ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
42
43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
57# endif
58
59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
65# endif
66
67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
73# endif
74
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
81# endif
82
83# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
33#endif 99#endif
34 100
35#include <math.h> 101#include <math.h>
36#include <stdlib.h> 102#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 103#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 104#include <stddef.h>
41 105
42#include <stdio.h> 106#include <stdio.h>
43 107
44#include <assert.h> 108#include <assert.h>
45#include <errno.h> 109#include <errno.h>
46#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
47#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
48# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
49#endif 124# endif
50#include <sys/time.h> 125#endif
51#include <time.h>
52 126
53/**/ 127/**/
54 128
55#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
57#endif 135#endif
58 136
59#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
61#endif 139#endif
62 140
63#ifndef EV_USEV_POLL 141#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
65#endif 147#endif
66 148
67#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
69#endif 151#endif
70 152
71#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
73#endif 155#endif
74 156
75#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
77#endif 159#endif
78 160
79/**/ 161/**/
80 162
81#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
86#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
89#endif 171#endif
90 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
91/**/ 177/**/
92 178
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
97 183
184#ifdef EV_H
185# include EV_H
186#else
98#include "ev.h" 187# include "ev.h"
188#endif
99 189
100#if __GNUC__ >= 3 190#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
102# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
103#else 200#else
104# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
105# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
106#endif 205#endif
107 206
108#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
110 209
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
113 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
114typedef struct ev_watcher *W; 216typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
117 219
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 221
222#ifdef _WIN32
223# include "ev_win32.c"
224#endif
225
120/*****************************************************************************/ 226/*****************************************************************************/
121 227
228static void (*syserr_cb)(const char *msg);
229
230void
231ev_set_syserr_cb (void (*cb)(const char *msg))
232{
233 syserr_cb = cb;
234}
235
236static void noinline
237syserr (const char *msg)
238{
239 if (!msg)
240 msg = "(libev) system error";
241
242 if (syserr_cb)
243 syserr_cb (msg);
244 else
245 {
246 perror (msg);
247 abort ();
248 }
249}
250
251static void *(*alloc)(void *ptr, long size);
252
253void
254ev_set_allocator (void *(*cb)(void *ptr, long size))
255{
256 alloc = cb;
257}
258
259static void *
260ev_realloc (void *ptr, long size)
261{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
263
264 if (!ptr && size)
265 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort ();
268 }
269
270 return ptr;
271}
272
273#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0)
275
276/*****************************************************************************/
277
122typedef struct 278typedef struct
123{ 279{
124 struct ev_watcher_list *head; 280 WL head;
125 unsigned char events; 281 unsigned char events;
126 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
127} ANFD; 286} ANFD;
128 287
129typedef struct 288typedef struct
130{ 289{
131 W w; 290 W w;
132 int events; 291 int events;
133} ANPENDING; 292} ANPENDING;
134 293
135#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
136 295
137struct ev_loop 296 struct ev_loop
138{ 297 {
298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
140# include "ev_vars.h" 301 #include "ev_vars.h"
141};
142# undef VAR 302 #undef VAR
303 };
143# include "ev_wrap.h" 304 #include "ev_wrap.h"
305
306 static struct ev_loop default_loop_struct;
307 struct ev_loop *ev_default_loop_ptr;
144 308
145#else 309#else
146 310
311 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 313 #include "ev_vars.h"
149# undef VAR 314 #undef VAR
315
316 static int ev_default_loop_ptr;
150 317
151#endif 318#endif
152 319
153/*****************************************************************************/ 320/*****************************************************************************/
154 321
155inline ev_tstamp 322ev_tstamp
156ev_time (void) 323ev_time (void)
157{ 324{
158#if EV_USE_REALTIME 325#if EV_USE_REALTIME
159 struct timespec ts; 326 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 327 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 333#endif
167} 334}
168 335
169inline ev_tstamp 336ev_tstamp inline_size
170get_clock (void) 337get_clock (void)
171{ 338{
172#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
174 { 341 {
179#endif 346#endif
180 347
181 return ev_time (); 348 return ev_time ();
182} 349}
183 350
351#if EV_MULTIPLICITY
184ev_tstamp 352ev_tstamp
185ev_now (EV_P) 353ev_now (EV_P)
186{ 354{
187 return rt_now; 355 return ev_rt_now;
188} 356}
357#endif
189 358
190#define array_roundsize(base,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
191 360
192#define array_needsize(base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
194 { \ 363 { \
195 int newcnt = cur; \ 364 int newcnt = cur; \
196 do \ 365 do \
197 { \ 366 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 367 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 368 } \
200 while ((cnt) > newcnt); \ 369 while ((cnt) > newcnt); \
201 \ 370 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 372 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 373 cur = newcnt; \
205 } 374 }
375
376#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 }
383
384#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 386
207/*****************************************************************************/ 387/*****************************************************************************/
208 388
209static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
210anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
211{ 419{
212 while (count--) 420 while (count--)
213 { 421 {
214 base->head = 0; 422 base->head = 0;
217 425
218 ++base; 426 ++base;
219 } 427 }
220} 428}
221 429
222static void 430void inline_speed
223event (EV_P_ W w, int events)
224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
247fd_event (EV_P_ int fd, int events) 431fd_event (EV_P_ int fd, int revents)
248{ 432{
249 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 434 ev_io *w;
251 435
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 437 {
254 int ev = w->events & events; 438 int ev = w->events & revents;
255 439
256 if (ev) 440 if (ev)
257 event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
258 } 442 }
259} 443}
260 444
261/*****************************************************************************/ 445void
446ev_feed_fd_event (EV_P_ int fd, int revents)
447{
448 fd_event (EV_A_ fd, revents);
449}
262 450
263static void 451void inline_size
264fd_reify (EV_P) 452fd_reify (EV_P)
265{ 453{
266 int i; 454 int i;
267 455
268 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
269 { 457 {
270 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 460 ev_io *w;
273 461
274 int events = 0; 462 int events = 0;
275 463
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 465 events |= w->events;
278 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
279 anfd->reify = 0; 476 anfd->reify = 0;
280 477
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 479 anfd->events = events;
285 }
286 } 480 }
287 481
288 fdchangecnt = 0; 482 fdchangecnt = 0;
289} 483}
290 484
291static void 485void inline_size
292fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
293{ 487{
294 if (anfds [fd].reify || fdchangecnt < 0) 488 if (expect_false (anfds [fd].reify))
295 return; 489 return;
296 490
297 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
298 492
299 ++fdchangecnt; 493 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
302} 496}
303 497
304static void 498void inline_speed
305fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
306{ 500{
307 struct ev_io *w; 501 ev_io *w;
308 502
309 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
310 { 504 {
311 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 507 }
508}
509
510int inline_size
511fd_valid (int fd)
512{
513#ifdef _WIN32
514 return _get_osfhandle (fd) != -1;
515#else
516 return fcntl (fd, F_GETFD) != -1;
517#endif
314} 518}
315 519
316/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
317static void 521static void noinline
318fd_ebadf (EV_P) 522fd_ebadf (EV_P)
319{ 523{
320 int fd; 524 int fd;
321 525
322 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 527 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
326} 530}
327 531
328/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 533static void noinline
330fd_enomem (EV_P) 534fd_enomem (EV_P)
331{ 535{
332 int fd = anfdmax; 536 int fd;
333 537
334 while (fd--) 538 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 539 if (anfds [fd].events)
336 { 540 {
337 close (fd);
338 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
339 return; 542 return;
340 } 543 }
341} 544}
342 545
343/* susually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 547static void noinline
345fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
346{ 549{
347 int fd; 550 int fd;
348 551
349 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 553 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 554 if (anfds [fd].events)
352 { 555 {
353 anfds [fd].events = 0; 556 anfds [fd].events = 0;
354 fd_change (fd); 557 fd_change (EV_A_ fd);
355 } 558 }
356} 559}
357 560
358/*****************************************************************************/ 561/*****************************************************************************/
359 562
360static void 563void inline_speed
361upheap (WT *heap, int k) 564upheap (WT *heap, int k)
362{ 565{
363 WT w = heap [k]; 566 WT w = heap [k];
364 567
365 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
366 { 569 {
367 heap [k] = heap [k >> 1]; 570 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 571 ((W)heap [k])->active = k + 1;
369 k >>= 1; 572 k >>= 1;
370 } 573 }
371 574
372 heap [k] = w; 575 heap [k] = w;
373 heap [k]->active = k + 1; 576 ((W)heap [k])->active = k + 1;
374 577
375} 578}
376 579
377static void 580void inline_speed
378downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
379{ 582{
380 WT w = heap [k]; 583 WT w = heap [k];
381 584
382 while (k < (N >> 1)) 585 while (k < (N >> 1))
388 591
389 if (w->at <= heap [j]->at) 592 if (w->at <= heap [j]->at)
390 break; 593 break;
391 594
392 heap [k] = heap [j]; 595 heap [k] = heap [j];
393 heap [k]->active = k + 1; 596 ((W)heap [k])->active = k + 1;
394 k = j; 597 k = j;
395 } 598 }
396 599
397 heap [k] = w; 600 heap [k] = w;
398 heap [k]->active = k + 1; 601 ((W)heap [k])->active = k + 1;
602}
603
604void inline_size
605adjustheap (WT *heap, int N, int k)
606{
607 upheap (heap, k);
608 downheap (heap, N, k);
399} 609}
400 610
401/*****************************************************************************/ 611/*****************************************************************************/
402 612
403typedef struct 613typedef struct
404{ 614{
405 struct ev_watcher_list *head; 615 WL head;
406 sig_atomic_t volatile gotsig; 616 sig_atomic_t volatile gotsig;
407} ANSIG; 617} ANSIG;
408 618
409static ANSIG *signals; 619static ANSIG *signals;
410static int signalmax; 620static int signalmax;
411 621
412static int sigpipe [2]; 622static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
414 625
415static void 626void inline_size
416signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
417{ 628{
418 while (count--) 629 while (count--)
419 { 630 {
420 base->head = 0; 631 base->head = 0;
425} 636}
426 637
427static void 638static void
428sighandler (int signum) 639sighandler (int signum)
429{ 640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
430 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
431 646
432 if (!gotsig) 647 if (!gotsig)
433 { 648 {
434 int old_errno = errno; 649 int old_errno = errno;
436 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
437 errno = old_errno; 652 errno = old_errno;
438 } 653 }
439} 654}
440 655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
441static void 676static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
443{ 678{
444 struct ev_watcher_list *w;
445 int signum; 679 int signum;
446 680
447 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
448 gotsig = 0; 682 gotsig = 0;
449 683
450 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
452 { 686 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458} 687}
459 688
460static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
461siginit (EV_P) 702siginit (EV_P)
462{ 703{
463#ifndef WIN32 704 fd_intern (sigpipe [0]);
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471 706
472 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 710}
476 711
477/*****************************************************************************/ 712/*****************************************************************************/
478 713
714static ev_child *childs [PID_HASHSIZE];
715
479#ifndef WIN32 716#ifndef _WIN32
717
718static ev_signal childev;
480 719
481#ifndef WCONTINUED 720#ifndef WCONTINUED
482# define WCONTINUED 0 721# define WCONTINUED 0
483#endif 722#endif
484 723
485static void 724void inline_speed
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
487{ 726{
488 struct ev_child *w; 727 ev_child *w;
489 728
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
492 { 731 {
493 w->priority = sw->priority; /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 733 w->rpid = pid;
495 w->rstatus = status; 734 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 736 }
498} 737}
499 738
500static void 739static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
502{ 741{
503 int pid, status; 742 int pid, status;
504 743
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 745 {
507 /* make sure we are called again until all childs have been reaped */ 746 /* make sure we are called again until all childs have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */
508 event (EV_A_ (W)sw, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 749
510 child_reap (EV_A_ sw, pid, pid, status); 750 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
512 } 752 }
513} 753}
514 754
515#endif 755#endif
516 756
517/*****************************************************************************/ 757/*****************************************************************************/
518 758
759#if EV_USE_PORT
760# include "ev_port.c"
761#endif
519#if EV_USE_KQUEUE 762#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 763# include "ev_kqueue.c"
521#endif 764#endif
522#if EV_USE_EPOLL 765#if EV_USE_EPOLL
523# include "ev_epoll.c" 766# include "ev_epoll.c"
524#endif 767#endif
525#if EV_USEV_POLL 768#if EV_USE_POLL
526# include "ev_poll.c" 769# include "ev_poll.c"
527#endif 770#endif
528#if EV_USE_SELECT 771#if EV_USE_SELECT
529# include "ev_select.c" 772# include "ev_select.c"
530#endif 773#endif
540{ 783{
541 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
542} 785}
543 786
544/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
545static int 788int inline_size
546enable_secure (void) 789enable_secure (void)
547{ 790{
548#ifdef WIN32 791#ifdef _WIN32
549 return 0; 792 return 0;
550#else 793#else
551 return getuid () != geteuid () 794 return getuid () != geteuid ()
552 || getgid () != getegid (); 795 || getgid () != getegid ();
553#endif 796#endif
554} 797}
555 798
556int 799unsigned int
557ev_method (EV_P) 800ev_supported_backends (void)
558{ 801{
559 return method; 802 unsigned int flags = 0;
803
804 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
805 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
806 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
807 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
808 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
809
810 return flags;
811}
812
813unsigned int
814ev_recommended_backends (void)
815{
816 unsigned int flags = ev_supported_backends ();
817
818#ifndef __NetBSD__
819 /* kqueue is borked on everything but netbsd apparently */
820 /* it usually doesn't work correctly on anything but sockets and pipes */
821 flags &= ~EVBACKEND_KQUEUE;
822#endif
823#ifdef __APPLE__
824 // flags &= ~EVBACKEND_KQUEUE; for documentation
825 flags &= ~EVBACKEND_POLL;
826#endif
827
828 return flags;
829}
830
831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
840ev_backend (EV_P)
841{
842 return backend;
560} 843}
561 844
562static void 845static void
563loop_init (EV_P_ int methods) 846loop_init (EV_P_ unsigned int flags)
564{ 847{
565 if (!method) 848 if (!backend)
566 { 849 {
567#if EV_USE_MONOTONIC 850#if EV_USE_MONOTONIC
568 { 851 {
569 struct timespec ts; 852 struct timespec ts;
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 853 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 854 have_monotonic = 1;
572 } 855 }
573#endif 856#endif
574 857
575 rt_now = ev_time (); 858 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 859 mn_now = get_clock ();
577 now_floor = mn_now; 860 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 861 rtmn_diff = ev_rt_now - mn_now;
579 862
580 if (methods == EVMETHOD_AUTO) 863 if (!(flags & EVFLAG_NOENV)
581 if (!enable_secure () && getenv ("LIBEV_METHODS")) 864 && !enable_secure ()
865 && getenv ("LIBEV_FLAGS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 866 flags = atoi (getenv ("LIBEV_FLAGS"));
583 else
584 methods = EVMETHOD_ANY;
585 867
586 method = 0; 868 if (!(flags & 0x0000ffffUL))
869 flags |= ev_recommended_backends ();
870
871 backend = 0;
872#if EV_USE_PORT
873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
874#endif
587#if EV_USE_KQUEUE 875#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
589#endif 877#endif
590#if EV_USE_EPOLL 878#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 879 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
592#endif 880#endif
593#if EV_USEV_POLL 881#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 882 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
595#endif 883#endif
596#if EV_USE_SELECT 884#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
598#endif 886#endif
599 }
600}
601 887
602void 888 ev_init (&sigev, sigcb);
889 ev_set_priority (&sigev, EV_MAXPRI);
890 }
891}
892
893static void
603loop_destroy (EV_P) 894loop_destroy (EV_P)
604{ 895{
896 int i;
897
898#if EV_USE_PORT
899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
900#endif
605#if EV_USE_KQUEUE 901#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 902 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
607#endif 903#endif
608#if EV_USE_EPOLL 904#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 905 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
610#endif 906#endif
611#if EV_USEV_POLL 907#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 908 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
613#endif 909#endif
614#if EV_USE_SELECT 910#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
616#endif 912#endif
617 913
618 method = 0; 914 for (i = NUMPRI; i--; )
619 /*TODO*/ 915 array_free (pending, [i]);
620}
621 916
622void 917 /* have to use the microsoft-never-gets-it-right macro */
918 array_free (fdchange, EMPTY0);
919 array_free (timer, EMPTY0);
920#if EV_PERIODIC_ENABLE
921 array_free (periodic, EMPTY0);
922#endif
923 array_free (idle, EMPTY0);
924 array_free (prepare, EMPTY0);
925 array_free (check, EMPTY0);
926
927 backend = 0;
928}
929
930static void
623loop_fork (EV_P) 931loop_fork (EV_P)
624{ 932{
625 /*TODO*/ 933#if EV_USE_PORT
934 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
935#endif
936#if EV_USE_KQUEUE
937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
938#endif
626#if EV_USE_EPOLL 939#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
628#endif 941#endif
629#if EV_USE_KQUEUE 942
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 943 if (ev_is_active (&sigev))
631#endif 944 {
945 /* default loop */
946
947 ev_ref (EV_A);
948 ev_io_stop (EV_A_ &sigev);
949 close (sigpipe [0]);
950 close (sigpipe [1]);
951
952 while (pipe (sigpipe))
953 syserr ("(libev) error creating pipe");
954
955 siginit (EV_A);
956 }
957
958 postfork = 0;
632} 959}
633 960
634#if EV_MULTIPLICITY 961#if EV_MULTIPLICITY
635struct ev_loop * 962struct ev_loop *
636ev_loop_new (int methods) 963ev_loop_new (unsigned int flags)
637{ 964{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 965 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
639 966
967 memset (loop, 0, sizeof (struct ev_loop));
968
640 loop_init (EV_A_ methods); 969 loop_init (EV_A_ flags);
641 970
642 if (ev_methods (EV_A)) 971 if (ev_backend (EV_A))
643 return loop; 972 return loop;
644 973
645 return 0; 974 return 0;
646} 975}
647 976
648void 977void
649ev_loop_destroy (EV_P) 978ev_loop_destroy (EV_P)
650{ 979{
651 loop_destroy (EV_A); 980 loop_destroy (EV_A);
652 free (loop); 981 ev_free (loop);
653} 982}
654 983
655void 984void
656ev_loop_fork (EV_P) 985ev_loop_fork (EV_P)
657{ 986{
658 loop_fork (EV_A); 987 postfork = 1;
659} 988}
660 989
661#endif 990#endif
662 991
663#if EV_MULTIPLICITY 992#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 993struct ev_loop *
994ev_default_loop_init (unsigned int flags)
668#else 995#else
669static int default_loop;
670
671int 996int
997ev_default_loop (unsigned int flags)
672#endif 998#endif
673ev_default_loop (int methods)
674{ 999{
675 if (sigpipe [0] == sigpipe [1]) 1000 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe)) 1001 if (pipe (sigpipe))
677 return 0; 1002 return 0;
678 1003
679 if (!default_loop) 1004 if (!ev_default_loop_ptr)
680 { 1005 {
681#if EV_MULTIPLICITY 1006#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct; 1007 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
683#else 1008#else
684 default_loop = 1; 1009 ev_default_loop_ptr = 1;
685#endif 1010#endif
686 1011
687 loop_init (EV_A_ methods); 1012 loop_init (EV_A_ flags);
688 1013
689 if (ev_method (EV_A)) 1014 if (ev_backend (EV_A))
690 { 1015 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 1016 siginit (EV_A);
694 1017
695#ifndef WIN32 1018#ifndef _WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 1019 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 1020 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 1021 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1022 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 1023#endif
701 } 1024 }
702 else 1025 else
703 default_loop = 0; 1026 ev_default_loop_ptr = 0;
704 } 1027 }
705 1028
706 return default_loop; 1029 return ev_default_loop_ptr;
707} 1030}
708 1031
709void 1032void
710ev_default_destroy (void) 1033ev_default_destroy (void)
711{ 1034{
712#if EV_MULTIPLICITY 1035#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 1036 struct ev_loop *loop = ev_default_loop_ptr;
714#endif 1037#endif
715 1038
1039#ifndef _WIN32
716 ev_ref (EV_A); /* child watcher */ 1040 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 1041 ev_signal_stop (EV_A_ &childev);
1042#endif
718 1043
719 ev_ref (EV_A); /* signal watcher */ 1044 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev); 1045 ev_io_stop (EV_A_ &sigev);
721 1046
722 close (sigpipe [0]); sigpipe [0] = 0; 1047 close (sigpipe [0]); sigpipe [0] = 0;
724 1049
725 loop_destroy (EV_A); 1050 loop_destroy (EV_A);
726} 1051}
727 1052
728void 1053void
729ev_default_fork (EV_P) 1054ev_default_fork (void)
730{ 1055{
731 loop_fork (EV_A); 1056#if EV_MULTIPLICITY
1057 struct ev_loop *loop = ev_default_loop_ptr;
1058#endif
732 1059
733 ev_io_stop (EV_A_ &sigev); 1060 if (backend)
734 close (sigpipe [0]); 1061 postfork = 1;
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 1062}
741 1063
742/*****************************************************************************/ 1064/*****************************************************************************/
743 1065
744static void 1066int inline_size
1067any_pending (EV_P)
1068{
1069 int pri;
1070
1071 for (pri = NUMPRI; pri--; )
1072 if (pendingcnt [pri])
1073 return 1;
1074
1075 return 0;
1076}
1077
1078void inline_speed
745call_pending (EV_P) 1079call_pending (EV_P)
746{ 1080{
747 int pri; 1081 int pri;
748 1082
749 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri]) 1084 while (pendingcnt [pri])
751 { 1085 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 1087
754 if (p->w) 1088 if (expect_true (p->w))
755 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
756 p->w->pending = 0; 1092 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
758 } 1094 }
759 } 1095 }
760} 1096}
761 1097
762static void 1098void inline_size
763timers_reify (EV_P) 1099timers_reify (EV_P)
764{ 1100{
765 while (timercnt && timers [0]->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
766 { 1102 {
767 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
1104
1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
768 1106
769 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
770 if (w->repeat) 1108 if (w->repeat)
771 { 1109 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1110 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1111
773 w->at = mn_now + w->repeat; 1112 ((WT)w)->at += w->repeat;
1113 if (((WT)w)->at < mn_now)
1114 ((WT)w)->at = mn_now;
1115
774 downheap ((WT *)timers, timercnt, 0); 1116 downheap ((WT *)timers, timercnt, 0);
775 } 1117 }
776 else 1118 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1120
779 event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1122 }
781} 1123}
782 1124
783static void 1125#if EV_PERIODIC_ENABLE
1126void inline_size
784periodics_reify (EV_P) 1127periodics_reify (EV_P)
785{ 1128{
786 while (periodiccnt && periodics [0]->at <= rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
787 { 1130 {
788 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1132
1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
789 1134
790 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
791 if (w->interval) 1136 if (w->reschedule_cb)
792 { 1137 {
1138 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1139 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1140 downheap ((WT *)periodics, periodiccnt, 0);
1141 }
1142 else if (w->interval)
1143 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1144 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1145 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
795 downheap ((WT *)periodics, periodiccnt, 0); 1146 downheap ((WT *)periodics, periodiccnt, 0);
796 } 1147 }
797 else 1148 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1149 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1150
800 event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1152 }
802} 1153}
803 1154
804static void 1155static void noinline
805periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
806{ 1157{
807 int i; 1158 int i;
808 1159
809 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
811 { 1162 {
812 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
813 1164
1165 if (w->reschedule_cb)
1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1167 else if (w->interval)
815 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
817
818 if (fabs (diff) >= 1e-4)
819 {
820 ev_periodic_stop (EV_A_ w);
821 ev_periodic_start (EV_A_ w);
822
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 }
825 }
826 } 1169 }
827}
828 1170
829inline int 1171 /* now rebuild the heap */
1172 for (i = periodiccnt >> 1; i--; )
1173 downheap ((WT *)periodics, periodiccnt, i);
1174}
1175#endif
1176
1177int inline_size
830time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
831{ 1179{
832 mn_now = get_clock (); 1180 mn_now = get_clock ();
833 1181
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 { 1183 {
836 rt_now = rtmn_diff + mn_now; 1184 ev_rt_now = rtmn_diff + mn_now;
837 return 0; 1185 return 0;
838 } 1186 }
839 else 1187 else
840 { 1188 {
841 now_floor = mn_now; 1189 now_floor = mn_now;
842 rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
843 return 1; 1191 return 1;
844 } 1192 }
845} 1193}
846 1194
847static void 1195void inline_size
848time_update (EV_P) 1196time_update (EV_P)
849{ 1197{
850 int i; 1198 int i;
851 1199
852#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
854 { 1202 {
855 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
856 { 1204 {
857 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
858 1206
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
860 { 1216 {
861 rtmn_diff = rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
862 1218
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */ 1220 return; /* all is well */
865 1221
866 rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
867 mn_now = get_clock (); 1223 mn_now = get_clock ();
868 now_floor = mn_now; 1224 now_floor = mn_now;
869 } 1225 }
870 1226
1227# if EV_PERIODIC_ENABLE
871 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1229# endif
872 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 } 1232 }
875 } 1233 }
876 else 1234 else
877#endif 1235#endif
878 { 1236 {
879 rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
880 1238
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 { 1240 {
1241#if EV_PERIODIC_ENABLE
883 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1243#endif
884 1244
885 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now; 1247 ((WT)timers [i])->at += ev_rt_now - mn_now;
888 } 1248 }
889 1249
890 mn_now = rt_now; 1250 mn_now = ev_rt_now;
891 } 1251 }
892} 1252}
893 1253
894void 1254void
895ev_ref (EV_P) 1255ev_ref (EV_P)
906static int loop_done; 1266static int loop_done;
907 1267
908void 1268void
909ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
910{ 1270{
911 double block;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
913 1274
914 do 1275 while (activecnt)
915 { 1276 {
916 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
917 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
918 { 1279 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1280 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1281 call_pending (EV_A);
921 } 1282 }
922 1283
1284 /* we might have forked, so reify kernel state if necessary */
1285 if (expect_false (postfork))
1286 loop_fork (EV_A);
1287
923 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
924 fd_reify (EV_A); 1289 fd_reify (EV_A);
925 1290
926 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
927 1294
928 /* we only need this for !monotonic clockor timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
929 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
930#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
933 else 1303 else
934#endif 1304#endif
935 { 1305 {
936 rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
937 mn_now = rt_now; 1307 mn_now = ev_rt_now;
938 } 1308 }
939 1309
940 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.;
942 else
943 {
944 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
945 1311
946 if (timercnt) 1312 if (timercnt)
947 { 1313 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
949 if (block > to) block = to; 1315 if (block > to) block = to;
950 } 1316 }
951 1317
1318#if EV_PERIODIC_ENABLE
952 if (periodiccnt) 1319 if (periodiccnt)
953 { 1320 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
955 if (block > to) block = to; 1322 if (block > to) block = to;
956 } 1323 }
1324#endif
957 1325
958 if (block < 0.) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
959 } 1327 }
960 1328
961 method_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
962 1331
963 /* update rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
964 time_update (EV_A); 1333 time_update (EV_A);
965 1334
966 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1337#if EV_PERIODIC_ENABLE
968 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1339#endif
969 1340
970 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
971 if (!pendingcnt) 1342 if (idlecnt && !any_pending (EV_A))
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973 1344
974 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
975 if (checkcnt) 1346 if (expect_false (checkcnt))
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1347 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 1348
978 call_pending (EV_A); 1349 call_pending (EV_A);
979 }
980 while (activecnt && !loop_done);
981 1350
982 if (loop_done != 2) 1351 if (expect_false (loop_done))
983 loop_done = 0; 1352 break;
1353 }
1354
1355 if (loop_done == EVUNLOOP_ONE)
1356 loop_done = EVUNLOOP_CANCEL;
984} 1357}
985 1358
986void 1359void
987ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
988{ 1361{
989 loop_done = how; 1362 loop_done = how;
990} 1363}
991 1364
992/*****************************************************************************/ 1365/*****************************************************************************/
993 1366
994inline void 1367void inline_size
995wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
996{ 1369{
997 elem->next = *head; 1370 elem->next = *head;
998 *head = elem; 1371 *head = elem;
999} 1372}
1000 1373
1001inline void 1374void inline_size
1002wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1003{ 1376{
1004 while (*head) 1377 while (*head)
1005 { 1378 {
1006 if (*head == elem) 1379 if (*head == elem)
1011 1384
1012 head = &(*head)->next; 1385 head = &(*head)->next;
1013 } 1386 }
1014} 1387}
1015 1388
1016inline void 1389void inline_speed
1017ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1018{ 1391{
1019 if (w->pending) 1392 if (w->pending)
1020 { 1393 {
1021 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 w->pending = 0; 1395 w->pending = 0;
1023 } 1396 }
1024} 1397}
1025 1398
1026inline void 1399void inline_speed
1027ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1028{ 1401{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031 1404
1032 w->active = active; 1405 w->active = active;
1033 ev_ref (EV_A); 1406 ev_ref (EV_A);
1034} 1407}
1035 1408
1036inline void 1409void inline_size
1037ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1038{ 1411{
1039 ev_unref (EV_A); 1412 ev_unref (EV_A);
1040 w->active = 0; 1413 w->active = 0;
1041} 1414}
1042 1415
1043/*****************************************************************************/ 1416/*****************************************************************************/
1044 1417
1045void 1418void
1046ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1047{ 1420{
1048 int fd = w->fd; 1421 int fd = w->fd;
1049 1422
1050 if (ev_is_active (w)) 1423 if (expect_false (ev_is_active (w)))
1051 return; 1424 return;
1052 1425
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 1426 assert (("ev_io_start called with negative fd", fd >= 0));
1054 1427
1055 ev_start (EV_A_ (W)w, 1); 1428 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1429 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1430 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058 1431
1059 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1060} 1433}
1061 1434
1062void 1435void
1063ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1064{ 1437{
1065 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 1439 if (expect_false (!ev_is_active (w)))
1067 return; 1440 return;
1441
1442 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1068 1443
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1444 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 1445 ev_stop (EV_A_ (W)w);
1071 1446
1072 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1073} 1448}
1074 1449
1075void 1450void
1076ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1077{ 1452{
1078 if (ev_is_active (w)) 1453 if (expect_false (ev_is_active (w)))
1079 return; 1454 return;
1080 1455
1081 w->at += mn_now; 1456 ((WT)w)->at += mn_now;
1082 1457
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 1459
1085 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1086 array_needsize (timers, timermax, timercnt, ); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1087 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1088 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1089}
1090 1464
1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1466}
1467
1091void 1468void
1092ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1093{ 1470{
1094 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 1472 if (expect_false (!ev_is_active (w)))
1096 return; 1473 return;
1097 1474
1475 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1476
1098 if (w->active < timercnt--) 1477 if (expect_true (((W)w)->active < timercnt--))
1099 { 1478 {
1100 timers [w->active - 1] = timers [timercnt]; 1479 timers [((W)w)->active - 1] = timers [timercnt];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 1480 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1102 } 1481 }
1103 1482
1104 w->at = w->repeat; 1483 ((WT)w)->at -= mn_now;
1105 1484
1106 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1107} 1486}
1108 1487
1109void 1488void
1110ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1111{ 1490{
1112 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1113 { 1492 {
1114 if (w->repeat) 1493 if (w->repeat)
1115 { 1494 {
1116 w->at = mn_now + w->repeat; 1495 ((WT)w)->at = mn_now + w->repeat;
1117 downheap ((WT *)timers, timercnt, w->active - 1); 1496 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1118 } 1497 }
1119 else 1498 else
1120 ev_timer_stop (EV_A_ w); 1499 ev_timer_stop (EV_A_ w);
1121 } 1500 }
1122 else if (w->repeat) 1501 else if (w->repeat)
1502 {
1503 w->at = w->repeat;
1123 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1505 }
1124} 1506}
1125 1507
1508#if EV_PERIODIC_ENABLE
1126void 1509void
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1128{ 1511{
1129 if (ev_is_active (w)) 1512 if (expect_false (ev_is_active (w)))
1130 return; 1513 return;
1131 1514
1515 if (w->reschedule_cb)
1516 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1517 else if (w->interval)
1518 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1519 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1522 }
1137 1523
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1140 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1142}
1143 1528
1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1530}
1531
1144void 1532void
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1146{ 1534{
1147 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 1536 if (expect_false (!ev_is_active (w)))
1149 return; 1537 return;
1150 1538
1539 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1540
1151 if (w->active < periodiccnt--) 1541 if (expect_true (((W)w)->active < periodiccnt--))
1152 { 1542 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 1543 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1544 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1155 } 1545 }
1156 1546
1157 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1158} 1548}
1159 1549
1160void 1550void
1551ev_periodic_again (EV_P_ ev_periodic *w)
1552{
1553 /* TODO: use adjustheap and recalculation */
1554 ev_periodic_stop (EV_A_ w);
1555 ev_periodic_start (EV_A_ w);
1556}
1557#endif
1558
1559void
1161ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1162{ 1561{
1163 if (ev_is_active (w)) 1562 if (expect_false (ev_is_active (w)))
1164 return; 1563 return;
1165 1564
1166 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, ); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1168 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1169} 1568}
1170 1569
1171void 1570void
1172ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1173{ 1572{
1174 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 1574 if (expect_false (!ev_is_active (w)))
1176 return; 1575 return;
1177 1576
1577 {
1578 int active = ((W)w)->active;
1178 idles [w->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1179 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1180} 1584}
1181 1585
1182void 1586void
1183ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1184{ 1588{
1185 if (ev_is_active (w)) 1589 if (expect_false (ev_is_active (w)))
1186 return; 1590 return;
1187 1591
1188 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, ); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1190 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1191} 1595}
1192 1596
1193void 1597void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1195{ 1599{
1196 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 1601 if (expect_false (!ev_is_active (w)))
1198 return; 1602 return;
1199 1603
1604 {
1605 int active = ((W)w)->active;
1200 prepares [w->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1201 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1202} 1611}
1203 1612
1204void 1613void
1205ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1206{ 1615{
1207 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1208 return; 1617 return;
1209 1618
1210 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, ); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1212 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1213} 1622}
1214 1623
1215void 1624void
1216ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1217{ 1626{
1218 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 1628 if (expect_false (!ev_is_active (w)))
1220 return; 1629 return;
1221 1630
1631 {
1632 int active = ((W)w)->active;
1222 checks [w->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1223 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1224} 1638}
1225 1639
1226#ifndef SA_RESTART 1640#ifndef SA_RESTART
1227# define SA_RESTART 0 1641# define SA_RESTART 0
1228#endif 1642#endif
1229 1643
1230void 1644void
1231ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1232{ 1646{
1233#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1235#endif 1649#endif
1236 if (ev_is_active (w)) 1650 if (expect_false (ev_is_active (w)))
1237 return; 1651 return;
1238 1652
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1653 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240 1654
1241 ev_start (EV_A_ (W)w, 1); 1655 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init); 1656 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1657 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244 1658
1245 if (!w->next) 1659 if (!((WL)w)->next)
1246 { 1660 {
1661#if _WIN32
1662 signal (w->signum, sighandler);
1663#else
1247 struct sigaction sa; 1664 struct sigaction sa;
1248 sa.sa_handler = sighandler; 1665 sa.sa_handler = sighandler;
1249 sigfillset (&sa.sa_mask); 1666 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1667 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 1668 sigaction (w->signum, &sa, 0);
1669#endif
1252 } 1670 }
1253} 1671}
1254 1672
1255void 1673void
1256ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1257{ 1675{
1258 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w)) 1677 if (expect_false (!ev_is_active (w)))
1260 return; 1678 return;
1261 1679
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1680 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w); 1681 ev_stop (EV_A_ (W)w);
1264 1682
1265 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1266 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1267} 1685}
1268 1686
1269void 1687void
1270ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1271{ 1689{
1272#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1274#endif 1692#endif
1275 if (ev_is_active (w)) 1693 if (expect_false (ev_is_active (w)))
1276 return; 1694 return;
1277 1695
1278 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1280} 1698}
1281 1699
1282void 1700void
1283ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1284{ 1702{
1285 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w)) 1704 if (expect_false (!ev_is_active (w)))
1287 return; 1705 return;
1288 1706
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1291} 1709}
1292 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1293/*****************************************************************************/ 1821/*****************************************************************************/
1294 1822
1295struct ev_once 1823struct ev_once
1296{ 1824{
1297 struct ev_io io; 1825 ev_io io;
1298 struct ev_timer to; 1826 ev_timer to;
1299 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1300 void *arg; 1828 void *arg;
1301}; 1829};
1302 1830
1303static void 1831static void
1306 void (*cb)(int revents, void *arg) = once->cb; 1834 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 1835 void *arg = once->arg;
1308 1836
1309 ev_io_stop (EV_A_ &once->io); 1837 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 1838 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 1839 ev_free (once);
1312 1840
1313 cb (revents, arg); 1841 cb (revents, arg);
1314} 1842}
1315 1843
1316static void 1844static void
1317once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1318{ 1846{
1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1320} 1848}
1321 1849
1322static void 1850static void
1323once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1324{ 1852{
1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1326} 1854}
1327 1855
1328void 1856void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1857ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 1858{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 1859 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 1860
1333 if (!once) 1861 if (expect_false (!once))
1862 {
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1863 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 1864 return;
1336 { 1865 }
1866
1337 once->cb = cb; 1867 once->cb = cb;
1338 once->arg = arg; 1868 once->arg = arg;
1339 1869
1340 ev_watcher_init (&once->io, once_cb_io); 1870 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 1871 if (fd >= 0)
1342 { 1872 {
1343 ev_io_set (&once->io, fd, events); 1873 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io); 1874 ev_io_start (EV_A_ &once->io);
1345 } 1875 }
1346 1876
1347 ev_watcher_init (&once->to, once_cb_to); 1877 ev_init (&once->to, once_cb_to);
1348 if (timeout >= 0.) 1878 if (timeout >= 0.)
1349 { 1879 {
1350 ev_timer_set (&once->to, timeout, 0.); 1880 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to); 1881 ev_timer_start (EV_A_ &once->to);
1352 }
1353 } 1882 }
1354} 1883}
1355 1884
1885#ifdef __cplusplus
1886}
1887#endif
1888

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines