ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.54 by root, Sun Nov 4 00:24:16 2007 UTC vs.
Revision 1.81 by root, Fri Nov 9 17:07:59 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 156
157#include "ev_win32.c"
158
120/*****************************************************************************/ 159/*****************************************************************************/
121 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
122typedef struct 209typedef struct
123{ 210{
124 struct ev_watcher_list *head; 211 WL head;
125 unsigned char events; 212 unsigned char events;
126 unsigned char reify; 213 unsigned char reify;
127} ANFD; 214} ANFD;
128 215
129typedef struct 216typedef struct
130{ 217{
131 W w; 218 W w;
132 int events; 219 int events;
133} ANPENDING; 220} ANPENDING;
134 221
135#ifdef EV_MULTIPLICITY 222#if EV_MULTIPLICITY
136 223
137struct ev_loop 224 struct ev_loop
138{ 225 {
139# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
140# include "ev_vars.h" 227 #include "ev_vars.h"
141};
142# undef VAR 228 #undef VAR
229 };
143# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
144 234
145#else 235#else
146 236
147# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 238 #include "ev_vars.h"
149# undef VAR 239 #undef VAR
240
241 static int default_loop;
150 242
151#endif 243#endif
152 244
153/*****************************************************************************/ 245/*****************************************************************************/
154 246
185ev_now (EV_P) 277ev_now (EV_P)
186{ 278{
187 return rt_now; 279 return rt_now;
188} 280}
189 281
190#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
191 283
192#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
194 { \ 286 { \
195 int newcnt = cur; \ 287 int newcnt = cur; \
196 do \ 288 do \
197 { \ 289 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 291 } \
200 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
201 \ 293 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 296 cur = newcnt; \
205 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 314
207/*****************************************************************************/ 315/*****************************************************************************/
208 316
209static void 317static void
210anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
217 325
218 ++base; 326 ++base;
219 } 327 }
220} 328}
221 329
222static void 330void
223event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
224{ 332{
333 W w_ = (W)w;
334
225 if (w->pending) 335 if (w_->pending)
226 { 336 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 338 return;
229 } 339 }
230 340
231 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 345}
236 346
237static void 347static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 349{
240 int i; 350 int i;
241 351
242 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
244} 354}
245 355
246static void 356inline void
247fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
248{ 358{
249 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 360 struct ev_io *w;
251 361
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 363 {
254 int ev = w->events & events; 364 int ev = w->events & revents;
255 365
256 if (ev) 366 if (ev)
257 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
258 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
259} 375}
260 376
261/*****************************************************************************/ 377/*****************************************************************************/
262 378
263static void 379static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 393 events |= w->events;
278 394
279 anfd->reify = 0; 395 anfd->reify = 0;
280 396
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 398 anfd->events = events;
285 }
286 } 399 }
287 400
288 fdchangecnt = 0; 401 fdchangecnt = 0;
289} 402}
290 403
291static void 404static void
292fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
293{ 406{
294 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
295 return; 408 return;
296 409
297 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
298 411
299 ++fdchangecnt; 412 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
302} 415}
303 416
304static void 417static void
305fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
307 struct ev_io *w; 420 struct ev_io *w;
308 421
309 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
310 { 423 {
311 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
314} 437}
315 438
316/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
317static void 440static void
318fd_ebadf (EV_P) 441fd_ebadf (EV_P)
319{ 442{
320 int fd; 443 int fd;
321 444
322 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 446 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
326} 449}
327 450
328/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 452static void
330fd_enomem (EV_P) 453fd_enomem (EV_P)
331{ 454{
332 int fd = anfdmax; 455 int fd;
333 456
334 while (fd--) 457 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 458 if (anfds [fd].events)
336 { 459 {
337 close (fd);
338 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
339 return; 461 return;
340 } 462 }
341} 463}
342 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
343/*****************************************************************************/ 480/*****************************************************************************/
344 481
345static void 482static void
346upheap (WT *heap, int k) 483upheap (WT *heap, int k)
347{ 484{
348 WT w = heap [k]; 485 WT w = heap [k];
349 486
350 while (k && heap [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
351 { 488 {
352 heap [k] = heap [k >> 1]; 489 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
354 k >>= 1; 491 k >>= 1;
355 } 492 }
356 493
357 heap [k] = w; 494 heap [k] = w;
358 heap [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
359 496
360} 497}
361 498
362static void 499static void
363downheap (WT *heap, int N, int k) 500downheap (WT *heap, int N, int k)
373 510
374 if (w->at <= heap [j]->at) 511 if (w->at <= heap [j]->at)
375 break; 512 break;
376 513
377 heap [k] = heap [j]; 514 heap [k] = heap [j];
378 heap [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
379 k = j; 516 k = j;
380 } 517 }
381 518
382 heap [k] = w; 519 heap [k] = w;
383 heap [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
384} 521}
385 522
386/*****************************************************************************/ 523/*****************************************************************************/
387 524
388typedef struct 525typedef struct
389{ 526{
390 struct ev_watcher_list *head; 527 WL head;
391 sig_atomic_t volatile gotsig; 528 sig_atomic_t volatile gotsig;
392} ANSIG; 529} ANSIG;
393 530
394static ANSIG *signals; 531static ANSIG *signals;
395static int signalmax; 532static int signalmax;
396 533
397static int sigpipe [2]; 534static int sigpipe [2];
398static sig_atomic_t volatile gotsig; 535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
399 537
400static void 538static void
401signals_init (ANSIG *base, int count) 539signals_init (ANSIG *base, int count)
402{ 540{
403 while (count--) 541 while (count--)
410} 548}
411 549
412static void 550static void
413sighandler (int signum) 551sighandler (int signum)
414{ 552{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
415 signals [signum - 1].gotsig = 1; 557 signals [signum - 1].gotsig = 1;
416 558
417 if (!gotsig) 559 if (!gotsig)
418 { 560 {
419 int old_errno = errno; 561 int old_errno = errno;
420 gotsig = 1; 562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
421 write (sigpipe [1], &signum, 1); 566 write (sigpipe [1], &signum, 1);
567#endif
422 errno = old_errno; 568 errno = old_errno;
423 } 569 }
424} 570}
425 571
572void
573ev_feed_signal_event (EV_P_ int signum)
574{
575 WL w;
576
577#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579#endif
580
581 --signum;
582
583 if (signum < 0 || signum >= signalmax)
584 return;
585
586 signals [signum].gotsig = 0;
587
588 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590}
591
426static void 592static void
427sigcb (EV_P_ struct ev_io *iow, int revents) 593sigcb (EV_P_ struct ev_io *iow, int revents)
428{ 594{
429 struct ev_watcher_list *w;
430 int signum; 595 int signum;
431 596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
432 read (sigpipe [0], &revents, 1); 600 read (sigpipe [0], &revents, 1);
601#endif
433 gotsig = 0; 602 gotsig = 0;
434 603
435 for (signum = signalmax; signum--; ) 604 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig) 605 if (signals [signum].gotsig)
437 { 606 ev_feed_signal_event (EV_A_ signum + 1);
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443} 607}
444 608
445static void 609static void
446siginit (EV_P) 610siginit (EV_P)
447{ 611{
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 623 ev_unref (EV_A); /* child watcher should not keep loop alive */
460} 624}
461 625
462/*****************************************************************************/ 626/*****************************************************************************/
463 627
628static struct ev_child *childs [PID_HASHSIZE];
629
464#ifndef WIN32 630#ifndef WIN32
631
632static struct ev_signal childev;
465 633
466#ifndef WCONTINUED 634#ifndef WCONTINUED
467# define WCONTINUED 0 635# define WCONTINUED 0
468#endif 636#endif
469 637
473 struct ev_child *w; 641 struct ev_child *w;
474 642
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid) 644 if (w->pid == pid || !w->pid)
477 { 645 {
478 w->priority = sw->priority; /* need to do it *now* */ 646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
479 w->rpid = pid; 647 w->rpid = pid;
480 w->rstatus = status; 648 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD); 649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
482 } 650 }
483} 651}
484 652
485static void 653static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 654childcb (EV_P_ struct ev_signal *sw, int revents)
488 int pid, status; 656 int pid, status;
489 657
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 659 {
492 /* make sure we are called again until all childs have been reaped */ 660 /* make sure we are called again until all childs have been reaped */
493 event (EV_A_ (W)sw, EV_SIGNAL); 661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 662
495 child_reap (EV_A_ sw, pid, pid, status); 663 child_reap (EV_A_ sw, pid, pid, status);
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 } 665 }
498} 666}
505# include "ev_kqueue.c" 673# include "ev_kqueue.c"
506#endif 674#endif
507#if EV_USE_EPOLL 675#if EV_USE_EPOLL
508# include "ev_epoll.c" 676# include "ev_epoll.c"
509#endif 677#endif
510#if EV_USEV_POLL 678#if EV_USE_POLL
511# include "ev_poll.c" 679# include "ev_poll.c"
512#endif 680#endif
513#if EV_USE_SELECT 681#if EV_USE_SELECT
514# include "ev_select.c" 682# include "ev_select.c"
515#endif 683#endif
560 rt_now = ev_time (); 728 rt_now = ev_time ();
561 mn_now = get_clock (); 729 mn_now = get_clock ();
562 now_floor = mn_now; 730 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now; 731 rtmn_diff = rt_now - mn_now;
564 732
565 if (pipe (sigpipe))
566 return 0;
567
568 if (methods == EVMETHOD_AUTO) 733 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS")) 734 if (!enable_secure () && getenv ("LIBEV_METHODS"))
570 methods = atoi (getenv ("LIBmethodS")); 735 methods = atoi (getenv ("LIBEV_METHODS"));
571 else 736 else
572 methods = EVMETHOD_ANY; 737 methods = EVMETHOD_ANY;
573 738
574 method = 0; 739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
575#if EV_USE_KQUEUE 743#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif 745#endif
578#if EV_USE_EPOLL 746#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif 748#endif
581#if EV_USEV_POLL 749#if EV_USE_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif 751#endif
584#if EV_USE_SELECT 752#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif 754#endif
587 755
756 ev_watcher_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif
781
782 for (i = NUMPRI; i--; )
783 array_free (pending, [i]);
784
785 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange);
787 array_free_microshit (timer);
788 array_free_microshit (periodic);
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792
793 method = 0;
794}
795
796static void
797loop_fork (EV_P)
798{
799#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
801#endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822}
823
824#if EV_MULTIPLICITY
825struct ev_loop *
826ev_loop_new (int methods)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else
858int
859#endif
860ev_default_loop (int methods)
861{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop)
867 {
868#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct;
870#else
871 default_loop = 1;
872#endif
873
874 loop_init (EV_A_ methods);
875
588 if (method) 876 if (ev_method (EV_A))
589 { 877 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A); 878 siginit (EV_A);
593 879
594#ifndef WIN32 880#ifndef WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 881 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 882 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 883 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 884 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 885#endif
600 } 886 }
887 else
888 default_loop = 0;
601 } 889 }
602 890
603 return method; 891 return default_loop;
604} 892}
605 893
894void
895ev_default_destroy (void)
896{
606#ifdef EV_MULTIPLICITY 897#if EV_MULTIPLICITY
607 898 struct ev_loop *loop = default_loop;
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 loop_init (EV_A_ methods);
614
615 return loop;
616}
617
618void
619ev_loop_delete (EV_P)
620{
621 /*TODO*/
622 free (loop);
623}
624
625#else
626
627int
628ev_init (int methods)
629{
630 loop_init ();
631}
632
633#endif 899#endif
900
901#ifndef WIN32
902 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev);
904#endif
905
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A);
913}
914
915void
916ev_default_fork (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922 if (method)
923 postfork = 1;
924}
634 925
635/*****************************************************************************/ 926/*****************************************************************************/
636 927
637void 928static int
638ev_fork_prepare (void) 929any_pending (EV_P)
639{ 930{
640 /* nop */ 931 int pri;
641}
642 932
643void 933 for (pri = NUMPRI; pri--; )
644ev_fork_parent (void) 934 if (pendingcnt [pri])
645{ 935 return 1;
646 /* nop */
647}
648 936
649void 937 return 0;
650ev_fork_child (void)
651{
652 /*TODO*/
653#if !EV_MULTIPLICITY
654#if EV_USE_EPOLL
655 if (method == EVMETHOD_EPOLL)
656 epoll_postfork_child (EV_A);
657#endif
658
659 ev_io_stop (EV_A_ &sigev);
660 close (sigpipe [0]);
661 close (sigpipe [1]);
662 pipe (sigpipe);
663 siginit (EV_A);
664#endif
665} 938}
666
667/*****************************************************************************/
668 939
669static void 940static void
670call_pending (EV_P) 941call_pending (EV_P)
671{ 942{
672 int pri; 943 int pri;
685} 956}
686 957
687static void 958static void
688timers_reify (EV_P) 959timers_reify (EV_P)
689{ 960{
690 while (timercnt && timers [0]->at <= mn_now) 961 while (timercnt && ((WT)timers [0])->at <= mn_now)
691 { 962 {
692 struct ev_timer *w = timers [0]; 963 struct ev_timer *w = timers [0];
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
693 966
694 /* first reschedule or stop timer */ 967 /* first reschedule or stop timer */
695 if (w->repeat) 968 if (w->repeat)
696 { 969 {
697 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
698 w->at = mn_now + w->repeat; 971 ((WT)w)->at = mn_now + w->repeat;
699 downheap ((WT *)timers, timercnt, 0); 972 downheap ((WT *)timers, timercnt, 0);
700 } 973 }
701 else 974 else
702 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
703 976
704 event (EV_A_ (W)w, EV_TIMEOUT); 977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
705 } 978 }
706} 979}
707 980
708static void 981static void
709periodics_reify (EV_P) 982periodics_reify (EV_P)
710{ 983{
711 while (periodiccnt && periodics [0]->at <= rt_now) 984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
712 { 985 {
713 struct ev_periodic *w = periodics [0]; 986 struct ev_periodic *w = periodics [0];
714 987
988 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
715 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
716 if (w->interval) 991 if (w->reschedule_cb)
717 { 992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval)
999 {
718 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
719 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
720 downheap ((WT *)periodics, periodiccnt, 0); 1002 downheap ((WT *)periodics, periodiccnt, 0);
721 } 1003 }
722 else 1004 else
723 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
724 1006
725 event (EV_A_ (W)w, EV_PERIODIC); 1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
726 } 1008 }
727} 1009}
728 1010
729static void 1011static void
730periodics_reschedule (EV_P) 1012periodics_reschedule (EV_P)
734 /* adjust periodics after time jump */ 1016 /* adjust periodics after time jump */
735 for (i = 0; i < periodiccnt; ++i) 1017 for (i = 0; i < periodiccnt; ++i)
736 { 1018 {
737 struct ev_periodic *w = periodics [i]; 1019 struct ev_periodic *w = periodics [i];
738 1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
739 if (w->interval) 1023 else if (w->interval)
740 {
741 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
742
743 if (fabs (diff) >= 1e-4)
744 {
745 ev_periodic_stop (EV_A_ w);
746 ev_periodic_start (EV_A_ w);
747
748 i = 0; /* restart loop, inefficient, but time jumps should be rare */
749 }
750 }
751 } 1025 }
1026
1027 /* now rebuild the heap */
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
752} 1030}
753 1031
754inline int 1032inline int
755time_update_monotonic (EV_P) 1033time_update_monotonic (EV_P)
756{ 1034{
807 { 1085 {
808 periodics_reschedule (EV_A); 1086 periodics_reschedule (EV_A);
809 1087
810 /* adjust timers. this is easy, as the offset is the same for all */ 1088 /* adjust timers. this is easy, as the offset is the same for all */
811 for (i = 0; i < timercnt; ++i) 1089 for (i = 0; i < timercnt; ++i)
812 timers [i]->at += rt_now - mn_now; 1090 ((WT)timers [i])->at += rt_now - mn_now;
813 } 1091 }
814 1092
815 mn_now = rt_now; 1093 mn_now = rt_now;
816 } 1094 }
817} 1095}
843 { 1121 {
844 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
845 call_pending (EV_A); 1123 call_pending (EV_A);
846 } 1124 }
847 1125
1126 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork))
1128 loop_fork (EV_A);
1129
848 /* update fd-related kernel structures */ 1130 /* update fd-related kernel structures */
849 fd_reify (EV_A); 1131 fd_reify (EV_A);
850 1132
851 /* calculate blocking time */ 1133 /* calculate blocking time */
852 1134
853 /* we only need this for !monotonic clockor timers, but as we basically 1135 /* we only need this for !monotonic clock or timers, but as we basically
854 always have timers, we just calculate it always */ 1136 always have timers, we just calculate it always */
855#if EV_USE_MONOTONIC 1137#if EV_USE_MONOTONIC
856 if (expect_true (have_monotonic)) 1138 if (expect_true (have_monotonic))
857 time_update_monotonic (EV_A); 1139 time_update_monotonic (EV_A);
858 else 1140 else
868 { 1150 {
869 block = MAX_BLOCKTIME; 1151 block = MAX_BLOCKTIME;
870 1152
871 if (timercnt) 1153 if (timercnt)
872 { 1154 {
873 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
874 if (block > to) block = to; 1156 if (block > to) block = to;
875 } 1157 }
876 1158
877 if (periodiccnt) 1159 if (periodiccnt)
878 { 1160 {
879 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
880 if (block > to) block = to; 1162 if (block > to) block = to;
881 } 1163 }
882 1164
883 if (block < 0.) block = 0.; 1165 if (block < 0.) block = 0.;
884 } 1166 }
891 /* queue pending timers and reschedule them */ 1173 /* queue pending timers and reschedule them */
892 timers_reify (EV_A); /* relative timers called last */ 1174 timers_reify (EV_A); /* relative timers called last */
893 periodics_reify (EV_A); /* absolute timers called first */ 1175 periodics_reify (EV_A); /* absolute timers called first */
894 1176
895 /* queue idle watchers unless io or timers are pending */ 1177 /* queue idle watchers unless io or timers are pending */
896 if (!pendingcnt) 1178 if (idlecnt && !any_pending (EV_A))
897 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
898 1180
899 /* queue check watchers, to be executed first */ 1181 /* queue check watchers, to be executed first */
900 if (checkcnt) 1182 if (checkcnt)
901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
976 return; 1258 return;
977 1259
978 assert (("ev_io_start called with negative fd", fd >= 0)); 1260 assert (("ev_io_start called with negative fd", fd >= 0));
979 1261
980 ev_start (EV_A_ (W)w, 1); 1262 ev_start (EV_A_ (W)w, 1);
981 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
982 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1264 wlist_add ((WL *)&anfds[fd].head, (WL)w);
983 1265
984 fd_change (EV_A_ fd); 1266 fd_change (EV_A_ fd);
985} 1267}
986 1268
1001ev_timer_start (EV_P_ struct ev_timer *w) 1283ev_timer_start (EV_P_ struct ev_timer *w)
1002{ 1284{
1003 if (ev_is_active (w)) 1285 if (ev_is_active (w))
1004 return; 1286 return;
1005 1287
1006 w->at += mn_now; 1288 ((WT)w)->at += mn_now;
1007 1289
1008 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1009 1291
1010 ev_start (EV_A_ (W)w, ++timercnt); 1292 ev_start (EV_A_ (W)w, ++timercnt);
1011 array_needsize (timers, timermax, timercnt, ); 1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1012 timers [timercnt - 1] = w; 1294 timers [timercnt - 1] = w;
1013 upheap ((WT *)timers, timercnt - 1); 1295 upheap ((WT *)timers, timercnt - 1);
1296
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1014} 1298}
1015 1299
1016void 1300void
1017ev_timer_stop (EV_P_ struct ev_timer *w) 1301ev_timer_stop (EV_P_ struct ev_timer *w)
1018{ 1302{
1019 ev_clear_pending (EV_A_ (W)w); 1303 ev_clear_pending (EV_A_ (W)w);
1020 if (!ev_is_active (w)) 1304 if (!ev_is_active (w))
1021 return; 1305 return;
1022 1306
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
1023 if (w->active < timercnt--) 1309 if (((W)w)->active < timercnt--)
1024 { 1310 {
1025 timers [w->active - 1] = timers [timercnt]; 1311 timers [((W)w)->active - 1] = timers [timercnt];
1026 downheap ((WT *)timers, timercnt, w->active - 1); 1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1027 } 1313 }
1028 1314
1029 w->at = w->repeat; 1315 ((WT)w)->at = w->repeat;
1030 1316
1031 ev_stop (EV_A_ (W)w); 1317 ev_stop (EV_A_ (W)w);
1032} 1318}
1033 1319
1034void 1320void
1036{ 1322{
1037 if (ev_is_active (w)) 1323 if (ev_is_active (w))
1038 { 1324 {
1039 if (w->repeat) 1325 if (w->repeat)
1040 { 1326 {
1041 w->at = mn_now + w->repeat; 1327 ((WT)w)->at = mn_now + w->repeat;
1042 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1043 } 1329 }
1044 else 1330 else
1045 ev_timer_stop (EV_A_ w); 1331 ev_timer_stop (EV_A_ w);
1046 } 1332 }
1047 else if (w->repeat) 1333 else if (w->repeat)
1052ev_periodic_start (EV_P_ struct ev_periodic *w) 1338ev_periodic_start (EV_P_ struct ev_periodic *w)
1053{ 1339{
1054 if (ev_is_active (w)) 1340 if (ev_is_active (w))
1055 return; 1341 return;
1056 1342
1343 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345 else if (w->interval)
1346 {
1057 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1058
1059 /* this formula differs from the one in periodic_reify because we do not always round up */ 1348 /* this formula differs from the one in periodic_reify because we do not always round up */
1060 if (w->interval)
1061 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350 }
1062 1351
1063 ev_start (EV_A_ (W)w, ++periodiccnt); 1352 ev_start (EV_A_ (W)w, ++periodiccnt);
1064 array_needsize (periodics, periodicmax, periodiccnt, ); 1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1065 periodics [periodiccnt - 1] = w; 1354 periodics [periodiccnt - 1] = w;
1066 upheap ((WT *)periodics, periodiccnt - 1); 1355 upheap ((WT *)periodics, periodiccnt - 1);
1356
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1067} 1358}
1068 1359
1069void 1360void
1070ev_periodic_stop (EV_P_ struct ev_periodic *w) 1361ev_periodic_stop (EV_P_ struct ev_periodic *w)
1071{ 1362{
1072 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1073 if (!ev_is_active (w)) 1364 if (!ev_is_active (w))
1074 return; 1365 return;
1075 1366
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
1076 if (w->active < periodiccnt--) 1369 if (((W)w)->active < periodiccnt--)
1077 { 1370 {
1078 periodics [w->active - 1] = periodics [periodiccnt]; 1371 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1079 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1080 } 1373 }
1081 1374
1375 ev_stop (EV_A_ (W)w);
1376}
1377
1378void
1379ev_periodic_again (EV_P_ struct ev_periodic *w)
1380{
1381 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w);
1383}
1384
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1082 ev_stop (EV_A_ (W)w); 1448 ev_stop (EV_A_ (W)w);
1083} 1449}
1084 1450
1085#ifndef SA_RESTART 1451#ifndef SA_RESTART
1086# define SA_RESTART 0 1452# define SA_RESTART 0
1087#endif 1453#endif
1088 1454
1089void 1455void
1090ev_signal_start (EV_P_ struct ev_signal *w) 1456ev_signal_start (EV_P_ struct ev_signal *w)
1091{ 1457{
1458#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1460#endif
1092 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1093 return; 1462 return;
1094 1463
1095 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1096 1465
1097 ev_start (EV_A_ (W)w, 1); 1466 ev_start (EV_A_ (W)w, 1);
1098 array_needsize (signals, signalmax, w->signum, signals_init); 1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1099 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1100 1469
1101 if (!w->next) 1470 if (!((WL)w)->next)
1102 { 1471 {
1472#if WIN32
1473 signal (w->signum, sighandler);
1474#else
1103 struct sigaction sa; 1475 struct sigaction sa;
1104 sa.sa_handler = sighandler; 1476 sa.sa_handler = sighandler;
1105 sigfillset (&sa.sa_mask); 1477 sigfillset (&sa.sa_mask);
1106 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1107 sigaction (w->signum, &sa, 0); 1479 sigaction (w->signum, &sa, 0);
1480#endif
1108 } 1481 }
1109} 1482}
1110 1483
1111void 1484void
1112ev_signal_stop (EV_P_ struct ev_signal *w) 1485ev_signal_stop (EV_P_ struct ev_signal *w)
1121 if (!signals [w->signum - 1].head) 1494 if (!signals [w->signum - 1].head)
1122 signal (w->signum, SIG_DFL); 1495 signal (w->signum, SIG_DFL);
1123} 1496}
1124 1497
1125void 1498void
1126ev_idle_start (EV_P_ struct ev_idle *w)
1127{
1128 if (ev_is_active (w))
1129 return;
1130
1131 ev_start (EV_A_ (W)w, ++idlecnt);
1132 array_needsize (idles, idlemax, idlecnt, );
1133 idles [idlecnt - 1] = w;
1134}
1135
1136void
1137ev_idle_stop (EV_P_ struct ev_idle *w)
1138{
1139 ev_clear_pending (EV_A_ (W)w);
1140 if (ev_is_active (w))
1141 return;
1142
1143 idles [w->active - 1] = idles [--idlecnt];
1144 ev_stop (EV_A_ (W)w);
1145}
1146
1147void
1148ev_prepare_start (EV_P_ struct ev_prepare *w)
1149{
1150 if (ev_is_active (w))
1151 return;
1152
1153 ev_start (EV_A_ (W)w, ++preparecnt);
1154 array_needsize (prepares, preparemax, preparecnt, );
1155 prepares [preparecnt - 1] = w;
1156}
1157
1158void
1159ev_prepare_stop (EV_P_ struct ev_prepare *w)
1160{
1161 ev_clear_pending (EV_A_ (W)w);
1162 if (ev_is_active (w))
1163 return;
1164
1165 prepares [w->active - 1] = prepares [--preparecnt];
1166 ev_stop (EV_A_ (W)w);
1167}
1168
1169void
1170ev_check_start (EV_P_ struct ev_check *w)
1171{
1172 if (ev_is_active (w))
1173 return;
1174
1175 ev_start (EV_A_ (W)w, ++checkcnt);
1176 array_needsize (checks, checkmax, checkcnt, );
1177 checks [checkcnt - 1] = w;
1178}
1179
1180void
1181ev_check_stop (EV_P_ struct ev_check *w)
1182{
1183 ev_clear_pending (EV_A_ (W)w);
1184 if (ev_is_active (w))
1185 return;
1186
1187 checks [w->active - 1] = checks [--checkcnt];
1188 ev_stop (EV_A_ (W)w);
1189}
1190
1191void
1192ev_child_start (EV_P_ struct ev_child *w) 1499ev_child_start (EV_P_ struct ev_child *w)
1193{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1194 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1195 return; 1505 return;
1196 1506
1197 ev_start (EV_A_ (W)w, 1); 1507 ev_start (EV_A_ (W)w, 1);
1198 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1225 void (*cb)(int revents, void *arg) = once->cb; 1535 void (*cb)(int revents, void *arg) = once->cb;
1226 void *arg = once->arg; 1536 void *arg = once->arg;
1227 1537
1228 ev_io_stop (EV_A_ &once->io); 1538 ev_io_stop (EV_A_ &once->io);
1229 ev_timer_stop (EV_A_ &once->to); 1539 ev_timer_stop (EV_A_ &once->to);
1230 free (once); 1540 ev_free (once);
1231 1541
1232 cb (revents, arg); 1542 cb (revents, arg);
1233} 1543}
1234 1544
1235static void 1545static void
1245} 1555}
1246 1556
1247void 1557void
1248ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1249{ 1559{
1250 struct ev_once *once = malloc (sizeof (struct ev_once)); 1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1251 1561
1252 if (!once) 1562 if (!once)
1253 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1254 else 1564 else
1255 { 1565 {
1270 ev_timer_start (EV_A_ &once->to); 1580 ev_timer_start (EV_A_ &once->to);
1271 } 1581 }
1272 } 1582 }
1273} 1583}
1274 1584
1275/*****************************************************************************/
1276
1277#if 0
1278
1279struct ev_io wio;
1280
1281static void
1282sin_cb (struct ev_io *w, int revents)
1283{
1284 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1285}
1286
1287static void
1288ocb (struct ev_timer *w, int revents)
1289{
1290 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1291 ev_timer_stop (w);
1292 ev_timer_start (w);
1293}
1294
1295static void
1296scb (struct ev_signal *w, int revents)
1297{
1298 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1299 ev_io_stop (&wio);
1300 ev_io_start (&wio);
1301}
1302
1303static void
1304gcb (struct ev_signal *w, int revents)
1305{
1306 fprintf (stderr, "generic %x\n", revents);
1307
1308}
1309
1310int main (void)
1311{
1312 ev_init (0);
1313
1314 ev_io_init (&wio, sin_cb, 0, EV_READ);
1315 ev_io_start (&wio);
1316
1317 struct ev_timer t[10000];
1318
1319#if 0
1320 int i;
1321 for (i = 0; i < 10000; ++i)
1322 {
1323 struct ev_timer *w = t + i;
1324 ev_watcher_init (w, ocb, i);
1325 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1326 ev_timer_start (w);
1327 if (drand48 () < 0.5)
1328 ev_timer_stop (w);
1329 }
1330#endif
1331
1332 struct ev_timer t1;
1333 ev_timer_init (&t1, ocb, 5, 10);
1334 ev_timer_start (&t1);
1335
1336 struct ev_signal sig;
1337 ev_signal_init (&sig, scb, SIGQUIT);
1338 ev_signal_start (&sig);
1339
1340 struct ev_check cw;
1341 ev_check_init (&cw, gcb);
1342 ev_check_start (&cw);
1343
1344 struct ev_idle iw;
1345 ev_idle_init (&iw, gcb);
1346 ev_idle_start (&iw);
1347
1348 ev_loop (0);
1349
1350 return 0;
1351}
1352
1353#endif
1354
1355
1356
1357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines