#include <assert.h> 44#include <assert.h>
43#include <errno.h> 45#include <errno.h>
44#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
45#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
46#include <sys/time.h> 50#include <sys/time.h>
47#include <time.h> 51#include <time.h>
48 52
53/**/
54
49#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
52# endif
53#endif 57#endif
54 58
55#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
57#endif 61#endif
58 62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
59#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
61#endif 69#endif
62 70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
63#ifndef EV_USE_REALTIME 75#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 76# define EV_USE_REALTIME 1
65#endif 77#endif
78
79/**/
80
81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0
84#endif
85
86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
89#endif
90
91/**/
66 92
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 97
71#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 113
73typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
76 117
77static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80
81static int have_monotonic; /* runtime */
82
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
84static void (*method_modify)(int fd, int oev, int nev);
85static void (*method_poll)(ev_tstamp timeout);
86 119
87/*****************************************************************************/ 120/*****************************************************************************/
88 121
89ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#ifdef EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
90ev_time (void) 156ev_time (void)
91{ 157{
92#if EV_USE_REALTIME 158#if EV_USE_REALTIME
93 struct timespec ts; 159 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 166#endif
101} 167}
102 168
103static ev_tstamp 169inline ev_tstamp
104get_clock (void) 170get_clock (void)
105{ 171{
106#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
107 if (have_monotonic) 173 if (expect_true (have_monotonic))
108 { 174 {
109 struct timespec ts; 175 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 178 }
113#endif 179#endif
114 180
115 return ev_time (); 181 return ev_time ();
116} 182}
117 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
118#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
119 191
120#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
121 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
122 { \ 194 { \
123 int newcnt = cur; \ 195 int newcnt = cur; \
124 do \ 196 do \
125 { \ 197 { \
126 newcnt = array_roundsize (base, newcnt << 1); \ 198 newcnt = array_roundsize (base, newcnt << 1); \
132 cur = newcnt; \ 204 cur = newcnt; \
133 } 205 }
134 206
135/*****************************************************************************/ 207/*****************************************************************************/
136 208
137typedef struct
138{
139 struct ev_io *head;
140 int events;
141} ANFD;
142
143static ANFD *anfds;
144static int anfdmax;
145
146static void 209static void
147anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
148{ 211{
149 while (count--) 212 while (count--)
150 { 213 {
151 base->head = 0; 214 base->head = 0;
152 base->events = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
153 ++base; 218 ++base;
154 } 219 }
155} 220}
156 221
157typedef struct
158{
159 W w;
160 int events;
161} ANPENDING;
162
163static ANPENDING *pendings;
164static int pendingmax, pendingcnt;
165
166static void 222static void
167event (W w, int events) 223event (EV_P_ W w, int events)
168{ 224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
169 w->pending = ++pendingcnt; 231 w->pending = ++pendingcnt [ABSPRI (w)];
170 array_needsize (pendings, pendingmax, pendingcnt, ); 232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
171 pendings [pendingcnt - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
173} 235}
174 236
175static void 237static void
176queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
177{ 239{
178 int i; 240 int i;
179 241
180 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
181 event (events [i], type); 243 event (EV_A_ events [i], type);
182} 244}
183 245
184static void 246static void
185fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
186{ 248{
187 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
188 struct ev_io *w; 250 struct ev_io *w;
189 251
190 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
191 { 253 {
192 int ev = w->events & events; 254 int ev = w->events & events;
193 255
194 if (ev) 256 if (ev)
195 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
196 } 258 }
197} 259}
198 260
199/*****************************************************************************/ 261/*****************************************************************************/
200 262
201static int *fdchanges;
202static int fdchangemax, fdchangecnt;
203
204static void 263static void
205fd_reify (void) 264fd_reify (EV_P)
206{ 265{
207 int i; 266 int i;
208 267
209 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
210 { 269 {
212 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
213 struct ev_io *w; 272 struct ev_io *w;
214 273
215 int events = 0; 274 int events = 0;
216 275
217 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
218 events |= w->events; 277 events |= w->events;
219 278
220 anfd->events &= ~EV_REIFY; 279 anfd->reify = 0;
221 280
222 if (anfd->events != events) 281 if (anfd->events != events)
223 { 282 {
224 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
225 anfd->events = events; 284 anfd->events = events;
226 } 285 }
227 } 286 }
228 287
229 fdchangecnt = 0; 288 fdchangecnt = 0;
230} 289}
231 290
232static void 291static void
233fd_change (int fd) 292fd_change (EV_P_ int fd)
234{ 293{
235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
236 return; 295 return;
237 296
238 anfds [fd].events |= EV_REIFY; 297 anfds [fd].reify = 1;
239 298
240 ++fdchangecnt; 299 ++fdchangecnt;
241 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
242 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
243} 302}
244 303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
245/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
246static void 317static void
247fd_recheck (void) 318fd_ebadf (EV_P)
248{ 319{
249 int fd; 320 int fd;
250 321
251 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
252 if (anfds [fd].events) 323 if (anfds [fd].events)
253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
254 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
255 { 336 {
256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 337 close (fd);
257 ev_io_stop (anfds [fd].head); 338 fd_kill (EV_A_ fd);
339 return;
258 } 340 }
259} 341}
260 342
261/*****************************************************************************/ 343/*****************************************************************************/
262 344
263static struct ev_timer **timers;
264static int timermax, timercnt;
265
266static struct ev_periodic **periodics;
267static int periodicmax, periodiccnt;
268
269static void 345static void
270upheap (WT *timers, int k) 346upheap (WT *heap, int k)
271{ 347{
272 WT w = timers [k]; 348 WT w = heap [k];
273 349
274 while (k && timers [k >> 1]->at > w->at) 350 while (k && heap [k >> 1]->at > w->at)
275 { 351 {
276 timers [k] = timers [k >> 1]; 352 heap [k] = heap [k >> 1];
277 timers [k]->active = k + 1; 353 heap [k]->active = k + 1;
278 k >>= 1; 354 k >>= 1;
279 } 355 }
280 356
281 timers [k] = w; 357 heap [k] = w;
282 timers [k]->active = k + 1; 358 heap [k]->active = k + 1;
283 359
284} 360}
285 361
286static void 362static void
287downheap (WT *timers, int N, int k) 363downheap (WT *heap, int N, int k)
288{ 364{
289 WT w = timers [k]; 365 WT w = heap [k];
290 366
291 while (k < (N >> 1)) 367 while (k < (N >> 1))
292 { 368 {
293 int j = k << 1; 369 int j = k << 1;
294 370
295 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 371 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
296 ++j; 372 ++j;
297 373
298 if (w->at <= timers [j]->at) 374 if (w->at <= heap [j]->at)
299 break; 375 break;
300 376
301 timers [k] = timers [j]; 377 heap [k] = heap [j];
302 timers [k]->active = k + 1; 378 heap [k]->active = k + 1;
303 k = j; 379 k = j;
304 } 380 }
305 381
306 timers [k] = w; 382 heap [k] = w;
307 timers [k]->active = k + 1; 383 heap [k]->active = k + 1;
308} 384}
309 385
310/*****************************************************************************/ 386/*****************************************************************************/
311 387
312typedef struct 388typedef struct
313{ 389{
314 struct ev_signal *head; 390 struct ev_watcher_list *head;
315 sig_atomic_t gotsig; 391 sig_atomic_t volatile gotsig;
316} ANSIG; 392} ANSIG;
317 393
318static ANSIG *signals; 394static ANSIG *signals;
319static int signalmax; 395static int signalmax;
320 396
321static int sigpipe [2]; 397static int sigpipe [2];
322static sig_atomic_t gotsig; 398static sig_atomic_t volatile gotsig;
323static struct ev_io sigev;
324 399
325static void 400static void
326signals_init (ANSIG *base, int count) 401signals_init (ANSIG *base, int count)
327{ 402{
328 while (count--) 403 while (count--)
329 { 404 {
330 base->head = 0; 405 base->head = 0;
331 base->gotsig = 0; 406 base->gotsig = 0;
407
332 ++base; 408 ++base;
333 } 409 }
334} 410}
335 411
336static void 412static void
338{ 414{
339 signals [signum - 1].gotsig = 1; 415 signals [signum - 1].gotsig = 1;
340 416
341 if (!gotsig) 417 if (!gotsig)
342 { 418 {
419 int old_errno = errno;
343 gotsig = 1; 420 gotsig = 1;
344 write (sigpipe [1], &gotsig, 1); 421 write (sigpipe [1], &signum, 1);
422 errno = old_errno;
345 } 423 }
346} 424}
347 425
348static void 426static void
349sigcb (struct ev_io *iow, int revents) 427sigcb (EV_P_ struct ev_io *iow, int revents)
350{ 428{
351 struct ev_signal *w; 429 struct ev_watcher_list *w;
352 int sig; 430 int signum;
353 431
432 read (sigpipe [0], &revents, 1);
354 gotsig = 0; 433 gotsig = 0;
355 read (sigpipe [0], &revents, 1);
356 434
357 for (sig = signalmax; sig--; ) 435 for (signum = signalmax; signum--; )
358 if (signals [sig].gotsig) 436 if (signals [signum].gotsig)
359 { 437 {
360 signals [sig].gotsig = 0; 438 signals [signum].gotsig = 0;
361 439
362 for (w = signals [sig].head; w; w = w->next) 440 for (w = signals [signum].head; w; w = w->next)
363 event ((W)w, EV_SIGNAL); 441 event (EV_A_ (W)w, EV_SIGNAL);
364 } 442 }
365} 443}
366 444
367static void 445static void
368siginit (void) 446siginit (EV_P)
369{ 447{
448#ifndef WIN32
370 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
371 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
372 451
373 /* rather than sort out wether we really need nb, set it */ 452 /* rather than sort out wether we really need nb, set it */
374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455#endif
376 456
377 ev_io_set (&sigev, sigpipe [0], EV_READ); 457 ev_io_set (&sigev, sigpipe [0], EV_READ);
378 ev_io_start (&sigev); 458 ev_io_start (EV_A_ &sigev);
459 ev_unref (EV_A); /* child watcher should not keep loop alive */
379} 460}
380 461
381/*****************************************************************************/ 462/*****************************************************************************/
382 463
383static struct ev_idle **idles; 464#ifndef WIN32
384static int idlemax, idlecnt;
385
386static struct ev_prepare **prepares;
387static int preparemax, preparecnt;
388
389static struct ev_check **checks;
390static int checkmax, checkcnt;
391
392/*****************************************************************************/
393
394static struct ev_child *childs [PID_HASHSIZE];
395static struct ev_signal childev;
396 465
397#ifndef WCONTINUED 466#ifndef WCONTINUED
398# define WCONTINUED 0 467# define WCONTINUED 0
399#endif 468#endif
400 469
401static void 470static void
402childcb (struct ev_signal *sw, int revents) 471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
403{ 472{
404 struct ev_child *w; 473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents)
487{
405 int pid, status; 488 int pid, status;
406 489
407 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
408 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 491 {
409 if (w->pid == pid || w->pid == -1) 492 /* make sure we are called again until all childs have been reaped */
410 { 493 event (EV_A_ (W)sw, EV_SIGNAL);
411 w->status = status; 494
412 event ((W)w, EV_CHILD); 495 child_reap (EV_A_ sw, pid, pid, status);
413 } 496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 }
414} 498}
499
500#endif
415 501
416/*****************************************************************************/ 502/*****************************************************************************/
417 503
504#if EV_USE_KQUEUE
505# include "ev_kqueue.c"
506#endif
418#if EV_USE_EPOLL 507#if EV_USE_EPOLL
419# include "ev_epoll.c" 508# include "ev_epoll.c"
420#endif 509#endif
510#if EV_USEV_POLL
511# include "ev_poll.c"
512#endif
421#if EV_USE_SELECT 513#if EV_USE_SELECT
422# include "ev_select.c" 514# include "ev_select.c"
423#endif 515#endif
424 516
425int 517int
432ev_version_minor (void) 524ev_version_minor (void)
433{ 525{
434 return EV_VERSION_MINOR; 526 return EV_VERSION_MINOR;
435} 527}
436 528
437int ev_init (int flags) 529/* return true if we are running with elevated privileges and should ignore env variables */
530static int
531enable_secure (void)
438{ 532{
533#ifdef WIN32
534 return 0;
535#else
536 return getuid () != geteuid ()
537 || getgid () != getegid ();
538#endif
539}
540
541int
542ev_method (EV_P)
543{
544 return method;
545}
546
547static void
548loop_init (EV_P_ int methods)
549{
439 if (!ev_method) 550 if (!method)
440 { 551 {
441#if EV_USE_MONOTONIC 552#if EV_USE_MONOTONIC
442 { 553 {
443 struct timespec ts; 554 struct timespec ts;
444 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 555 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
445 have_monotonic = 1; 556 have_monotonic = 1;
446 } 557 }
447#endif 558#endif
448 559
449 ev_now = ev_time (); 560 rt_now = ev_time ();
450 now = get_clock (); 561 mn_now = get_clock ();
562 now_floor = mn_now;
451 diff = ev_now - now; 563 rtmn_diff = rt_now - mn_now;
452 564
453 if (pipe (sigpipe)) 565 if (pipe (sigpipe))
454 return 0; 566 return 0;
455 567
568 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS"))
570 methods = atoi (getenv ("LIBmethodS"));
571 else
456 ev_method = EVMETHOD_NONE; 572 methods = EVMETHOD_ANY;
573
574 method = 0;
575#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif
457#if EV_USE_EPOLL 578#if EV_USE_EPOLL
458 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif
581#if EV_USEV_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
459#endif 583#endif
460#if EV_USE_SELECT 584#if EV_USE_SELECT
461 if (ev_method == EVMETHOD_NONE) select_init (flags); 585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
462#endif 586#endif
463 587
464 if (ev_method) 588 if (method)
465 { 589 {
466 ev_watcher_init (&sigev, sigcb); 590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
467 siginit (); 592 siginit (EV_A);
468 593
594#ifndef WIN32
469 ev_signal_init (&childev, childcb, SIGCHLD); 595 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI);
470 ev_signal_start (&childev); 597 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif
471 } 600 }
472 } 601 }
473 602
474 return ev_method; 603 return method;
475} 604}
605
606#ifdef EV_MULTIPLICITY
607
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 loop_init (EV_A_ methods);
614
615 return loop;
616}
617
618void
619ev_loop_delete (EV_P)
620{
621 /*TODO*/
622 free (loop);
623}
624
625#else
626
627int
628ev_init (int methods)
629{
630 loop_init ();
631}
632
633#endif
476 634
477/*****************************************************************************/ 635/*****************************************************************************/
478 636
479void 637void
480ev_prefork (void) 638ev_fork_prepare (void)
481{ 639{
482 /* nop */ 640 /* nop */
483} 641}
484 642
485void 643void
486ev_postfork_parent (void) 644ev_fork_parent (void)
487{ 645{
488 /* nop */ 646 /* nop */
489} 647}
490 648
491void 649void
492ev_postfork_child (void) 650ev_fork_child (void)
493{ 651{
652 /*TODO*/
653#if !EV_MULTIPLICITY
494#if EV_USE_EPOLL 654#if EV_USE_EPOLL
495 if (ev_method == EVMETHOD_EPOLL) 655 if (method == EVMETHOD_EPOLL)
496 epoll_postfork_child (); 656 epoll_postfork_child (EV_A);
497#endif 657#endif
498 658
499 ev_io_stop (&sigev); 659 ev_io_stop (EV_A_ &sigev);
500 close (sigpipe [0]); 660 close (sigpipe [0]);
501 close (sigpipe [1]); 661 close (sigpipe [1]);
502 pipe (sigpipe); 662 pipe (sigpipe);
503 siginit (); 663 siginit (EV_A);
664#endif
504} 665}
505 666
506/*****************************************************************************/ 667/*****************************************************************************/
507 668
508static void 669static void
509call_pending (void) 670call_pending (EV_P)
510{ 671{
672 int pri;
673
674 for (pri = NUMPRI; pri--; )
511 while (pendingcnt) 675 while (pendingcnt [pri])
512 { 676 {
513 ANPENDING *p = pendings + --pendingcnt; 677 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
514 678
515 if (p->w) 679 if (p->w)
516 { 680 {
517 p->w->pending = 0; 681 p->w->pending = 0;
518 p->w->cb (p->w, p->events); 682 p->w->cb (EV_A_ p->w, p->events);
519 } 683 }
520 } 684 }
521} 685}
522 686
523static void 687static void
524timers_reify (void) 688timers_reify (EV_P)
525{ 689{
526 while (timercnt && timers [0]->at <= now) 690 while (timercnt && timers [0]->at <= mn_now)
527 { 691 {
528 struct ev_timer *w = timers [0]; 692 struct ev_timer *w = timers [0];
529 693
530 /* first reschedule or stop timer */ 694 /* first reschedule or stop timer */
531 if (w->repeat) 695 if (w->repeat)
532 { 696 {
697 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 698 w->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 699 downheap ((WT *)timers, timercnt, 0);
536 } 700 }
537 else 701 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 702 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 703
540 event ((W)w, EV_TIMEOUT); 704 event (EV_A_ (W)w, EV_TIMEOUT);
541 } 705 }
542} 706}
543 707
544static void 708static void
545periodics_reify (void) 709periodics_reify (EV_P)
546{ 710{
547 while (periodiccnt && periodics [0]->at <= ev_now) 711 while (periodiccnt && periodics [0]->at <= rt_now)
548 { 712 {
549 struct ev_periodic *w = periodics [0]; 713 struct ev_periodic *w = periodics [0];
550 714
551 /* first reschedule or stop timer */ 715 /* first reschedule or stop timer */
552 if (w->interval) 716 if (w->interval)
553 { 717 {
554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 718 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 719 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
556 downheap ((WT *)periodics, periodiccnt, 0); 720 downheap ((WT *)periodics, periodiccnt, 0);
557 } 721 }
558 else 722 else
559 ev_periodic_stop (w); /* nonrepeating: stop timer */ 723 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
560 724
561 event ((W)w, EV_TIMEOUT); 725 event (EV_A_ (W)w, EV_PERIODIC);
562 } 726 }
563} 727}
564 728
565static void 729static void
566periodics_reschedule (ev_tstamp diff) 730periodics_reschedule (EV_P)
567{ 731{
568 int i; 732 int i;
569 733
570 /* adjust periodics after time jump */ 734 /* adjust periodics after time jump */
571 for (i = 0; i < periodiccnt; ++i) 735 for (i = 0; i < periodiccnt; ++i)
572 { 736 {
573 struct ev_periodic *w = periodics [i]; 737 struct ev_periodic *w = periodics [i];
574 738
575 if (w->interval) 739 if (w->interval)
576 { 740 {
577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 741 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
578 742
579 if (fabs (diff) >= 1e-4) 743 if (fabs (diff) >= 1e-4)
580 { 744 {
581 ev_periodic_stop (w); 745 ev_periodic_stop (EV_A_ w);
582 ev_periodic_start (w); 746 ev_periodic_start (EV_A_ w);
583 747
584 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 748 i = 0; /* restart loop, inefficient, but time jumps should be rare */
585 } 749 }
586 } 750 }
587 } 751 }
588} 752}
589 753
754inline int
755time_update_monotonic (EV_P)
756{
757 mn_now = get_clock ();
758
759 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
760 {
761 rt_now = rtmn_diff + mn_now;
762 return 0;
763 }
764 else
765 {
766 now_floor = mn_now;
767 rt_now = ev_time ();
768 return 1;
769 }
770}
771
590static void 772static void
591time_update (void) 773time_update (EV_P)
592{ 774{
593 int i; 775 int i;
594 776
595 ev_now = ev_time (); 777#if EV_USE_MONOTONIC
596
597 if (have_monotonic) 778 if (expect_true (have_monotonic))
598 { 779 {
599 ev_tstamp odiff = diff; 780 if (time_update_monotonic (EV_A))
600
601 for (i = 4; --i; ) /* loop a few times, before making important decisions */
602 { 781 {
603 now = get_clock (); 782 ev_tstamp odiff = rtmn_diff;
783
784 for (i = 4; --i; ) /* loop a few times, before making important decisions */
785 {
604 diff = ev_now - now; 786 rtmn_diff = rt_now - mn_now;
605 787
606 if (fabs (odiff - diff) < MIN_TIMEJUMP) 788 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
607 return; /* all is well */ 789 return; /* all is well */
608 790
609 ev_now = ev_time (); 791 rt_now = ev_time ();
792 mn_now = get_clock ();
793 now_floor = mn_now;
794 }
795
796 periodics_reschedule (EV_A);
797 /* no timer adjustment, as the monotonic clock doesn't jump */
798 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
610 } 799 }
611
612 periodics_reschedule (diff - odiff);
613 /* no timer adjustment, as the monotonic clock doesn't jump */
614 } 800 }
615 else 801 else
802#endif
616 { 803 {
617 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 804 rt_now = ev_time ();
805
806 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
618 { 807 {
619 periodics_reschedule (ev_now - now); 808 periodics_reschedule (EV_A);
620 809
621 /* adjust timers. this is easy, as the offset is the same for all */ 810 /* adjust timers. this is easy, as the offset is the same for all */
622 for (i = 0; i < timercnt; ++i) 811 for (i = 0; i < timercnt; ++i)
623 timers [i]->at += diff; 812 timers [i]->at += rt_now - mn_now;
624 } 813 }
625 814
626 now = ev_now; 815 mn_now = rt_now;
627 } 816 }
628} 817}
629 818
630int ev_loop_done; 819void
820ev_ref (EV_P)
821{
822 ++activecnt;
823}
631 824
825void
826ev_unref (EV_P)
827{
828 --activecnt;
829}
830
831static int loop_done;
832
833void
632void ev_loop (int flags) 834ev_loop (EV_P_ int flags)
633{ 835{
634 double block; 836 double block;
635 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 837 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
636 838
637 do 839 do
638 { 840 {
639 /* queue check watchers (and execute them) */ 841 /* queue check watchers (and execute them) */
640 if (preparecnt) 842 if (expect_false (preparecnt))
641 { 843 {
642 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 844 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
643 call_pending (); 845 call_pending (EV_A);
644 } 846 }
645 847
646 /* update fd-related kernel structures */ 848 /* update fd-related kernel structures */
647 fd_reify (); 849 fd_reify (EV_A);
648 850
649 /* calculate blocking time */ 851 /* calculate blocking time */
650 852
651 /* we only need this for !monotonic clockor timers, but as we basically 853 /* we only need this for !monotonic clockor timers, but as we basically
652 always have timers, we just calculate it always */ 854 always have timers, we just calculate it always */
855#if EV_USE_MONOTONIC
856 if (expect_true (have_monotonic))
857 time_update_monotonic (EV_A);
858 else
859#endif
860 {
653 ev_now = ev_time (); 861 rt_now = ev_time ();
862 mn_now = rt_now;
863 }
654 864
655 if (flags & EVLOOP_NONBLOCK || idlecnt) 865 if (flags & EVLOOP_NONBLOCK || idlecnt)
656 block = 0.; 866 block = 0.;
657 else 867 else
658 { 868 {
659 block = MAX_BLOCKTIME; 869 block = MAX_BLOCKTIME;
660 870
661 if (timercnt) 871 if (timercnt)
662 { 872 {
663 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 873 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
664 if (block > to) block = to; 874 if (block > to) block = to;
665 } 875 }
666 876
667 if (periodiccnt) 877 if (periodiccnt)
668 { 878 {
669 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 879 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
670 if (block > to) block = to; 880 if (block > to) block = to;
671 } 881 }
672 882
673 if (block < 0.) block = 0.; 883 if (block < 0.) block = 0.;
674 } 884 }
675 885
676 method_poll (block); 886 method_poll (EV_A_ block);
677 887
678 /* update ev_now, do magic */ 888 /* update rt_now, do magic */
679 time_update (); 889 time_update (EV_A);
680 890
681 /* queue pending timers and reschedule them */ 891 /* queue pending timers and reschedule them */
682 timers_reify (); /* relative timers called last */ 892 timers_reify (EV_A); /* relative timers called last */
683 periodics_reify (); /* absolute timers called first */ 893 periodics_reify (EV_A); /* absolute timers called first */
684 894
685 /* queue idle watchers unless io or timers are pending */ 895 /* queue idle watchers unless io or timers are pending */
686 if (!pendingcnt) 896 if (!pendingcnt)
687 queue_events ((W *)idles, idlecnt, EV_IDLE); 897 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
688 898
689 /* queue check watchers, to be executed first */ 899 /* queue check watchers, to be executed first */
690 if (checkcnt) 900 if (checkcnt)
691 queue_events ((W *)checks, checkcnt, EV_CHECK); 901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
692 902
693 call_pending (); 903 call_pending (EV_A);
694 } 904 }
695 while (!ev_loop_done); 905 while (activecnt && !loop_done);
696 906
697 if (ev_loop_done != 2) 907 if (loop_done != 2)
698 ev_loop_done = 0; 908 loop_done = 0;
909}
910
911void
912ev_unloop (EV_P_ int how)
913{
914 loop_done = how;
699} 915}
700 916
701/*****************************************************************************/ 917/*****************************************************************************/
702 918
703static void 919inline void
704wlist_add (WL *head, WL elem) 920wlist_add (WL *head, WL elem)
705{ 921{
706 elem->next = *head; 922 elem->next = *head;
707 *head = elem; 923 *head = elem;
708} 924}
709 925
710static void 926inline void
711wlist_del (WL *head, WL elem) 927wlist_del (WL *head, WL elem)
712{ 928{
713 while (*head) 929 while (*head)
714 { 930 {
715 if (*head == elem) 931 if (*head == elem)
720 936
721 head = &(*head)->next; 937 head = &(*head)->next;
722 } 938 }
723} 939}
724 940
725static void 941inline void
726ev_clear (W w) 942ev_clear_pending (EV_P_ W w)
727{ 943{
728 if (w->pending) 944 if (w->pending)
729 { 945 {
730 pendings [w->pending - 1].w = 0; 946 pendings [ABSPRI (w)][w->pending - 1].w = 0;
731 w->pending = 0; 947 w->pending = 0;
732 } 948 }
733} 949}
734 950
735static void 951inline void
736ev_start (W w, int active) 952ev_start (EV_P_ W w, int active)
737{ 953{
954 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
955 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
956
738 w->active = active; 957 w->active = active;
958 ev_ref (EV_A);
739} 959}
740 960
741static void 961inline void
742ev_stop (W w) 962ev_stop (EV_P_ W w)
743{ 963{
964 ev_unref (EV_A);
744 w->active = 0; 965 w->active = 0;
745} 966}
746 967
747/*****************************************************************************/ 968/*****************************************************************************/
748 969
749void 970void
750ev_io_start (struct ev_io *w) 971ev_io_start (EV_P_ struct ev_io *w)
751{ 972{
973 int fd = w->fd;
974
752 if (ev_is_active (w)) 975 if (ev_is_active (w))
753 return; 976 return;
754 977
755 int fd = w->fd; 978 assert (("ev_io_start called with negative fd", fd >= 0));
756 979
757 ev_start ((W)w, 1); 980 ev_start (EV_A_ (W)w, 1);
758 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 981 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
759 wlist_add ((WL *)&anfds[fd].head, (WL)w); 982 wlist_add ((WL *)&anfds[fd].head, (WL)w);
760 983
761 fd_change (fd); 984 fd_change (EV_A_ fd);
762} 985}
763 986
764void 987void
765ev_io_stop (struct ev_io *w) 988ev_io_stop (EV_P_ struct ev_io *w)
766{ 989{
767 ev_clear ((W)w); 990 ev_clear_pending (EV_A_ (W)w);
768 if (!ev_is_active (w)) 991 if (!ev_is_active (w))
769 return; 992 return;
770 993
771 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 994 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
772 ev_stop ((W)w); 995 ev_stop (EV_A_ (W)w);
773 996
774 fd_change (w->fd); 997 fd_change (EV_A_ w->fd);
775} 998}
776 999
777void 1000void
778ev_timer_start (struct ev_timer *w) 1001ev_timer_start (EV_P_ struct ev_timer *w)
779{ 1002{
780 if (ev_is_active (w)) 1003 if (ev_is_active (w))
781 return; 1004 return;
782 1005
783 w->at += now; 1006 w->at += mn_now;
784 1007
785 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1008 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
786 1009
787 ev_start ((W)w, ++timercnt); 1010 ev_start (EV_A_ (W)w, ++timercnt);
788 array_needsize (timers, timermax, timercnt, ); 1011 array_needsize (timers, timermax, timercnt, );
789 timers [timercnt - 1] = w; 1012 timers [timercnt - 1] = w;
790 upheap ((WT *)timers, timercnt - 1); 1013 upheap ((WT *)timers, timercnt - 1);
791} 1014}
792 1015
793void 1016void
794ev_timer_stop (struct ev_timer *w) 1017ev_timer_stop (EV_P_ struct ev_timer *w)
795{ 1018{
796 ev_clear ((W)w); 1019 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1020 if (!ev_is_active (w))
798 return; 1021 return;
799 1022
800 if (w->active < timercnt--) 1023 if (w->active < timercnt--)
801 { 1024 {
803 downheap ((WT *)timers, timercnt, w->active - 1); 1026 downheap ((WT *)timers, timercnt, w->active - 1);
804 } 1027 }
805 1028
806 w->at = w->repeat; 1029 w->at = w->repeat;
807 1030
808 ev_stop ((W)w); 1031 ev_stop (EV_A_ (W)w);
809} 1032}
810 1033
811void 1034void
812ev_timer_again (struct ev_timer *w) 1035ev_timer_again (EV_P_ struct ev_timer *w)
813{ 1036{
814 if (ev_is_active (w)) 1037 if (ev_is_active (w))
815 { 1038 {
816 if (w->repeat) 1039 if (w->repeat)
817 { 1040 {
818 w->at = now + w->repeat; 1041 w->at = mn_now + w->repeat;
819 downheap ((WT *)timers, timercnt, w->active - 1); 1042 downheap ((WT *)timers, timercnt, w->active - 1);
820 } 1043 }
821 else 1044 else
822 ev_timer_stop (w); 1045 ev_timer_stop (EV_A_ w);
823 } 1046 }
824 else if (w->repeat) 1047 else if (w->repeat)
825 ev_timer_start (w); 1048 ev_timer_start (EV_A_ w);
826} 1049}
827 1050
828void 1051void
829ev_periodic_start (struct ev_periodic *w) 1052ev_periodic_start (EV_P_ struct ev_periodic *w)
830{ 1053{
831 if (ev_is_active (w)) 1054 if (ev_is_active (w))
832 return; 1055 return;
833 1056
834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1057 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
835 1058
836 /* this formula differs from the one in periodic_reify because we do not always round up */ 1059 /* this formula differs from the one in periodic_reify because we do not always round up */
837 if (w->interval) 1060 if (w->interval)
838 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1061 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
839 1062
840 ev_start ((W)w, ++periodiccnt); 1063 ev_start (EV_A_ (W)w, ++periodiccnt);
841 array_needsize (periodics, periodicmax, periodiccnt, ); 1064 array_needsize (periodics, periodicmax, periodiccnt, );
842 periodics [periodiccnt - 1] = w; 1065 periodics [periodiccnt - 1] = w;
843 upheap ((WT *)periodics, periodiccnt - 1); 1066 upheap ((WT *)periodics, periodiccnt - 1);
844} 1067}
845 1068
846void 1069void
847ev_periodic_stop (struct ev_periodic *w) 1070ev_periodic_stop (EV_P_ struct ev_periodic *w)
848{ 1071{
849 ev_clear ((W)w); 1072 ev_clear_pending (EV_A_ (W)w);
850 if (!ev_is_active (w)) 1073 if (!ev_is_active (w))
851 return; 1074 return;
852 1075
853 if (w->active < periodiccnt--) 1076 if (w->active < periodiccnt--)
854 { 1077 {
855 periodics [w->active - 1] = periodics [periodiccnt]; 1078 periodics [w->active - 1] = periodics [periodiccnt];
856 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1079 downheap ((WT *)periodics, periodiccnt, w->active - 1);
857 } 1080 }
858 1081
859 ev_stop ((W)w); 1082 ev_stop (EV_A_ (W)w);
860} 1083}
861 1084
1085#ifndef SA_RESTART
1086# define SA_RESTART 0
1087#endif
1088
862void 1089void
863ev_signal_start (struct ev_signal *w) 1090ev_signal_start (EV_P_ struct ev_signal *w)
864{ 1091{
865 if (ev_is_active (w)) 1092 if (ev_is_active (w))
866 return; 1093 return;
867 1094
1095 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1096
868 ev_start ((W)w, 1); 1097 ev_start (EV_A_ (W)w, 1);
869 array_needsize (signals, signalmax, w->signum, signals_init); 1098 array_needsize (signals, signalmax, w->signum, signals_init);
870 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1099 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
871 1100
872 if (!w->next) 1101 if (!w->next)
873 { 1102 {
874 struct sigaction sa; 1103 struct sigaction sa;
875 sa.sa_handler = sighandler; 1104 sa.sa_handler = sighandler;
876 sigfillset (&sa.sa_mask); 1105 sigfillset (&sa.sa_mask);
877 sa.sa_flags = 0; 1106 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
878 sigaction (w->signum, &sa, 0); 1107 sigaction (w->signum, &sa, 0);
879 } 1108 }
880} 1109}
881 1110
882void 1111void
883ev_signal_stop (struct ev_signal *w) 1112ev_signal_stop (EV_P_ struct ev_signal *w)
884{ 1113{
885 ev_clear ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
886 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
887 return; 1116 return;
888 1117
889 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1118 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
890 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
891 1120
892 if (!signals [w->signum - 1].head) 1121 if (!signals [w->signum - 1].head)
893 signal (w->signum, SIG_DFL); 1122 signal (w->signum, SIG_DFL);
894} 1123}
895 1124
896void 1125void
897ev_idle_start (struct ev_idle *w) 1126ev_idle_start (EV_P_ struct ev_idle *w)
898{ 1127{
899 if (ev_is_active (w)) 1128 if (ev_is_active (w))
900 return; 1129 return;
901 1130
902 ev_start ((W)w, ++idlecnt); 1131 ev_start (EV_A_ (W)w, ++idlecnt);
903 array_needsize (idles, idlemax, idlecnt, ); 1132 array_needsize (idles, idlemax, idlecnt, );
904 idles [idlecnt - 1] = w; 1133 idles [idlecnt - 1] = w;
905} 1134}
906 1135
907void 1136void
908ev_idle_stop (struct ev_idle *w) 1137ev_idle_stop (EV_P_ struct ev_idle *w)
909{ 1138{
910 ev_clear ((W)w); 1139 ev_clear_pending (EV_A_ (W)w);
911 if (ev_is_active (w)) 1140 if (ev_is_active (w))
912 return; 1141 return;
913 1142
914 idles [w->active - 1] = idles [--idlecnt]; 1143 idles [w->active - 1] = idles [--idlecnt];
915 ev_stop ((W)w); 1144 ev_stop (EV_A_ (W)w);
916} 1145}
917 1146
918void 1147void
919ev_prepare_start (struct ev_prepare *w) 1148ev_prepare_start (EV_P_ struct ev_prepare *w)
920{ 1149{
921 if (ev_is_active (w)) 1150 if (ev_is_active (w))
922 return; 1151 return;
923 1152
924 ev_start ((W)w, ++preparecnt); 1153 ev_start (EV_A_ (W)w, ++preparecnt);
925 array_needsize (prepares, preparemax, preparecnt, ); 1154 array_needsize (prepares, preparemax, preparecnt, );
926 prepares [preparecnt - 1] = w; 1155 prepares [preparecnt - 1] = w;
927} 1156}
928 1157
929void 1158void
930ev_prepare_stop (struct ev_prepare *w) 1159ev_prepare_stop (EV_P_ struct ev_prepare *w)
931{ 1160{
932 ev_clear ((W)w); 1161 ev_clear_pending (EV_A_ (W)w);
933 if (ev_is_active (w)) 1162 if (ev_is_active (w))
934 return; 1163 return;
935 1164
936 prepares [w->active - 1] = prepares [--preparecnt]; 1165 prepares [w->active - 1] = prepares [--preparecnt];
937 ev_stop ((W)w); 1166 ev_stop (EV_A_ (W)w);
938} 1167}
939 1168
940void 1169void
941ev_check_start (struct ev_check *w) 1170ev_check_start (EV_P_ struct ev_check *w)
942{ 1171{
943 if (ev_is_active (w)) 1172 if (ev_is_active (w))
944 return; 1173 return;
945 1174
946 ev_start ((W)w, ++checkcnt); 1175 ev_start (EV_A_ (W)w, ++checkcnt);
947 array_needsize (checks, checkmax, checkcnt, ); 1176 array_needsize (checks, checkmax, checkcnt, );
948 checks [checkcnt - 1] = w; 1177 checks [checkcnt - 1] = w;
949} 1178}
950 1179
951void 1180void
952ev_check_stop (struct ev_check *w) 1181ev_check_stop (EV_P_ struct ev_check *w)
953{ 1182{
954 ev_clear ((W)w); 1183 ev_clear_pending (EV_A_ (W)w);
955 if (ev_is_active (w)) 1184 if (ev_is_active (w))
956 return; 1185 return;
957 1186
958 checks [w->active - 1] = checks [--checkcnt]; 1187 checks [w->active - 1] = checks [--checkcnt];
959 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
960} 1189}
961 1190
962void 1191void
963ev_child_start (struct ev_child *w) 1192ev_child_start (EV_P_ struct ev_child *w)
964{ 1193{
965 if (ev_is_active (w)) 1194 if (ev_is_active (w))
966 return; 1195 return;
967 1196
968 ev_start ((W)w, 1); 1197 ev_start (EV_A_ (W)w, 1);
969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1198 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970} 1199}
971 1200
972void 1201void
973ev_child_stop (struct ev_child *w) 1202ev_child_stop (EV_P_ struct ev_child *w)
974{ 1203{
975 ev_clear ((W)w); 1204 ev_clear_pending (EV_A_ (W)w);
976 if (ev_is_active (w)) 1205 if (ev_is_active (w))
977 return; 1206 return;
978 1207
979 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1208 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980 ev_stop ((W)w); 1209 ev_stop (EV_A_ (W)w);
981} 1210}
982 1211
983/*****************************************************************************/ 1212/*****************************************************************************/
984 1213
985struct ev_once 1214struct ev_once
989 void (*cb)(int revents, void *arg); 1218 void (*cb)(int revents, void *arg);
990 void *arg; 1219 void *arg;
991}; 1220};
992 1221
993static void 1222static void
994once_cb (struct ev_once *once, int revents) 1223once_cb (EV_P_ struct ev_once *once, int revents)
995{ 1224{
996 void (*cb)(int revents, void *arg) = once->cb; 1225 void (*cb)(int revents, void *arg) = once->cb;
997 void *arg = once->arg; 1226 void *arg = once->arg;
998 1227
999 ev_io_stop (&once->io); 1228 ev_io_stop (EV_A_ &once->io);
1000 ev_timer_stop (&once->to); 1229 ev_timer_stop (EV_A_ &once->to);
1001 free (once); 1230 free (once);
1002 1231
1003 cb (revents, arg); 1232 cb (revents, arg);
1004} 1233}
1005 1234
1006static void 1235static void
1007once_cb_io (struct ev_io *w, int revents) 1236once_cb_io (EV_P_ struct ev_io *w, int revents)
1008{ 1237{
1009 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1238 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1010} 1239}
1011 1240
1012static void 1241static void
1013once_cb_to (struct ev_timer *w, int revents) 1242once_cb_to (EV_P_ struct ev_timer *w, int revents)
1014{ 1243{
1015 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1244 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1016} 1245}
1017 1246
1018void 1247void
1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1248ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1020{ 1249{
1021 struct ev_once *once = malloc (sizeof (struct ev_once)); 1250 struct ev_once *once = malloc (sizeof (struct ev_once));
1022 1251
1023 if (!once) 1252 if (!once)
1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1253 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 1258
1030 ev_watcher_init (&once->io, once_cb_io); 1259 ev_watcher_init (&once->io, once_cb_io);
1031 if (fd >= 0) 1260 if (fd >= 0)
1032 { 1261 {
1033 ev_io_set (&once->io, fd, events); 1262 ev_io_set (&once->io, fd, events);
1034 ev_io_start (&once->io); 1263 ev_io_start (EV_A_ &once->io);
1035 } 1264 }
1036 1265
1037 ev_watcher_init (&once->to, once_cb_to); 1266 ev_watcher_init (&once->to, once_cb_to);
1038 if (timeout >= 0.) 1267 if (timeout >= 0.)
1039 { 1268 {
1040 ev_timer_set (&once->to, timeout, 0.); 1269 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1270 ev_timer_start (EV_A_ &once->to);
1042 } 1271 }
1043 } 1272 }
1044} 1273}
1045 1274
1046/*****************************************************************************/ 1275/*****************************************************************************/

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines