ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.7 by root, Wed Oct 31 00:24:16 2007 UTC vs.
Revision 1.56 by root, Sun Nov 4 15:58:49 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
34
1#include <math.h> 35#include <math.h>
2#include <stdlib.h> 36#include <stdlib.h>
3#include <unistd.h> 37#include <unistd.h>
4#include <fcntl.h> 38#include <fcntl.h>
5#include <signal.h> 39#include <signal.h>
40#include <stddef.h>
6 41
7#include <stdio.h> 42#include <stdio.h>
8 43
9#include <assert.h> 44#include <assert.h>
10#include <errno.h> 45#include <errno.h>
46#include <sys/types.h>
47#ifndef WIN32
48# include <sys/wait.h>
49#endif
11#include <sys/time.h> 50#include <sys/time.h>
12#include <time.h> 51#include <time.h>
13 52
53/**/
54
55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
14#ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
15# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
16#endif 84#endif
17 85
86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
18#define HAVE_REALTIME 1 88# define EV_USE_REALTIME 0
19#define HAVE_EPOLL 1 89#endif
20#define HAVE_SELECT 1 90
91/**/
21 92
22#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
23#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
24 97
25#include "ev.h" 98#include "ev.h"
26 99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113
27struct ev_watcher { 114typedef struct ev_watcher *W;
28 EV_WATCHER (ev_watcher); 115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT;
117
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119
120/*****************************************************************************/
121
122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
29}; 141};
142# undef VAR
143# include "ev_wrap.h"
30 144
31struct ev_watcher_list { 145#else
32 EV_WATCHER_LIST (ev_watcher_list);
33};
34 146
35static ev_tstamp now, diff; /* monotonic clock */ 147# define VAR(name,decl) static decl;
36ev_tstamp ev_now; 148# include "ev_vars.h"
37int ev_method; 149# undef VAR
38 150
39static int have_monotonic; /* runtime */ 151#endif
40 152
41static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 153/*****************************************************************************/
42static void (*method_modify)(int fd, int oev, int nev);
43static void (*method_poll)(ev_tstamp timeout);
44 154
45ev_tstamp 155inline ev_tstamp
46ev_time (void) 156ev_time (void)
47{ 157{
48#if HAVE_REALTIME 158#if EV_USE_REALTIME
49 struct timespec ts; 159 struct timespec ts;
50 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
51 return ts.tv_sec + ts.tv_nsec * 1e-9; 161 return ts.tv_sec + ts.tv_nsec * 1e-9;
52#else 162#else
53 struct timeval tv; 163 struct timeval tv;
54 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
55 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
56#endif 166#endif
57} 167}
58 168
59static ev_tstamp 169inline ev_tstamp
60get_clock (void) 170get_clock (void)
61{ 171{
62#if HAVE_MONOTONIC 172#if EV_USE_MONOTONIC
63 if (have_monotonic) 173 if (expect_true (have_monotonic))
64 { 174 {
65 struct timespec ts; 175 struct timespec ts;
66 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
67 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
68 } 178 }
69#endif 179#endif
70 180
71 return ev_time (); 181 return ev_time ();
72} 182}
73 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
190#define array_roundsize(base,n) ((n) | 4 & ~3)
191
74#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
75 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
76 { \ 194 { \
77 int newcnt = cur ? cur << 1 : 16; \ 195 int newcnt = cur; \
78 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
79 base = realloc (base, sizeof (*base) * (newcnt)); \ 202 base = realloc (base, sizeof (*base) * (newcnt)); \
80 init (base + cur, newcnt - cur); \ 203 init (base + cur, newcnt - cur); \
81 cur = newcnt; \ 204 cur = newcnt; \
82 } 205 }
83 206
84typedef struct 207/*****************************************************************************/
85{
86 struct ev_io *head;
87 unsigned char wev, rev; /* want, received event set */
88} ANFD;
89
90static ANFD *anfds;
91static int anfdmax;
92
93static int *fdchanges;
94static int fdchangemax, fdchangecnt;
95 208
96static void 209static void
97anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
98{ 211{
99 while (count--) 212 while (count--)
100 { 213 {
101 base->head = 0; 214 base->head = 0;
102 base->wev = base->rev = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
103 ++base; 218 ++base;
104 } 219 }
105} 220}
106 221
107typedef struct
108{
109 struct ev_watcher *w;
110 int events;
111} ANPENDING;
112
113static ANPENDING *pendings;
114static int pendingmax, pendingcnt;
115
116static void 222static void
117event (struct ev_watcher *w, int events) 223event (EV_P_ W w, int events)
118{ 224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
119 w->pending = ++pendingcnt; 231 w->pending = ++pendingcnt [ABSPRI (w)];
120 array_needsize (pendings, pendingmax, pendingcnt, ); 232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
121 pendings [pendingcnt - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
122 pendings [pendingcnt - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
123} 235}
124 236
125static void 237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
126fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
127{ 248{
128 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
129 struct ev_io *w; 250 struct ev_io *w;
130 251
131 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
132 { 253 {
133 int ev = w->events & events; 254 int ev = w->events & events;
134 255
135 if (ev) 256 if (ev)
136 event ((struct ev_watcher *)w, ev); 257 event (EV_A_ (W)w, ev);
258 }
259}
260
261/*****************************************************************************/
262
263static void
264fd_reify (EV_P)
265{
266 int i;
267
268 for (i = 0; i < fdchangecnt; ++i)
269 {
270 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 int events = 0;
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events;
285 }
286 }
287
288 fdchangecnt = 0;
289}
290
291static void
292fd_change (EV_P_ int fd)
293{
294 if (anfds [fd].reify || fdchangecnt < 0)
295 return;
296
297 anfds [fd].reify = 1;
298
299 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301 fdchanges [fdchangecnt - 1] = fd;
302}
303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
316/* called on EBADF to verify fds */
317static void
318fd_ebadf (EV_P)
319{
320 int fd;
321
322 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
336 {
337 close (fd);
338 fd_kill (EV_A_ fd);
339 return;
137 } 340 }
138} 341}
139 342
140static struct ev_timer **atimers; 343/* susually called after fork if method needs to re-arm all fds from scratch */
141static int atimermax, atimercnt;
142
143static struct ev_timer **rtimers;
144static int rtimermax, rtimercnt;
145
146static void 344static void
147upheap (struct ev_timer **timers, int k) 345fd_rearm_all (EV_P)
148{ 346{
149 struct ev_timer *w = timers [k]; 347 int fd;
150 348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
356}
357
358/*****************************************************************************/
359
360static void
361upheap (WT *heap, int k)
362{
363 WT w = heap [k];
364
151 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
152 { 366 {
153 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
154 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
155 k >>= 1; 369 k >>= 1;
156 } 370 }
157 371
158 timers [k] = w; 372 heap [k] = w;
159 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
160 374
161} 375}
162 376
163static void 377static void
164downheap (struct ev_timer **timers, int N, int k) 378downheap (WT *heap, int N, int k)
165{ 379{
166 struct ev_timer *w = timers [k]; 380 WT w = heap [k];
167 381
168 while (k < (N >> 1)) 382 while (k < (N >> 1))
169 { 383 {
170 int j = k << 1; 384 int j = k << 1;
171 385
172 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
173 ++j; 387 ++j;
174 388
175 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
176 break; 390 break;
177 391
178 timers [k] = timers [j]; 392 heap [k] = heap [j];
179 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
180 k = j; 394 k = j;
181 } 395 }
182 396
183 timers [k] = w; 397 heap [k] = w;
184 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
185} 399}
400
401/*****************************************************************************/
186 402
187typedef struct 403typedef struct
188{ 404{
189 struct ev_signal *head; 405 struct ev_watcher_list *head;
190 sig_atomic_t gotsig; 406 sig_atomic_t volatile gotsig;
191} ANSIG; 407} ANSIG;
192 408
193static ANSIG *signals; 409static ANSIG *signals;
194static int signalmax; 410static int signalmax;
195 411
196static int sigpipe [2]; 412static int sigpipe [2];
197static sig_atomic_t gotsig; 413static sig_atomic_t volatile gotsig;
198static struct ev_io sigev;
199 414
200static void 415static void
201signals_init (ANSIG *base, int count) 416signals_init (ANSIG *base, int count)
202{ 417{
203 while (count--) 418 while (count--)
204 { 419 {
205 base->head = 0; 420 base->head = 0;
206 base->gotsig = 0; 421 base->gotsig = 0;
422
207 ++base; 423 ++base;
208 } 424 }
209} 425}
210 426
211static void 427static void
213{ 429{
214 signals [signum - 1].gotsig = 1; 430 signals [signum - 1].gotsig = 1;
215 431
216 if (!gotsig) 432 if (!gotsig)
217 { 433 {
434 int old_errno = errno;
218 gotsig = 1; 435 gotsig = 1;
219 write (sigpipe [1], &gotsig, 1); 436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
220 } 438 }
221} 439}
222 440
223static void 441static void
224sigcb (struct ev_io *iow, int revents) 442sigcb (EV_P_ struct ev_io *iow, int revents)
225{ 443{
226 struct ev_signal *w; 444 struct ev_watcher_list *w;
227 int sig; 445 int signum;
228 446
447 read (sigpipe [0], &revents, 1);
229 gotsig = 0; 448 gotsig = 0;
230 read (sigpipe [0], &revents, 1);
231 449
232 for (sig = signalmax; sig--; ) 450 for (signum = signalmax; signum--; )
233 if (signals [sig].gotsig) 451 if (signals [signum].gotsig)
234 { 452 {
235 signals [sig].gotsig = 0; 453 signals [signum].gotsig = 0;
236 454
237 for (w = signals [sig].head; w; w = w->next) 455 for (w = signals [signum].head; w; w = w->next)
238 event ((struct ev_watcher *)w, EV_SIGNAL); 456 event (EV_A_ (W)w, EV_SIGNAL);
239 } 457 }
240} 458}
241 459
242static void 460static void
243siginit (void) 461siginit (EV_P)
244{ 462{
463#ifndef WIN32
245 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
246 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
247 466
248 /* rather than sort out wether we really need nb, set it */ 467 /* rather than sort out wether we really need nb, set it */
249 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
250 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
251 471
252 evio_set (&sigev, sigpipe [0], EV_READ); 472 ev_io_set (&sigev, sigpipe [0], EV_READ);
253 evio_start (&sigev); 473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
254} 475}
255 476
477/*****************************************************************************/
478
479#ifndef WIN32
480
481#ifndef WCONTINUED
482# define WCONTINUED 0
483#endif
484
485static void
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487{
488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents)
502{
503 int pid, status;
504
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 {
507 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL);
509
510 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 }
513}
514
515#endif
516
517/*****************************************************************************/
518
519#if EV_USE_KQUEUE
520# include "ev_kqueue.c"
521#endif
256#if HAVE_EPOLL 522#if EV_USE_EPOLL
257# include "ev_epoll.c" 523# include "ev_epoll.c"
258#endif 524#endif
525#if EV_USEV_POLL
526# include "ev_poll.c"
527#endif
259#if HAVE_SELECT 528#if EV_USE_SELECT
260# include "ev_select.c" 529# include "ev_select.c"
261#endif 530#endif
262 531
263int ev_init (int flags) 532int
533ev_version_major (void)
264{ 534{
535 return EV_VERSION_MAJOR;
536}
537
538int
539ev_version_minor (void)
540{
541 return EV_VERSION_MINOR;
542}
543
544/* return true if we are running with elevated privileges and should ignore env variables */
545static int
546enable_secure (void)
547{
548#ifdef WIN32
549 return 0;
550#else
551 return getuid () != geteuid ()
552 || getgid () != getegid ();
553#endif
554}
555
556int
557ev_method (EV_P)
558{
559 return method;
560}
561
562static void
563loop_init (EV_P_ int methods)
564{
565 if (!method)
566 {
265#if HAVE_MONOTONIC 567#if EV_USE_MONOTONIC
266 { 568 {
267 struct timespec ts; 569 struct timespec ts;
268 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
269 have_monotonic = 1; 571 have_monotonic = 1;
270 } 572 }
271#endif 573#endif
272 574
273 ev_now = ev_time (); 575 rt_now = ev_time ();
274 now = get_clock (); 576 mn_now = get_clock ();
275 diff = ev_now - now; 577 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now;
276 579
580 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif
590#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif
596#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif
599 }
600}
601
602void
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633
634#if EV_MULTIPLICITY
635struct ev_loop *
636ev_loop_new (int methods)
637{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif
662
663#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
277 if (pipe (sigpipe)) 676 if (pipe (sigpipe))
278 return 0; 677 return 0;
279 678
280 ev_method = EVMETHOD_NONE; 679 if (!default_loop)
281#if HAVE_EPOLL
282 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
283#endif
284#if HAVE_SELECT
285 if (ev_method == EVMETHOD_NONE) select_init (flags);
286#endif
287
288 if (ev_method)
289 { 680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1;
685#endif
686
687 loop_init (EV_A_ methods);
688
689 if (ev_method (EV_A))
690 {
290 evw_init (&sigev, sigcb, 0); 691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
291 siginit (); 693 siginit (EV_A);
292 }
293 694
294 return ev_method; 695#ifndef WIN32
295} 696 ev_signal_init (&childev, childcb, SIGCHLD);
296 697 ev_set_priority (&childev, EV_MAXPRI);
297void ev_prefork (void) 698 ev_signal_start (EV_A_ &childev);
298{ 699 ev_unref (EV_A); /* child watcher should not keep loop alive */
299}
300
301void ev_postfork_parent (void)
302{
303}
304
305void ev_postfork_child (void)
306{
307#if HAVE_EPOLL
308 if (ev_method == EVMETHOD_EPOLL)
309 epoll_postfork_child ();
310#endif 700#endif
701 }
702 else
703 default_loop = 0;
704 }
311 705
706 return default_loop;
707}
708
709void
710ev_default_destroy (void)
711{
712 struct ev_loop *loop = default_loop;
713
714 ev_ref (EV_A); /* child watcher */
715 ev_signal_stop (EV_A_ &childev);
716
717 ev_ref (EV_A); /* signal watcher */
312 evio_stop (&sigev); 718 ev_io_stop (EV_A_ &sigev);
719
720 close (sigpipe [0]); sigpipe [0] = 0;
721 close (sigpipe [1]); sigpipe [1] = 0;
722
723 loop_destroy (EV_A);
724}
725
726void
727ev_default_fork (EV_P)
728{
729 loop_fork (EV_A);
730
731 ev_io_stop (EV_A_ &sigev);
313 close (sigpipe [0]); 732 close (sigpipe [0]);
314 close (sigpipe [1]); 733 close (sigpipe [1]);
315 pipe (sigpipe); 734 pipe (sigpipe);
735
736 ev_ref (EV_A); /* signal watcher */
316 siginit (); 737 siginit (EV_A);
317} 738}
318 739
740/*****************************************************************************/
741
319static void 742static void
320fd_reify (void) 743call_pending (EV_P)
321{ 744{
322 int i; 745 int pri;
323 746
324 for (i = 0; i < fdchangecnt; ++i) 747 for (pri = NUMPRI; pri--; )
325 { 748 while (pendingcnt [pri])
326 int fd = fdchanges [i];
327 ANFD *anfd = anfds + fd;
328 struct ev_io *w;
329
330 int wev = 0;
331
332 for (w = anfd->head; w; w = w->next)
333 wev |= w->events;
334
335 if (anfd->wev != wev)
336 { 749 {
337 method_modify (fd, anfd->wev, wev); 750 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
338 anfd->wev = wev;
339 }
340 }
341 751
342 fdchangecnt = 0;
343}
344
345static void
346call_pending ()
347{
348 int i;
349
350 for (i = 0; i < pendingcnt; ++i)
351 {
352 ANPENDING *p = pendings + i;
353
354 if (p->w) 752 if (p->w)
355 { 753 {
356 p->w->pending = 0; 754 p->w->pending = 0;
357 p->w->cb (p->w, p->events); 755 p->w->cb (EV_A_ p->w, p->events);
358 } 756 }
359 } 757 }
360
361 pendingcnt = 0;
362} 758}
363 759
364static void 760static void
365timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 761timers_reify (EV_P)
366{ 762{
367 while (timercnt && timers [0]->at <= now) 763 while (timercnt && timers [0]->at <= mn_now)
368 { 764 {
369 struct ev_timer *w = timers [0]; 765 struct ev_timer *w = timers [0];
370 766
371 /* first reschedule or stop timer */ 767 /* first reschedule or stop timer */
372 if (w->repeat) 768 if (w->repeat)
373 { 769 {
374 if (w->is_abs) 770 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
375 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
376 else
377 w->at = now + w->repeat; 771 w->at = mn_now + w->repeat;
378
379 assert (w->at > now);
380
381 downheap (timers, timercnt, 0); 772 downheap ((WT *)timers, timercnt, 0);
382 } 773 }
383 else 774 else
775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776
777 event (EV_A_ (W)w, EV_TIMEOUT);
778 }
779}
780
781static void
782periodics_reify (EV_P)
783{
784 while (periodiccnt && periodics [0]->at <= rt_now)
785 {
786 struct ev_periodic *w = periodics [0];
787
788 /* first reschedule or stop timer */
789 if (w->interval)
384 { 790 {
385 evtimer_stop (w); /* nonrepeating: stop timer */ 791 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
386 --timercnt; /* maybe pass by reference instead? */ 792 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
793 downheap ((WT *)periodics, periodiccnt, 0);
387 } 794 }
795 else
796 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
388 797
389 event ((struct ev_watcher *)w, EV_TIMEOUT); 798 event (EV_A_ (W)w, EV_PERIODIC);
390 } 799 }
391} 800}
392 801
393static void 802static void
394time_update () 803periodics_reschedule (EV_P)
395{ 804{
396 int i; 805 int i;
397 ev_now = ev_time ();
398 806
399 if (have_monotonic) 807 /* adjust periodics after time jump */
808 for (i = 0; i < periodiccnt; ++i)
400 { 809 {
401 ev_tstamp odiff = diff; 810 struct ev_periodic *w = periodics [i];
402 811
403 /* detecting time jumps is much more difficult */ 812 if (w->interval)
404 for (i = 2; --i; ) /* loop a few times, before making important decisions */
405 { 813 {
406 now = get_clock (); 814 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
407 diff = ev_now - now;
408 815
409 if (fabs (odiff - diff) < MIN_TIMEJUMP) 816 if (fabs (diff) >= 1e-4)
410 return; /* all is well */ 817 {
818 ev_periodic_stop (EV_A_ w);
819 ev_periodic_start (EV_A_ w);
411 820
412 ev_now = ev_time (); 821 i = 0; /* restart loop, inefficient, but time jumps should be rare */
822 }
413 } 823 }
824 }
825}
414 826
415 /* time jump detected, reschedule atimers */ 827inline int
416 for (i = 0; i < atimercnt; ++i) 828time_update_monotonic (EV_P)
829{
830 mn_now = get_clock ();
831
832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
833 {
834 rt_now = rtmn_diff + mn_now;
835 return 0;
836 }
837 else
838 {
839 now_floor = mn_now;
840 rt_now = ev_time ();
841 return 1;
842 }
843}
844
845static void
846time_update (EV_P)
847{
848 int i;
849
850#if EV_USE_MONOTONIC
851 if (expect_true (have_monotonic))
852 {
853 if (time_update_monotonic (EV_A))
417 { 854 {
418 struct ev_timer *w = atimers [i]; 855 ev_tstamp odiff = rtmn_diff;
419 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 856
857 for (i = 4; --i; ) /* loop a few times, before making important decisions */
858 {
859 rtmn_diff = rt_now - mn_now;
860
861 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
862 return; /* all is well */
863
864 rt_now = ev_time ();
865 mn_now = get_clock ();
866 now_floor = mn_now;
867 }
868
869 periodics_reschedule (EV_A);
870 /* no timer adjustment, as the monotonic clock doesn't jump */
871 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
420 } 872 }
421 } 873 }
422 else 874 else
875#endif
423 { 876 {
424 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 877 rt_now = ev_time ();
425 /* time jump detected, adjust rtimers */ 878
879 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
880 {
881 periodics_reschedule (EV_A);
882
883 /* adjust timers. this is easy, as the offset is the same for all */
426 for (i = 0; i < rtimercnt; ++i) 884 for (i = 0; i < timercnt; ++i)
427 rtimers [i]->at += ev_now - now; 885 timers [i]->at += rt_now - mn_now;
886 }
428 887
429 now = ev_now; 888 mn_now = rt_now;
430 } 889 }
431} 890}
432 891
433int ev_loop_done; 892void
893ev_ref (EV_P)
894{
895 ++activecnt;
896}
434 897
898void
899ev_unref (EV_P)
900{
901 --activecnt;
902}
903
904static int loop_done;
905
906void
435void ev_loop (int flags) 907ev_loop (EV_P_ int flags)
436{ 908{
437 double block; 909 double block;
438 ev_loop_done = flags & EVLOOP_ONESHOT; 910 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
439 911
440 do 912 do
441 { 913 {
914 /* queue check watchers (and execute them) */
915 if (expect_false (preparecnt))
916 {
917 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918 call_pending (EV_A);
919 }
920
442 /* update fd-related kernel structures */ 921 /* update fd-related kernel structures */
443 fd_reify (); 922 fd_reify (EV_A);
444 923
445 /* calculate blocking time */ 924 /* calculate blocking time */
925
926 /* we only need this for !monotonic clockor timers, but as we basically
927 always have timers, we just calculate it always */
928#if EV_USE_MONOTONIC
929 if (expect_true (have_monotonic))
930 time_update_monotonic (EV_A);
931 else
932#endif
933 {
934 rt_now = ev_time ();
935 mn_now = rt_now;
936 }
937
446 if (flags & EVLOOP_NONBLOCK) 938 if (flags & EVLOOP_NONBLOCK || idlecnt)
447 block = 0.; 939 block = 0.;
448 else 940 else
449 { 941 {
450 block = MAX_BLOCKTIME; 942 block = MAX_BLOCKTIME;
451 943
452 if (rtimercnt) 944 if (timercnt)
453 { 945 {
454 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 946 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
455 if (block > to) block = to; 947 if (block > to) block = to;
456 } 948 }
457 949
458 if (atimercnt) 950 if (periodiccnt)
459 { 951 {
460 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 952 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
461 if (block > to) block = to; 953 if (block > to) block = to;
462 } 954 }
463 955
464 if (block < 0.) block = 0.; 956 if (block < 0.) block = 0.;
465 } 957 }
466 958
467 method_poll (block); 959 method_poll (EV_A_ block);
468 960
469 /* update ev_now, do magic */ 961 /* update rt_now, do magic */
470 time_update (); 962 time_update (EV_A);
471 963
472 /* put pending timers into pendign queue and reschedule them */ 964 /* queue pending timers and reschedule them */
473 /* absolute timers first */ 965 timers_reify (EV_A); /* relative timers called last */
474 timers_reify (atimers, atimercnt, ev_now); 966 periodics_reify (EV_A); /* absolute timers called first */
475 /* relative timers second */
476 timers_reify (rtimers, rtimercnt, now);
477 967
968 /* queue idle watchers unless io or timers are pending */
969 if (!pendingcnt)
970 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
971
972 /* queue check watchers, to be executed first */
973 if (checkcnt)
974 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
975
478 call_pending (); 976 call_pending (EV_A);
479 } 977 }
480 while (!ev_loop_done); 978 while (activecnt && !loop_done);
481}
482 979
483static void 980 if (loop_done != 2)
484wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 981 loop_done = 0;
982}
983
984void
985ev_unloop (EV_P_ int how)
986{
987 loop_done = how;
988}
989
990/*****************************************************************************/
991
992inline void
993wlist_add (WL *head, WL elem)
485{ 994{
486 elem->next = *head; 995 elem->next = *head;
487 *head = elem; 996 *head = elem;
488} 997}
489 998
490static void 999inline void
491wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1000wlist_del (WL *head, WL elem)
492{ 1001{
493 while (*head) 1002 while (*head)
494 { 1003 {
495 if (*head == elem) 1004 if (*head == elem)
496 { 1005 {
500 1009
501 head = &(*head)->next; 1010 head = &(*head)->next;
502 } 1011 }
503} 1012}
504 1013
505static void 1014inline void
506ev_start (struct ev_watcher *w, int active) 1015ev_clear_pending (EV_P_ W w)
507{ 1016{
1017 if (w->pending)
1018 {
1019 pendings [ABSPRI (w)][w->pending - 1].w = 0;
508 w->pending = 0; 1020 w->pending = 0;
1021 }
1022}
1023
1024inline void
1025ev_start (EV_P_ W w, int active)
1026{
1027 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1028 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1029
509 w->active = active; 1030 w->active = active;
1031 ev_ref (EV_A);
510} 1032}
511 1033
512static void 1034inline void
513ev_stop (struct ev_watcher *w) 1035ev_stop (EV_P_ W w)
514{ 1036{
515 if (w->pending) 1037 ev_unref (EV_A);
516 pendings [w->pending - 1].w = 0;
517
518 w->active = 0; 1038 w->active = 0;
519 /* nop */
520} 1039}
521 1040
1041/*****************************************************************************/
1042
522void 1043void
523evio_start (struct ev_io *w) 1044ev_io_start (EV_P_ struct ev_io *w)
524{ 1045{
1046 int fd = w->fd;
1047
525 if (ev_is_active (w)) 1048 if (ev_is_active (w))
526 return; 1049 return;
527 1050
528 int fd = w->fd; 1051 assert (("ev_io_start called with negative fd", fd >= 0));
529 1052
530 ev_start ((struct ev_watcher *)w, 1); 1053 ev_start (EV_A_ (W)w, 1);
531 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1054 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
532 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1055 wlist_add ((WL *)&anfds[fd].head, (WL)w);
533 1056
534 ++fdchangecnt; 1057 fd_change (EV_A_ fd);
535 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
536 fdchanges [fdchangecnt - 1] = fd;
537} 1058}
538 1059
539void 1060void
540evio_stop (struct ev_io *w) 1061ev_io_stop (EV_P_ struct ev_io *w)
541{ 1062{
1063 ev_clear_pending (EV_A_ (W)w);
542 if (!ev_is_active (w)) 1064 if (!ev_is_active (w))
543 return; 1065 return;
544 1066
545 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1067 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
546 ev_stop ((struct ev_watcher *)w); 1068 ev_stop (EV_A_ (W)w);
547 1069
548 ++fdchangecnt; 1070 fd_change (EV_A_ w->fd);
549 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
550 fdchanges [fdchangecnt - 1] = w->fd;
551} 1071}
552 1072
553void 1073void
554evtimer_start (struct ev_timer *w) 1074ev_timer_start (EV_P_ struct ev_timer *w)
555{ 1075{
556 if (ev_is_active (w)) 1076 if (ev_is_active (w))
557 return; 1077 return;
558 1078
559 if (w->is_abs) 1079 w->at += mn_now;
1080
1081 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082
1083 ev_start (EV_A_ (W)w, ++timercnt);
1084 array_needsize (timers, timermax, timercnt, );
1085 timers [timercnt - 1] = w;
1086 upheap ((WT *)timers, timercnt - 1);
1087}
1088
1089void
1090ev_timer_stop (EV_P_ struct ev_timer *w)
1091{
1092 ev_clear_pending (EV_A_ (W)w);
1093 if (!ev_is_active (w))
1094 return;
1095
1096 if (w->active < timercnt--)
1097 {
1098 timers [w->active - 1] = timers [timercnt];
1099 downheap ((WT *)timers, timercnt, w->active - 1);
560 { 1100 }
561 /* this formula differs from the one in timer_reify becuse we do not round up */ 1101
1102 w->at = w->repeat;
1103
1104 ev_stop (EV_A_ (W)w);
1105}
1106
1107void
1108ev_timer_again (EV_P_ struct ev_timer *w)
1109{
1110 if (ev_is_active (w))
1111 {
562 if (w->repeat) 1112 if (w->repeat)
563 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1113 {
564 1114 w->at = mn_now + w->repeat;
565 ev_start ((struct ev_watcher *)w, ++atimercnt); 1115 downheap ((WT *)timers, timercnt, w->active - 1);
566 array_needsize (atimers, atimermax, atimercnt, ); 1116 }
567 atimers [atimercnt - 1] = w;
568 upheap (atimers, atimercnt - 1);
569 }
570 else 1117 else
1118 ev_timer_stop (EV_A_ w);
571 { 1119 }
572 w->at += now; 1120 else if (w->repeat)
573 1121 ev_timer_start (EV_A_ w);
574 ev_start ((struct ev_watcher *)w, ++rtimercnt);
575 array_needsize (rtimers, rtimermax, rtimercnt, );
576 rtimers [rtimercnt - 1] = w;
577 upheap (rtimers, rtimercnt - 1);
578 }
579
580} 1122}
581 1123
582void 1124void
583evtimer_stop (struct ev_timer *w) 1125ev_periodic_start (EV_P_ struct ev_periodic *w)
584{ 1126{
1127 if (ev_is_active (w))
1128 return;
1129
1130 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1131
1132 /* this formula differs from the one in periodic_reify because we do not always round up */
1133 if (w->interval)
1134 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1135
1136 ev_start (EV_A_ (W)w, ++periodiccnt);
1137 array_needsize (periodics, periodicmax, periodiccnt, );
1138 periodics [periodiccnt - 1] = w;
1139 upheap ((WT *)periodics, periodiccnt - 1);
1140}
1141
1142void
1143ev_periodic_stop (EV_P_ struct ev_periodic *w)
1144{
1145 ev_clear_pending (EV_A_ (W)w);
585 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
586 return; 1147 return;
587 1148
588 if (w->is_abs)
589 {
590 if (w->active < atimercnt--) 1149 if (w->active < periodiccnt--)
591 {
592 atimers [w->active - 1] = atimers [atimercnt];
593 downheap (atimers, atimercnt, w->active - 1);
594 }
595 } 1150 {
596 else 1151 periodics [w->active - 1] = periodics [periodiccnt];
1152 downheap ((WT *)periodics, periodiccnt, w->active - 1);
597 { 1153 }
598 if (w->active < rtimercnt--)
599 {
600 rtimers [w->active - 1] = rtimers [rtimercnt];
601 downheap (rtimers, rtimercnt, w->active - 1);
602 }
603 }
604 1154
605 ev_stop ((struct ev_watcher *)w); 1155 ev_stop (EV_A_ (W)w);
606} 1156}
607 1157
608void 1158void
609evsignal_start (struct ev_signal *w) 1159ev_idle_start (EV_P_ struct ev_idle *w)
610{ 1160{
611 if (ev_is_active (w)) 1161 if (ev_is_active (w))
612 return; 1162 return;
613 1163
614 ev_start ((struct ev_watcher *)w, 1); 1164 ev_start (EV_A_ (W)w, ++idlecnt);
1165 array_needsize (idles, idlemax, idlecnt, );
1166 idles [idlecnt - 1] = w;
1167}
1168
1169void
1170ev_idle_stop (EV_P_ struct ev_idle *w)
1171{
1172 ev_clear_pending (EV_A_ (W)w);
1173 if (ev_is_active (w))
1174 return;
1175
1176 idles [w->active - 1] = idles [--idlecnt];
1177 ev_stop (EV_A_ (W)w);
1178}
1179
1180void
1181ev_prepare_start (EV_P_ struct ev_prepare *w)
1182{
1183 if (ev_is_active (w))
1184 return;
1185
1186 ev_start (EV_A_ (W)w, ++preparecnt);
1187 array_needsize (prepares, preparemax, preparecnt, );
1188 prepares [preparecnt - 1] = w;
1189}
1190
1191void
1192ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193{
1194 ev_clear_pending (EV_A_ (W)w);
1195 if (ev_is_active (w))
1196 return;
1197
1198 prepares [w->active - 1] = prepares [--preparecnt];
1199 ev_stop (EV_A_ (W)w);
1200}
1201
1202void
1203ev_check_start (EV_P_ struct ev_check *w)
1204{
1205 if (ev_is_active (w))
1206 return;
1207
1208 ev_start (EV_A_ (W)w, ++checkcnt);
1209 array_needsize (checks, checkmax, checkcnt, );
1210 checks [checkcnt - 1] = w;
1211}
1212
1213void
1214ev_check_stop (EV_P_ struct ev_check *w)
1215{
1216 ev_clear_pending (EV_A_ (W)w);
1217 if (ev_is_active (w))
1218 return;
1219
1220 checks [w->active - 1] = checks [--checkcnt];
1221 ev_stop (EV_A_ (W)w);
1222}
1223
1224#ifndef SA_RESTART
1225# define SA_RESTART 0
1226#endif
1227
1228void
1229ev_signal_start (EV_P_ struct ev_signal *w)
1230{
1231#if EV_MULTIPLICITY
1232 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1233#endif
1234 if (ev_is_active (w))
1235 return;
1236
1237 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1238
1239 ev_start (EV_A_ (W)w, 1);
615 array_needsize (signals, signalmax, w->signum, signals_init); 1240 array_needsize (signals, signalmax, w->signum, signals_init);
616 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1241 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
617 1242
618 if (!w->next) 1243 if (!w->next)
619 { 1244 {
620 struct sigaction sa; 1245 struct sigaction sa;
621 sa.sa_handler = sighandler; 1246 sa.sa_handler = sighandler;
622 sigfillset (&sa.sa_mask); 1247 sigfillset (&sa.sa_mask);
623 sa.sa_flags = 0; 1248 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
624 sigaction (w->signum, &sa, 0); 1249 sigaction (w->signum, &sa, 0);
625 } 1250 }
626} 1251}
627 1252
628void 1253void
629evsignal_stop (struct ev_signal *w) 1254ev_signal_stop (EV_P_ struct ev_signal *w)
630{ 1255{
1256 ev_clear_pending (EV_A_ (W)w);
631 if (!ev_is_active (w)) 1257 if (!ev_is_active (w))
632 return; 1258 return;
633 1259
634 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1260 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
635 ev_stop ((struct ev_watcher *)w); 1261 ev_stop (EV_A_ (W)w);
636 1262
637 if (!signals [w->signum - 1].head) 1263 if (!signals [w->signum - 1].head)
638 signal (w->signum, SIG_DFL); 1264 signal (w->signum, SIG_DFL);
639} 1265}
640 1266
1267void
1268ev_child_start (EV_P_ struct ev_child *w)
1269{
1270#if EV_MULTIPLICITY
1271 assert (("child watchers are only supported in the default loop", loop == default_loop));
1272#endif
1273 if (ev_is_active (w))
1274 return;
1275
1276 ev_start (EV_A_ (W)w, 1);
1277 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1278}
1279
1280void
1281ev_child_stop (EV_P_ struct ev_child *w)
1282{
1283 ev_clear_pending (EV_A_ (W)w);
1284 if (ev_is_active (w))
1285 return;
1286
1287 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1288 ev_stop (EV_A_ (W)w);
1289}
1290
641/*****************************************************************************/ 1291/*****************************************************************************/
642#if 1
643 1292
644static void 1293struct ev_once
645sin_cb (struct ev_io *w, int revents)
646{ 1294{
647 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
648}
649
650static void
651ocb (struct ev_timer *w, int revents)
652{
653 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
654 evtimer_stop (w);
655 evtimer_start (w);
656}
657
658static void
659scb (struct ev_signal *w, int revents)
660{
661 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
662}
663
664int main (void)
665{
666 struct ev_io sin; 1295 struct ev_io io;
667
668 ev_init (0);
669
670 evw_init (&sin, sin_cb, 55);
671 evio_set (&sin, 0, EV_READ);
672 evio_start (&sin);
673
674 struct ev_timer t[10000];
675
676#if 0
677 int i;
678 for (i = 0; i < 10000; ++i)
679 {
680 struct ev_timer *w = t + i;
681 evw_init (w, ocb, i);
682 evtimer_set_abs (w, drand48 (), 0.99775533);
683 evtimer_start (w);
684 if (drand48 () < 0.5)
685 evtimer_stop (w);
686 }
687#endif
688
689 struct ev_timer t1; 1296 struct ev_timer to;
690 evw_init (&t1, ocb, 0); 1297 void (*cb)(int revents, void *arg);
691 evtimer_set_abs (&t1, 5, 10); 1298 void *arg;
692 evtimer_start (&t1); 1299};
693 1300
694 struct ev_signal sig; 1301static void
695 evw_init (&sig, scb, 65535); 1302once_cb (EV_P_ struct ev_once *once, int revents)
696 evsignal_set (&sig, SIGQUIT); 1303{
697 evsignal_start (&sig); 1304 void (*cb)(int revents, void *arg) = once->cb;
1305 void *arg = once->arg;
698 1306
699 ev_loop (0); 1307 ev_io_stop (EV_A_ &once->io);
1308 ev_timer_stop (EV_A_ &once->to);
1309 free (once);
700 1310
701 return 0; 1311 cb (revents, arg);
702} 1312}
703 1313
704#endif 1314static void
1315once_cb_io (EV_P_ struct ev_io *w, int revents)
1316{
1317 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1318}
705 1319
1320static void
1321once_cb_to (EV_P_ struct ev_timer *w, int revents)
1322{
1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1324}
706 1325
1326void
1327ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1328{
1329 struct ev_once *once = malloc (sizeof (struct ev_once));
707 1330
1331 if (!once)
1332 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1333 else
1334 {
1335 once->cb = cb;
1336 once->arg = arg;
708 1337
1338 ev_watcher_init (&once->io, once_cb_io);
1339 if (fd >= 0)
1340 {
1341 ev_io_set (&once->io, fd, events);
1342 ev_io_start (EV_A_ &once->io);
1343 }
1344
1345 ev_watcher_init (&once->to, once_cb_to);
1346 if (timeout >= 0.)
1347 {
1348 ev_timer_set (&once->to, timeout, 0.);
1349 ev_timer_start (EV_A_ &once->to);
1350 }
1351 }
1352}
1353

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines