ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.125 by root, Sat Nov 17 02:28:43 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
65# define EV_USE_PORT 1
66# endif
67
33#endif 68#endif
34 69
35#include <math.h> 70#include <math.h>
36#include <stdlib.h> 71#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 72#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 73#include <stddef.h>
41 74
42#include <stdio.h> 75#include <stdio.h>
43 76
44#include <assert.h> 77#include <assert.h>
45#include <errno.h> 78#include <errno.h>
46#include <sys/types.h> 79#include <sys/types.h>
80#include <time.h>
81
82#include <signal.h>
83
47#ifndef WIN32 84#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h>
48# include <sys/wait.h> 87# include <sys/wait.h>
88#else
89# define WIN32_LEAN_AND_MEAN
90# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1
49#endif 93# endif
50#include <sys/time.h> 94#endif
51#include <time.h>
52 95
53/**/ 96/**/
54 97
55#ifndef EV_USE_MONOTONIC 98#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 99# define EV_USE_MONOTONIC 0
100#endif
101
102#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0
57#endif 104#endif
58 105
59#ifndef EV_USE_SELECT 106#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 107# define EV_USE_SELECT 1
61#endif 108#endif
62 109
63#ifndef EV_USEV_POLL 110#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 111# ifdef _WIN32
112# define EV_USE_POLL 0
113# else
114# define EV_USE_POLL 1
115# endif
65#endif 116#endif
66 117
67#ifndef EV_USE_EPOLL 118#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 119# define EV_USE_EPOLL 0
69#endif 120#endif
70 121
71#ifndef EV_USE_KQUEUE 122#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 123# define EV_USE_KQUEUE 0
73#endif 124#endif
74 125
75#ifndef EV_USE_REALTIME 126#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 127# define EV_USE_PORT 0
77#endif 128#endif
78 129
79/**/ 130/**/
131
132/* darwin simply cannot be helped */
133#ifdef __APPLE__
134# undef EV_USE_POLL
135# undef EV_USE_KQUEUE
136#endif
80 137
81#ifndef CLOCK_MONOTONIC 138#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 139# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 140# define EV_USE_MONOTONIC 0
84#endif 141#endif
86#ifndef CLOCK_REALTIME 143#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 144# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 145# define EV_USE_REALTIME 0
89#endif 146#endif
90 147
148#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h>
150#endif
151
91/**/ 152/**/
92 153
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97 158
159#ifdef EV_H
160# include EV_H
161#else
98#include "ev.h" 162# include "ev.h"
163#endif
99 164
100#if __GNUC__ >= 3 165#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 166# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 167# define inline static inline
103#else 168#else
104# define expect(expr,value) (expr) 169# define expect(expr,value) (expr)
105# define inline static 170# define inline static
106#endif 171#endif
107 172
109#define expect_true(expr) expect ((expr) != 0, 1) 174#define expect_true(expr) expect ((expr) != 0, 1)
110 175
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 177#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 178
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181
114typedef struct ev_watcher *W; 182typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 183typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 184typedef struct ev_watcher_time *WT;
117 185
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 187
188#ifdef _WIN32
189# include "ev_win32.c"
190#endif
191
120/*****************************************************************************/ 192/*****************************************************************************/
121 193
194static void (*syserr_cb)(const char *msg);
195
196void ev_set_syserr_cb (void (*cb)(const char *msg))
197{
198 syserr_cb = cb;
199}
200
201static void
202syserr (const char *msg)
203{
204 if (!msg)
205 msg = "(libev) system error";
206
207 if (syserr_cb)
208 syserr_cb (msg);
209 else
210 {
211 perror (msg);
212 abort ();
213 }
214}
215
216static void *(*alloc)(void *ptr, long size);
217
218void ev_set_allocator (void *(*cb)(void *ptr, long size))
219{
220 alloc = cb;
221}
222
223static void *
224ev_realloc (void *ptr, long size)
225{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
227
228 if (!ptr && size)
229 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort ();
232 }
233
234 return ptr;
235}
236
237#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0)
239
240/*****************************************************************************/
241
122typedef struct 242typedef struct
123{ 243{
124 struct ev_watcher_list *head; 244 WL head;
125 unsigned char events; 245 unsigned char events;
126 unsigned char reify; 246 unsigned char reify;
247#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle;
249#endif
127} ANFD; 250} ANFD;
128 251
129typedef struct 252typedef struct
130{ 253{
131 W w; 254 W w;
132 int events; 255 int events;
133} ANPENDING; 256} ANPENDING;
134 257
135#if EV_MULTIPLICITY 258#if EV_MULTIPLICITY
136 259
137struct ev_loop 260 struct ev_loop
138{ 261 {
262 ev_tstamp ev_rt_now;
263 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 264 #define VAR(name,decl) decl;
140# include "ev_vars.h" 265 #include "ev_vars.h"
141};
142# undef VAR 266 #undef VAR
267 };
143# include "ev_wrap.h" 268 #include "ev_wrap.h"
269
270 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr;
144 272
145#else 273#else
146 274
275 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 276 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 277 #include "ev_vars.h"
149# undef VAR 278 #undef VAR
279
280 static int ev_default_loop_ptr;
150 281
151#endif 282#endif
152 283
153/*****************************************************************************/ 284/*****************************************************************************/
154 285
155inline ev_tstamp 286ev_tstamp
156ev_time (void) 287ev_time (void)
157{ 288{
158#if EV_USE_REALTIME 289#if EV_USE_REALTIME
159 struct timespec ts; 290 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 291 clock_gettime (CLOCK_REALTIME, &ts);
179#endif 310#endif
180 311
181 return ev_time (); 312 return ev_time ();
182} 313}
183 314
315#if EV_MULTIPLICITY
184ev_tstamp 316ev_tstamp
185ev_now (EV_P) 317ev_now (EV_P)
186{ 318{
187 return rt_now; 319 return ev_rt_now;
188} 320}
321#endif
189 322
190#define array_roundsize(base,n) ((n) | 4 & ~3) 323#define array_roundsize(type,n) (((n) | 4) & ~3)
191 324
192#define array_needsize(base,cur,cnt,init) \ 325#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 326 if (expect_false ((cnt) > cur)) \
194 { \ 327 { \
195 int newcnt = cur; \ 328 int newcnt = cur; \
196 do \ 329 do \
197 { \ 330 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 331 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 332 } \
200 while ((cnt) > newcnt); \ 333 while ((cnt) > newcnt); \
201 \ 334 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 336 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 337 cur = newcnt; \
205 } 338 }
339
340#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 }
347
348#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 350
207/*****************************************************************************/ 351/*****************************************************************************/
208 352
209static void 353static void
210anfds_init (ANFD *base, int count) 354anfds_init (ANFD *base, int count)
217 361
218 ++base; 362 ++base;
219 } 363 }
220} 364}
221 365
222static void 366void
223event (EV_P_ W w, int events) 367ev_feed_event (EV_P_ void *w, int revents)
224{ 368{
225 if (w->pending) 369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
226 { 372 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 374 return;
229 } 375 }
230 376
231 w->pending = ++pendingcnt [ABSPRI (w)]; 377 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 381}
236 382
237static void 383static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 384queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 385{
240 int i; 386 int i;
241 387
242 for (i = 0; i < eventcnt; ++i) 388 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 389 ev_feed_event (EV_A_ events [i], type);
244} 390}
245 391
246static void 392inline void
247fd_event (EV_P_ int fd, int events) 393fd_event (EV_P_ int fd, int revents)
248{ 394{
249 ANFD *anfd = anfds + fd; 395 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 396 struct ev_io *w;
251 397
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 399 {
254 int ev = w->events & events; 400 int ev = w->events & revents;
255 401
256 if (ev) 402 if (ev)
257 event (EV_A_ (W)w, ev); 403 ev_feed_event (EV_A_ (W)w, ev);
258 } 404 }
405}
406
407void
408ev_feed_fd_event (EV_P_ int fd, int revents)
409{
410 fd_event (EV_A_ fd, revents);
259} 411}
260 412
261/*****************************************************************************/ 413/*****************************************************************************/
262 414
263static void 415inline void
264fd_reify (EV_P) 416fd_reify (EV_P)
265{ 417{
266 int i; 418 int i;
267 419
268 for (i = 0; i < fdchangecnt; ++i) 420 for (i = 0; i < fdchangecnt; ++i)
274 int events = 0; 426 int events = 0;
275 427
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 429 events |= w->events;
278 430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 {
434 unsigned long argp;
435 anfd->handle = _get_osfhandle (fd);
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 }
438#endif
439
279 anfd->reify = 0; 440 anfd->reify = 0;
280 441
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 442 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 443 anfd->events = events;
285 }
286 } 444 }
287 445
288 fdchangecnt = 0; 446 fdchangecnt = 0;
289} 447}
290 448
291static void 449static void
292fd_change (EV_P_ int fd) 450fd_change (EV_P_ int fd)
293{ 451{
294 if (anfds [fd].reify || fdchangecnt < 0) 452 if (expect_false (anfds [fd].reify))
295 return; 453 return;
296 454
297 anfds [fd].reify = 1; 455 anfds [fd].reify = 1;
298 456
299 ++fdchangecnt; 457 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 459 fdchanges [fdchangecnt - 1] = fd;
302} 460}
303 461
304static void 462static void
305fd_kill (EV_P_ int fd) 463fd_kill (EV_P_ int fd)
307 struct ev_io *w; 465 struct ev_io *w;
308 466
309 while ((w = (struct ev_io *)anfds [fd].head)) 467 while ((w = (struct ev_io *)anfds [fd].head))
310 { 468 {
311 ev_io_stop (EV_A_ w); 469 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 471 }
472}
473
474inline int
475fd_valid (int fd)
476{
477#ifdef _WIN32
478 return _get_osfhandle (fd) != -1;
479#else
480 return fcntl (fd, F_GETFD) != -1;
481#endif
314} 482}
315 483
316/* called on EBADF to verify fds */ 484/* called on EBADF to verify fds */
317static void 485static void
318fd_ebadf (EV_P) 486fd_ebadf (EV_P)
319{ 487{
320 int fd; 488 int fd;
321 489
322 for (fd = 0; fd < anfdmax; ++fd) 490 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 491 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 492 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 493 fd_kill (EV_A_ fd);
326} 494}
327 495
328/* called on ENOMEM in select/poll to kill some fds and retry */ 496/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 497static void
330fd_enomem (EV_P) 498fd_enomem (EV_P)
331{ 499{
332 int fd = anfdmax; 500 int fd;
333 501
334 while (fd--) 502 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 503 if (anfds [fd].events)
336 { 504 {
337 close (fd);
338 fd_kill (EV_A_ fd); 505 fd_kill (EV_A_ fd);
339 return; 506 return;
340 } 507 }
341} 508}
342 509
343/* susually called after fork if method needs to re-arm all fds from scratch */ 510/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 511static void
345fd_rearm_all (EV_P) 512fd_rearm_all (EV_P)
346{ 513{
347 int fd; 514 int fd;
348 515
349 /* this should be highly optimised to not do anything but set a flag */ 516 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 517 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 518 if (anfds [fd].events)
352 { 519 {
353 anfds [fd].events = 0; 520 anfds [fd].events = 0;
354 fd_change (fd); 521 fd_change (EV_A_ fd);
355 } 522 }
356} 523}
357 524
358/*****************************************************************************/ 525/*****************************************************************************/
359 526
363 WT w = heap [k]; 530 WT w = heap [k];
364 531
365 while (k && heap [k >> 1]->at > w->at) 532 while (k && heap [k >> 1]->at > w->at)
366 { 533 {
367 heap [k] = heap [k >> 1]; 534 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
369 k >>= 1; 536 k >>= 1;
370 } 537 }
371 538
372 heap [k] = w; 539 heap [k] = w;
373 heap [k]->active = k + 1; 540 ((W)heap [k])->active = k + 1;
374 541
375} 542}
376 543
377static void 544static void
378downheap (WT *heap, int N, int k) 545downheap (WT *heap, int N, int k)
388 555
389 if (w->at <= heap [j]->at) 556 if (w->at <= heap [j]->at)
390 break; 557 break;
391 558
392 heap [k] = heap [j]; 559 heap [k] = heap [j];
393 heap [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
394 k = j; 561 k = j;
395 } 562 }
396 563
397 heap [k] = w; 564 heap [k] = w;
398 heap [k]->active = k + 1; 565 ((W)heap [k])->active = k + 1;
566}
567
568inline void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
399} 573}
400 574
401/*****************************************************************************/ 575/*****************************************************************************/
402 576
403typedef struct 577typedef struct
404{ 578{
405 struct ev_watcher_list *head; 579 WL head;
406 sig_atomic_t volatile gotsig; 580 sig_atomic_t volatile gotsig;
407} ANSIG; 581} ANSIG;
408 582
409static ANSIG *signals; 583static ANSIG *signals;
410static int signalmax; 584static int signalmax;
411 585
412static int sigpipe [2]; 586static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 587static sig_atomic_t volatile gotsig;
588static struct ev_io sigev;
414 589
415static void 590static void
416signals_init (ANSIG *base, int count) 591signals_init (ANSIG *base, int count)
417{ 592{
418 while (count--) 593 while (count--)
425} 600}
426 601
427static void 602static void
428sighandler (int signum) 603sighandler (int signum)
429{ 604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
430 signals [signum - 1].gotsig = 1; 609 signals [signum - 1].gotsig = 1;
431 610
432 if (!gotsig) 611 if (!gotsig)
433 { 612 {
434 int old_errno = errno; 613 int old_errno = errno;
436 write (sigpipe [1], &signum, 1); 615 write (sigpipe [1], &signum, 1);
437 errno = old_errno; 616 errno = old_errno;
438 } 617 }
439} 618}
440 619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
441static void 640static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 641sigcb (EV_P_ struct ev_io *iow, int revents)
443{ 642{
444 struct ev_watcher_list *w;
445 int signum; 643 int signum;
446 644
447 read (sigpipe [0], &revents, 1); 645 read (sigpipe [0], &revents, 1);
448 gotsig = 0; 646 gotsig = 0;
449 647
450 for (signum = signalmax; signum--; ) 648 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 649 if (signals [signum].gotsig)
452 { 650 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0; 651}
454 652
455 for (w = signals [signum].head; w; w = w->next) 653static void
456 event (EV_A_ (W)w, EV_SIGNAL); 654fd_intern (int fd)
457 } 655{
656#ifdef _WIN32
657 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif
458} 663}
459 664
460static void 665static void
461siginit (EV_P) 666siginit (EV_P)
462{ 667{
463#ifndef WIN32 668 fd_intern (sigpipe [0]);
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 669 fd_intern (sigpipe [1]);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471 670
472 ev_io_set (&sigev, sigpipe [0], EV_READ); 671 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev); 672 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 673 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 674}
476 675
477/*****************************************************************************/ 676/*****************************************************************************/
478 677
678static struct ev_child *childs [PID_HASHSIZE];
679
479#ifndef WIN32 680#ifndef _WIN32
681
682static struct ev_signal childev;
480 683
481#ifndef WCONTINUED 684#ifndef WCONTINUED
482# define WCONTINUED 0 685# define WCONTINUED 0
483#endif 686#endif
484 687
488 struct ev_child *w; 691 struct ev_child *w;
489 692
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 694 if (w->pid == pid || !w->pid)
492 { 695 {
493 w->priority = sw->priority; /* need to do it *now* */ 696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 697 w->rpid = pid;
495 w->rstatus = status; 698 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 700 }
498} 701}
499 702
500static void 703static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 704childcb (EV_P_ struct ev_signal *sw, int revents)
503 int pid, status; 706 int pid, status;
504 707
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 709 {
507 /* make sure we are called again until all childs have been reaped */ 710 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL); 711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 712
510 child_reap (EV_A_ sw, pid, pid, status); 713 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 } 715 }
513} 716}
514 717
515#endif 718#endif
516 719
517/*****************************************************************************/ 720/*****************************************************************************/
518 721
722#if EV_USE_PORT
723# include "ev_port.c"
724#endif
519#if EV_USE_KQUEUE 725#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 726# include "ev_kqueue.c"
521#endif 727#endif
522#if EV_USE_EPOLL 728#if EV_USE_EPOLL
523# include "ev_epoll.c" 729# include "ev_epoll.c"
524#endif 730#endif
525#if EV_USEV_POLL 731#if EV_USE_POLL
526# include "ev_poll.c" 732# include "ev_poll.c"
527#endif 733#endif
528#if EV_USE_SELECT 734#if EV_USE_SELECT
529# include "ev_select.c" 735# include "ev_select.c"
530#endif 736#endif
543 749
544/* return true if we are running with elevated privileges and should ignore env variables */ 750/* return true if we are running with elevated privileges and should ignore env variables */
545static int 751static int
546enable_secure (void) 752enable_secure (void)
547{ 753{
548#ifdef WIN32 754#ifdef _WIN32
549 return 0; 755 return 0;
550#else 756#else
551 return getuid () != geteuid () 757 return getuid () != geteuid ()
552 || getgid () != getegid (); 758 || getgid () != getegid ();
553#endif 759#endif
554} 760}
555 761
556int 762unsigned int
557ev_method (EV_P) 763ev_method (EV_P)
558{ 764{
559 return method; 765 return method;
560} 766}
561 767
562static void 768static void
563loop_init (EV_P_ int methods) 769loop_init (EV_P_ unsigned int flags)
564{ 770{
565 if (!method) 771 if (!method)
566 { 772 {
567#if EV_USE_MONOTONIC 773#if EV_USE_MONOTONIC
568 { 774 {
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 776 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 777 have_monotonic = 1;
572 } 778 }
573#endif 779#endif
574 780
575 rt_now = ev_time (); 781 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 782 mn_now = get_clock ();
577 now_floor = mn_now; 783 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 784 rtmn_diff = ev_rt_now - mn_now;
579 785
580 if (methods == EVMETHOD_AUTO) 786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 787 flags = atoi (getenv ("LIBEV_FLAGS"));
583 else 788
584 methods = EVMETHOD_ANY; 789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
585 791
586 method = 0; 792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
587#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
589#endif 798#endif
590#if EV_USE_EPOLL 799#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
592#endif 801#endif
593#if EV_USEV_POLL 802#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
595#endif 804#endif
596#if EV_USE_SELECT 805#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
598#endif 807#endif
599 }
600}
601 808
602void 809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
811 }
812}
813
814static void
603loop_destroy (EV_P) 815loop_destroy (EV_P)
604{ 816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
605#if EV_USE_KQUEUE 822#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif 824#endif
608#if EV_USE_EPOLL 825#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif 827#endif
611#if EV_USEV_POLL 828#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif 830#endif
614#if EV_USE_SELECT 831#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif 833#endif
617 834
835 for (i = NUMPRI; i--; )
836 array_free (pending, [i]);
837
838 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0);
840 array_free (timer, EMPTY0);
841#if EV_PERIODICS
842 array_free (periodic, EMPTY0);
843#endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
618 method = 0; 848 method = 0;
619 /*TODO*/
620} 849}
621 850
622void 851static void
623loop_fork (EV_P) 852loop_fork (EV_P)
624{ 853{
625 /*TODO*/ 854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
626#if EV_USE_EPOLL 860#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif 862#endif
629#if EV_USE_KQUEUE 863
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 864 if (ev_is_active (&sigev))
631#endif 865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
632} 880}
633 881
634#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
635struct ev_loop * 883struct ev_loop *
636ev_loop_new (int methods) 884ev_loop_new (unsigned int flags)
637{ 885{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
639 887
888 memset (loop, 0, sizeof (struct ev_loop));
889
640 loop_init (EV_A_ methods); 890 loop_init (EV_A_ flags);
641 891
642 if (ev_methods (EV_A)) 892 if (ev_method (EV_A))
643 return loop; 893 return loop;
644 894
645 return 0; 895 return 0;
646} 896}
647 897
648void 898void
649ev_loop_destroy (EV_P) 899ev_loop_destroy (EV_P)
650{ 900{
651 loop_destroy (EV_A); 901 loop_destroy (EV_A);
652 free (loop); 902 ev_free (loop);
653} 903}
654 904
655void 905void
656ev_loop_fork (EV_P) 906ev_loop_fork (EV_P)
657{ 907{
658 loop_fork (EV_A); 908 postfork = 1;
659} 909}
660 910
661#endif 911#endif
662 912
663#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 914struct ev_loop *
915ev_default_loop_init (unsigned int flags)
668#else 916#else
669static int default_loop;
670
671int 917int
918ev_default_loop (unsigned int flags)
672#endif 919#endif
673ev_default_loop (int methods)
674{ 920{
675 if (sigpipe [0] == sigpipe [1]) 921 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe)) 922 if (pipe (sigpipe))
677 return 0; 923 return 0;
678 924
679 if (!default_loop) 925 if (!ev_default_loop_ptr)
680 { 926 {
681#if EV_MULTIPLICITY 927#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct; 928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
683#else 929#else
684 default_loop = 1; 930 ev_default_loop_ptr = 1;
685#endif 931#endif
686 932
687 loop_init (EV_A_ methods); 933 loop_init (EV_A_ flags);
688 934
689 if (ev_method (EV_A)) 935 if (ev_method (EV_A))
690 { 936 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 937 siginit (EV_A);
694 938
695#ifndef WIN32 939#ifndef _WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 940 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 941 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 942 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 943 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 944#endif
701 } 945 }
702 else 946 else
703 default_loop = 0; 947 ev_default_loop_ptr = 0;
704 } 948 }
705 949
706 return default_loop; 950 return ev_default_loop_ptr;
707} 951}
708 952
709void 953void
710ev_default_destroy (void) 954ev_default_destroy (void)
711{ 955{
712#if EV_MULTIPLICITY 956#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 957 struct ev_loop *loop = ev_default_loop_ptr;
714#endif 958#endif
715 959
960#ifndef _WIN32
716 ev_ref (EV_A); /* child watcher */ 961 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 962 ev_signal_stop (EV_A_ &childev);
963#endif
718 964
719 ev_ref (EV_A); /* signal watcher */ 965 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev); 966 ev_io_stop (EV_A_ &sigev);
721 967
722 close (sigpipe [0]); sigpipe [0] = 0; 968 close (sigpipe [0]); sigpipe [0] = 0;
724 970
725 loop_destroy (EV_A); 971 loop_destroy (EV_A);
726} 972}
727 973
728void 974void
729ev_default_fork (EV_P) 975ev_default_fork (void)
730{ 976{
731 loop_fork (EV_A); 977#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr;
979#endif
732 980
733 ev_io_stop (EV_A_ &sigev); 981 if (method)
734 close (sigpipe [0]); 982 postfork = 1;
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 983}
741 984
742/*****************************************************************************/ 985/*****************************************************************************/
743 986
744static void 987static int
988any_pending (EV_P)
989{
990 int pri;
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997}
998
999inline void
745call_pending (EV_P) 1000call_pending (EV_P)
746{ 1001{
747 int pri; 1002 int pri;
748 1003
749 for (pri = NUMPRI; pri--; ) 1004 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri]) 1005 while (pendingcnt [pri])
751 { 1006 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 1008
754 if (p->w) 1009 if (expect_true (p->w))
755 { 1010 {
756 p->w->pending = 0; 1011 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 1012 EV_CB_INVOKE (p->w, p->events);
758 } 1013 }
759 } 1014 }
760} 1015}
761 1016
762static void 1017inline void
763timers_reify (EV_P) 1018timers_reify (EV_P)
764{ 1019{
765 while (timercnt && timers [0]->at <= mn_now) 1020 while (timercnt && ((WT)timers [0])->at <= mn_now)
766 { 1021 {
767 struct ev_timer *w = timers [0]; 1022 struct ev_timer *w = timers [0];
1023
1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
768 1025
769 /* first reschedule or stop timer */ 1026 /* first reschedule or stop timer */
770 if (w->repeat) 1027 if (w->repeat)
771 { 1028 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030
773 w->at = mn_now + w->repeat; 1031 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
774 downheap ((WT *)timers, timercnt, 0); 1035 downheap ((WT *)timers, timercnt, 0);
775 } 1036 }
776 else 1037 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1039
779 event (EV_A_ (W)w, EV_TIMEOUT); 1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1041 }
781} 1042}
782 1043
783static void 1044#if EV_PERIODICS
1045inline void
784periodics_reify (EV_P) 1046periodics_reify (EV_P)
785{ 1047{
786 while (periodiccnt && periodics [0]->at <= rt_now) 1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
787 { 1049 {
788 struct ev_periodic *w = periodics [0]; 1050 struct ev_periodic *w = periodics [0];
789 1051
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1053
790 /* first reschedule or stop timer */ 1054 /* first reschedule or stop timer */
791 if (w->interval) 1055 if (w->reschedule_cb)
792 { 1056 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 }
1061 else if (w->interval)
1062 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
795 downheap ((WT *)periodics, periodiccnt, 0); 1065 downheap ((WT *)periodics, periodiccnt, 0);
796 } 1066 }
797 else 1067 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1069
800 event (EV_A_ (W)w, EV_PERIODIC); 1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1071 }
802} 1072}
803 1073
804static void 1074static void
805periodics_reschedule (EV_P) 1075periodics_reschedule (EV_P)
809 /* adjust periodics after time jump */ 1079 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1080 for (i = 0; i < periodiccnt; ++i)
811 { 1081 {
812 struct ev_periodic *w = periodics [i]; 1082 struct ev_periodic *w = periodics [i];
813 1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1086 else if (w->interval)
815 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
817
818 if (fabs (diff) >= 1e-4)
819 {
820 ev_periodic_stop (EV_A_ w);
821 ev_periodic_start (EV_A_ w);
822
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 }
825 }
826 } 1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
827} 1093}
1094#endif
828 1095
829inline int 1096inline int
830time_update_monotonic (EV_P) 1097time_update_monotonic (EV_P)
831{ 1098{
832 mn_now = get_clock (); 1099 mn_now = get_clock ();
833 1100
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 { 1102 {
836 rt_now = rtmn_diff + mn_now; 1103 ev_rt_now = rtmn_diff + mn_now;
837 return 0; 1104 return 0;
838 } 1105 }
839 else 1106 else
840 { 1107 {
841 now_floor = mn_now; 1108 now_floor = mn_now;
842 rt_now = ev_time (); 1109 ev_rt_now = ev_time ();
843 return 1; 1110 return 1;
844 } 1111 }
845} 1112}
846 1113
847static void 1114inline void
848time_update (EV_P) 1115time_update (EV_P)
849{ 1116{
850 int i; 1117 int i;
851 1118
852#if EV_USE_MONOTONIC 1119#if EV_USE_MONOTONIC
856 { 1123 {
857 ev_tstamp odiff = rtmn_diff; 1124 ev_tstamp odiff = rtmn_diff;
858 1125
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 { 1127 {
861 rtmn_diff = rt_now - mn_now; 1128 rtmn_diff = ev_rt_now - mn_now;
862 1129
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */ 1131 return; /* all is well */
865 1132
866 rt_now = ev_time (); 1133 ev_rt_now = ev_time ();
867 mn_now = get_clock (); 1134 mn_now = get_clock ();
868 now_floor = mn_now; 1135 now_floor = mn_now;
869 } 1136 }
870 1137
1138# if EV_PERIODICS
871 periodics_reschedule (EV_A); 1139 periodics_reschedule (EV_A);
1140# endif
872 /* no timer adjustment, as the monotonic clock doesn't jump */ 1141 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 } 1143 }
875 } 1144 }
876 else 1145 else
877#endif 1146#endif
878 { 1147 {
879 rt_now = ev_time (); 1148 ev_rt_now = ev_time ();
880 1149
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 { 1151 {
1152#if EV_PERIODICS
883 periodics_reschedule (EV_A); 1153 periodics_reschedule (EV_A);
1154#endif
884 1155
885 /* adjust timers. this is easy, as the offset is the same for all */ 1156 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i) 1157 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now; 1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
888 } 1159 }
889 1160
890 mn_now = rt_now; 1161 mn_now = ev_rt_now;
891 } 1162 }
892} 1163}
893 1164
894void 1165void
895ev_ref (EV_P) 1166ev_ref (EV_P)
909ev_loop (EV_P_ int flags) 1180ev_loop (EV_P_ int flags)
910{ 1181{
911 double block; 1182 double block;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
913 1184
914 do 1185 while (activecnt)
915 { 1186 {
916 /* queue check watchers (and execute them) */ 1187 /* queue check watchers (and execute them) */
917 if (expect_false (preparecnt)) 1188 if (expect_false (preparecnt))
918 { 1189 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1191 call_pending (EV_A);
921 } 1192 }
922 1193
1194 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork))
1196 loop_fork (EV_A);
1197
923 /* update fd-related kernel structures */ 1198 /* update fd-related kernel structures */
924 fd_reify (EV_A); 1199 fd_reify (EV_A);
925 1200
926 /* calculate blocking time */ 1201 /* calculate blocking time */
927 1202
928 /* we only need this for !monotonic clockor timers, but as we basically 1203 /* we only need this for !monotonic clock or timers, but as we basically
929 always have timers, we just calculate it always */ 1204 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC 1205#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1206 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A); 1207 time_update_monotonic (EV_A);
933 else 1208 else
934#endif 1209#endif
935 { 1210 {
936 rt_now = ev_time (); 1211 ev_rt_now = ev_time ();
937 mn_now = rt_now; 1212 mn_now = ev_rt_now;
938 } 1213 }
939 1214
940 if (flags & EVLOOP_NONBLOCK || idlecnt) 1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.; 1216 block = 0.;
942 else 1217 else
943 { 1218 {
944 block = MAX_BLOCKTIME; 1219 block = MAX_BLOCKTIME;
945 1220
946 if (timercnt) 1221 if (timercnt)
947 { 1222 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
949 if (block > to) block = to; 1224 if (block > to) block = to;
950 } 1225 }
951 1226
1227#if EV_PERIODICS
952 if (periodiccnt) 1228 if (periodiccnt)
953 { 1229 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
955 if (block > to) block = to; 1231 if (block > to) block = to;
956 } 1232 }
1233#endif
957 1234
958 if (block < 0.) block = 0.; 1235 if (expect_false (block < 0.)) block = 0.;
959 } 1236 }
960 1237
961 method_poll (EV_A_ block); 1238 method_poll (EV_A_ block);
962 1239
963 /* update rt_now, do magic */ 1240 /* update ev_rt_now, do magic */
964 time_update (EV_A); 1241 time_update (EV_A);
965 1242
966 /* queue pending timers and reschedule them */ 1243 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 1244 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS
968 periodics_reify (EV_A); /* absolute timers called first */ 1246 periodics_reify (EV_A); /* absolute timers called first */
1247#endif
969 1248
970 /* queue idle watchers unless io or timers are pending */ 1249 /* queue idle watchers unless io or timers are pending */
971 if (!pendingcnt) 1250 if (idlecnt && !any_pending (EV_A))
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973 1252
974 /* queue check watchers, to be executed first */ 1253 /* queue check watchers, to be executed first */
975 if (checkcnt) 1254 if (expect_false (checkcnt))
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 1256
978 call_pending (EV_A); 1257 call_pending (EV_A);
1258
1259 if (expect_false (loop_done))
1260 break;
979 } 1261 }
980 while (activecnt && !loop_done);
981 1262
982 if (loop_done != 2) 1263 if (loop_done != 2)
983 loop_done = 0; 1264 loop_done = 0;
984} 1265}
985 1266
1045void 1326void
1046ev_io_start (EV_P_ struct ev_io *w) 1327ev_io_start (EV_P_ struct ev_io *w)
1047{ 1328{
1048 int fd = w->fd; 1329 int fd = w->fd;
1049 1330
1050 if (ev_is_active (w)) 1331 if (expect_false (ev_is_active (w)))
1051 return; 1332 return;
1052 1333
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 1334 assert (("ev_io_start called with negative fd", fd >= 0));
1054 1335
1055 ev_start (EV_A_ (W)w, 1); 1336 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1338 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058 1339
1059 fd_change (EV_A_ fd); 1340 fd_change (EV_A_ fd);
1060} 1341}
1061 1342
1062void 1343void
1063ev_io_stop (EV_P_ struct ev_io *w) 1344ev_io_stop (EV_P_ struct ev_io *w)
1064{ 1345{
1065 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 1347 if (expect_false (!ev_is_active (w)))
1067 return; 1348 return;
1349
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1068 1351
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 1353 ev_stop (EV_A_ (W)w);
1071 1354
1072 fd_change (EV_A_ w->fd); 1355 fd_change (EV_A_ w->fd);
1073} 1356}
1074 1357
1075void 1358void
1076ev_timer_start (EV_P_ struct ev_timer *w) 1359ev_timer_start (EV_P_ struct ev_timer *w)
1077{ 1360{
1078 if (ev_is_active (w)) 1361 if (expect_false (ev_is_active (w)))
1079 return; 1362 return;
1080 1363
1081 w->at += mn_now; 1364 ((WT)w)->at += mn_now;
1082 1365
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 1367
1085 ev_start (EV_A_ (W)w, ++timercnt); 1368 ev_start (EV_A_ (W)w, ++timercnt);
1086 array_needsize (timers, timermax, timercnt, ); 1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1087 timers [timercnt - 1] = w; 1370 timers [timercnt - 1] = w;
1088 upheap ((WT *)timers, timercnt - 1); 1371 upheap ((WT *)timers, timercnt - 1);
1372
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1089} 1374}
1090 1375
1091void 1376void
1092ev_timer_stop (EV_P_ struct ev_timer *w) 1377ev_timer_stop (EV_P_ struct ev_timer *w)
1093{ 1378{
1094 ev_clear_pending (EV_A_ (W)w); 1379 ev_clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 1380 if (expect_false (!ev_is_active (w)))
1096 return; 1381 return;
1097 1382
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1384
1098 if (w->active < timercnt--) 1385 if (expect_true (((W)w)->active < timercnt--))
1099 { 1386 {
1100 timers [w->active - 1] = timers [timercnt]; 1387 timers [((W)w)->active - 1] = timers [timercnt];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1102 } 1389 }
1103 1390
1104 w->at = w->repeat; 1391 ((WT)w)->at -= mn_now;
1105 1392
1106 ev_stop (EV_A_ (W)w); 1393 ev_stop (EV_A_ (W)w);
1107} 1394}
1108 1395
1109void 1396void
1111{ 1398{
1112 if (ev_is_active (w)) 1399 if (ev_is_active (w))
1113 { 1400 {
1114 if (w->repeat) 1401 if (w->repeat)
1115 { 1402 {
1116 w->at = mn_now + w->repeat; 1403 ((WT)w)->at = mn_now + w->repeat;
1117 downheap ((WT *)timers, timercnt, w->active - 1); 1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1118 } 1405 }
1119 else 1406 else
1120 ev_timer_stop (EV_A_ w); 1407 ev_timer_stop (EV_A_ w);
1121 } 1408 }
1122 else if (w->repeat) 1409 else if (w->repeat)
1410 {
1411 w->at = w->repeat;
1123 ev_timer_start (EV_A_ w); 1412 ev_timer_start (EV_A_ w);
1413 }
1124} 1414}
1125 1415
1416#if EV_PERIODICS
1126void 1417void
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 1418ev_periodic_start (EV_P_ struct ev_periodic *w)
1128{ 1419{
1129 if (ev_is_active (w)) 1420 if (expect_false (ev_is_active (w)))
1130 return; 1421 return;
1131 1422
1423 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval)
1426 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 1428 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 }
1137 1431
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 1432 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1140 periodics [periodiccnt - 1] = w; 1434 periodics [periodiccnt - 1] = w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 1435 upheap ((WT *)periodics, periodiccnt - 1);
1436
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1142} 1438}
1143 1439
1144void 1440void
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 1441ev_periodic_stop (EV_P_ struct ev_periodic *w)
1146{ 1442{
1147 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 1444 if (expect_false (!ev_is_active (w)))
1149 return; 1445 return;
1150 1446
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1448
1151 if (w->active < periodiccnt--) 1449 if (expect_true (((W)w)->active < periodiccnt--))
1152 { 1450 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 1451 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1155 } 1453 }
1156 1454
1157 ev_stop (EV_A_ (W)w); 1455 ev_stop (EV_A_ (W)w);
1158} 1456}
1159 1457
1160void 1458void
1459ev_periodic_again (EV_P_ struct ev_periodic *w)
1460{
1461 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w);
1464}
1465#endif
1466
1467void
1161ev_idle_start (EV_P_ struct ev_idle *w) 1468ev_idle_start (EV_P_ struct ev_idle *w)
1162{ 1469{
1163 if (ev_is_active (w)) 1470 if (expect_false (ev_is_active (w)))
1164 return; 1471 return;
1165 1472
1166 ev_start (EV_A_ (W)w, ++idlecnt); 1473 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, ); 1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1168 idles [idlecnt - 1] = w; 1475 idles [idlecnt - 1] = w;
1169} 1476}
1170 1477
1171void 1478void
1172ev_idle_stop (EV_P_ struct ev_idle *w) 1479ev_idle_stop (EV_P_ struct ev_idle *w)
1173{ 1480{
1174 ev_clear_pending (EV_A_ (W)w); 1481 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 1482 if (expect_false (!ev_is_active (w)))
1176 return; 1483 return;
1177 1484
1178 idles [w->active - 1] = idles [--idlecnt]; 1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w); 1486 ev_stop (EV_A_ (W)w);
1180} 1487}
1181 1488
1182void 1489void
1183ev_prepare_start (EV_P_ struct ev_prepare *w) 1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{ 1491{
1185 if (ev_is_active (w)) 1492 if (expect_false (ev_is_active (w)))
1186 return; 1493 return;
1187 1494
1188 ev_start (EV_A_ (W)w, ++preparecnt); 1495 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, ); 1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1190 prepares [preparecnt - 1] = w; 1497 prepares [preparecnt - 1] = w;
1191} 1498}
1192 1499
1193void 1500void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w) 1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{ 1502{
1196 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1198 return; 1505 return;
1199 1506
1200 prepares [w->active - 1] = prepares [--preparecnt]; 1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w); 1508 ev_stop (EV_A_ (W)w);
1202} 1509}
1203 1510
1204void 1511void
1205ev_check_start (EV_P_ struct ev_check *w) 1512ev_check_start (EV_P_ struct ev_check *w)
1206{ 1513{
1207 if (ev_is_active (w)) 1514 if (expect_false (ev_is_active (w)))
1208 return; 1515 return;
1209 1516
1210 ev_start (EV_A_ (W)w, ++checkcnt); 1517 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, ); 1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1212 checks [checkcnt - 1] = w; 1519 checks [checkcnt - 1] = w;
1213} 1520}
1214 1521
1215void 1522void
1216ev_check_stop (EV_P_ struct ev_check *w) 1523ev_check_stop (EV_P_ struct ev_check *w)
1217{ 1524{
1218 ev_clear_pending (EV_A_ (W)w); 1525 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 1526 if (expect_false (!ev_is_active (w)))
1220 return; 1527 return;
1221 1528
1222 checks [w->active - 1] = checks [--checkcnt]; 1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w); 1530 ev_stop (EV_A_ (W)w);
1224} 1531}
1225 1532
1226#ifndef SA_RESTART 1533#ifndef SA_RESTART
1227# define SA_RESTART 0 1534# define SA_RESTART 0
1229 1536
1230void 1537void
1231ev_signal_start (EV_P_ struct ev_signal *w) 1538ev_signal_start (EV_P_ struct ev_signal *w)
1232{ 1539{
1233#if EV_MULTIPLICITY 1540#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1235#endif 1542#endif
1236 if (ev_is_active (w)) 1543 if (expect_false (ev_is_active (w)))
1237 return; 1544 return;
1238 1545
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240 1547
1241 ev_start (EV_A_ (W)w, 1); 1548 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init); 1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244 1551
1245 if (!w->next) 1552 if (!((WL)w)->next)
1246 { 1553 {
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1247 struct sigaction sa; 1557 struct sigaction sa;
1248 sa.sa_handler = sighandler; 1558 sa.sa_handler = sighandler;
1249 sigfillset (&sa.sa_mask); 1559 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 1561 sigaction (w->signum, &sa, 0);
1562#endif
1252 } 1563 }
1253} 1564}
1254 1565
1255void 1566void
1256ev_signal_stop (EV_P_ struct ev_signal *w) 1567ev_signal_stop (EV_P_ struct ev_signal *w)
1257{ 1568{
1258 ev_clear_pending (EV_A_ (W)w); 1569 ev_clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w)) 1570 if (expect_false (!ev_is_active (w)))
1260 return; 1571 return;
1261 1572
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w); 1574 ev_stop (EV_A_ (W)w);
1264 1575
1268 1579
1269void 1580void
1270ev_child_start (EV_P_ struct ev_child *w) 1581ev_child_start (EV_P_ struct ev_child *w)
1271{ 1582{
1272#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1274#endif 1585#endif
1275 if (ev_is_active (w)) 1586 if (expect_false (ev_is_active (w)))
1276 return; 1587 return;
1277 1588
1278 ev_start (EV_A_ (W)w, 1); 1589 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1280} 1591}
1281 1592
1282void 1593void
1283ev_child_stop (EV_P_ struct ev_child *w) 1594ev_child_stop (EV_P_ struct ev_child *w)
1284{ 1595{
1285 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w)) 1597 if (expect_false (!ev_is_active (w)))
1287 return; 1598 return;
1288 1599
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1291} 1602}
1306 void (*cb)(int revents, void *arg) = once->cb; 1617 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 1618 void *arg = once->arg;
1308 1619
1309 ev_io_stop (EV_A_ &once->io); 1620 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 1621 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 1622 ev_free (once);
1312 1623
1313 cb (revents, arg); 1624 cb (revents, arg);
1314} 1625}
1315 1626
1316static void 1627static void
1326} 1637}
1327 1638
1328void 1639void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 1641{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 1643
1333 if (!once) 1644 if (expect_false (!once))
1645 {
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 1647 return;
1336 { 1648 }
1649
1337 once->cb = cb; 1650 once->cb = cb;
1338 once->arg = arg; 1651 once->arg = arg;
1339 1652
1340 ev_watcher_init (&once->io, once_cb_io); 1653 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 1654 if (fd >= 0)
1342 { 1655 {
1343 ev_io_set (&once->io, fd, events); 1656 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io); 1657 ev_io_start (EV_A_ &once->io);
1345 } 1658 }
1346 1659
1347 ev_watcher_init (&once->to, once_cb_to); 1660 ev_init (&once->to, once_cb_to);
1348 if (timeout >= 0.) 1661 if (timeout >= 0.)
1349 { 1662 {
1350 ev_timer_set (&once->to, timeout, 0.); 1663 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to); 1664 ev_timer_start (EV_A_ &once->to);
1352 }
1353 } 1665 }
1354} 1666}
1355 1667
1668#ifdef __cplusplus
1669}
1670#endif
1671

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines