ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.254 by root, Wed Jun 4 20:26:55 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
47#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
48# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
49#endif 163# endif
50#include <sys/time.h> 164#endif
51#include <time.h>
52 165
53/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
54 167
55#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 170# define EV_USE_MONOTONIC 1
171# else
172# define EV_USE_MONOTONIC 0
173# endif
174#endif
175
176#ifndef EV_USE_REALTIME
177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
57#endif 186#endif
58 187
59#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
61#endif 190#endif
62 191
63#ifndef EV_USEV_POLL 192#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 193# ifdef _WIN32
194# define EV_USE_POLL 0
195# else
196# define EV_USE_POLL 1
197# endif
65#endif 198#endif
66 199
67#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
68# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
69#endif 206#endif
70 207
71#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
73#endif 210#endif
74 211
75#ifndef EV_USE_REALTIME 212#ifndef EV_USE_PORT
213# define EV_USE_PORT 0
214#endif
215
216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 218# define EV_USE_INOTIFY 1
219# else
220# define EV_USE_INOTIFY 0
77#endif 221# endif
222#endif
78 223
79/**/ 224#ifndef EV_PID_HASHSIZE
225# if EV_MINIMAL
226# define EV_PID_HASHSIZE 1
227# else
228# define EV_PID_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_INOTIFY_HASHSIZE
233# if EV_MINIMAL
234# define EV_INOTIFY_HASHSIZE 1
235# else
236# define EV_INOTIFY_HASHSIZE 16
237# endif
238#endif
239
240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 267
81#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
84#endif 271#endif
86#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
89#endif 276#endif
90 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
293#if EV_SELECT_IS_WINSOCKET
294# include <winsock.h>
295#endif
296
297#if EV_USE_EVENTFD
298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
302# endif
303int eventfd (unsigned int initval, int flags);
304# ifdef __cplusplus
305}
306# endif
307#endif
308
91/**/ 309/**/
92 310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
316
317/*
318 * This is used to avoid floating point rounding problems.
319 * It is added to ev_rt_now when scheduling periodics
320 * to ensure progress, time-wise, even when rounding
321 * errors are against us.
322 * This value is good at least till the year 4000.
323 * Better solutions welcome.
324 */
325#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
326
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 330
98#include "ev.h"
99
100#if __GNUC__ >= 3 331#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 333# define noinline __attribute__ ((noinline))
103#else 334#else
104# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
105# define inline static 336# define noinline
337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
338# define inline
339# endif
106#endif 340#endif
107 341
108#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 343#define expect_true(expr) expect ((expr) != 0, 1)
344#define inline_size static inline
345
346#if EV_MINIMAL
347# define inline_speed static noinline
348#else
349# define inline_speed static inline
350#endif
110 351
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 352#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 353#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
113 354
355#define EMPTY /* required for microsofts broken pseudo-c compiler */
356#define EMPTY2(a,b) /* used to suppress some warnings */
357
114typedef struct ev_watcher *W; 358typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
117 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
370
371#ifdef _WIN32
372# include "ev_win32.c"
373#endif
119 374
120/*****************************************************************************/ 375/*****************************************************************************/
121 376
377static void (*syserr_cb)(const char *msg);
378
379void
380ev_set_syserr_cb (void (*cb)(const char *msg))
381{
382 syserr_cb = cb;
383}
384
385static void noinline
386syserr (const char *msg)
387{
388 if (!msg)
389 msg = "(libev) system error";
390
391 if (syserr_cb)
392 syserr_cb (msg);
393 else
394 {
395 perror (msg);
396 abort ();
397 }
398}
399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
416
417void
418ev_set_allocator (void *(*cb)(void *ptr, long size))
419{
420 alloc = cb;
421}
422
423inline_speed void *
424ev_realloc (void *ptr, long size)
425{
426 ptr = alloc (ptr, size);
427
428 if (!ptr && size)
429 {
430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
431 abort ();
432 }
433
434 return ptr;
435}
436
437#define ev_malloc(size) ev_realloc (0, (size))
438#define ev_free(ptr) ev_realloc ((ptr), 0)
439
440/*****************************************************************************/
441
122typedef struct 442typedef struct
123{ 443{
124 struct ev_watcher_list *head; 444 WL head;
125 unsigned char events; 445 unsigned char events;
126 unsigned char reify; 446 unsigned char reify;
447#if EV_SELECT_IS_WINSOCKET
448 SOCKET handle;
449#endif
127} ANFD; 450} ANFD;
128 451
129typedef struct 452typedef struct
130{ 453{
131 W w; 454 W w;
132 int events; 455 int events;
133} ANPENDING; 456} ANPENDING;
134 457
458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
460typedef struct
461{
462 WL head;
463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
482#endif
483
135#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
136 485
137struct ev_loop 486 struct ev_loop
138{ 487 {
488 ev_tstamp ev_rt_now;
489 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 490 #define VAR(name,decl) decl;
140# include "ev_vars.h" 491 #include "ev_vars.h"
141};
142# undef VAR 492 #undef VAR
493 };
143# include "ev_wrap.h" 494 #include "ev_wrap.h"
495
496 static struct ev_loop default_loop_struct;
497 struct ev_loop *ev_default_loop_ptr;
144 498
145#else 499#else
146 500
501 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 502 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 503 #include "ev_vars.h"
149# undef VAR 504 #undef VAR
505
506 static int ev_default_loop_ptr;
150 507
151#endif 508#endif
152 509
153/*****************************************************************************/ 510/*****************************************************************************/
154 511
155inline ev_tstamp 512ev_tstamp
156ev_time (void) 513ev_time (void)
157{ 514{
158#if EV_USE_REALTIME 515#if EV_USE_REALTIME
159 struct timespec ts; 516 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 517 clock_gettime (CLOCK_REALTIME, &ts);
164 gettimeofday (&tv, 0); 521 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 522 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif 523#endif
167} 524}
168 525
169inline ev_tstamp 526ev_tstamp inline_size
170get_clock (void) 527get_clock (void)
171{ 528{
172#if EV_USE_MONOTONIC 529#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 530 if (expect_true (have_monotonic))
174 { 531 {
179#endif 536#endif
180 537
181 return ev_time (); 538 return ev_time ();
182} 539}
183 540
541#if EV_MULTIPLICITY
184ev_tstamp 542ev_tstamp
185ev_now (EV_P) 543ev_now (EV_P)
186{ 544{
187 return rt_now; 545 return ev_rt_now;
188} 546}
547#endif
189 548
190#define array_roundsize(base,n) ((n) | 4 & ~3) 549void
191 550ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 551{
193 if (expect_false ((cnt) > cur)) \ 552 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
206 573
207/*****************************************************************************/ 574/*****************************************************************************/
208 575
209static void 576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
578int inline_size
579array_nextsize (int elem, int cur, int cnt)
580{
581 int ncur = cur + 1;
582
583 do
584 ncur <<= 1;
585 while (cnt > ncur);
586
587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
589 {
590 ncur *= elem;
591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
592 ncur = ncur - sizeof (void *) * 4;
593 ncur /= elem;
594 }
595
596 return ncur;
597}
598
599static noinline void *
600array_realloc (int elem, void *base, int *cur, int cnt)
601{
602 *cur = array_nextsize (elem, *cur, cnt);
603 return ev_realloc (base, elem * *cur);
604}
605
606#define array_needsize(type,base,cur,cnt,init) \
607 if (expect_false ((cnt) > (cur))) \
608 { \
609 int ocur_ = (cur); \
610 (base) = (type *)array_realloc \
611 (sizeof (type), (base), &(cur), (cnt)); \
612 init ((base) + (ocur_), (cur) - ocur_); \
613 }
614
615#if 0
616#define array_slim(type,stem) \
617 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
618 { \
619 stem ## max = array_roundsize (stem ## cnt >> 1); \
620 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
621 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
622 }
623#endif
624
625#define array_free(stem, idx) \
626 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
627
628/*****************************************************************************/
629
630void noinline
631ev_feed_event (EV_P_ void *w, int revents)
632{
633 W w_ = (W)w;
634 int pri = ABSPRI (w_);
635
636 if (expect_false (w_->pending))
637 pendings [pri][w_->pending - 1].events |= revents;
638 else
639 {
640 w_->pending = ++pendingcnt [pri];
641 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
642 pendings [pri][w_->pending - 1].w = w_;
643 pendings [pri][w_->pending - 1].events = revents;
644 }
645}
646
647void inline_speed
648queue_events (EV_P_ W *events, int eventcnt, int type)
649{
650 int i;
651
652 for (i = 0; i < eventcnt; ++i)
653 ev_feed_event (EV_A_ events [i], type);
654}
655
656/*****************************************************************************/
657
658void inline_size
210anfds_init (ANFD *base, int count) 659anfds_init (ANFD *base, int count)
211{ 660{
212 while (count--) 661 while (count--)
213 { 662 {
214 base->head = 0; 663 base->head = 0;
217 666
218 ++base; 667 ++base;
219 } 668 }
220} 669}
221 670
222static void 671void inline_speed
223event (EV_P_ W w, int events)
224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
247fd_event (EV_P_ int fd, int events) 672fd_event (EV_P_ int fd, int revents)
248{ 673{
249 ANFD *anfd = anfds + fd; 674 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 675 ev_io *w;
251 676
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 677 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 678 {
254 int ev = w->events & events; 679 int ev = w->events & revents;
255 680
256 if (ev) 681 if (ev)
257 event (EV_A_ (W)w, ev); 682 ev_feed_event (EV_A_ (W)w, ev);
258 } 683 }
259} 684}
260 685
261/*****************************************************************************/ 686void
687ev_feed_fd_event (EV_P_ int fd, int revents)
688{
689 if (fd >= 0 && fd < anfdmax)
690 fd_event (EV_A_ fd, revents);
691}
262 692
263static void 693void inline_size
264fd_reify (EV_P) 694fd_reify (EV_P)
265{ 695{
266 int i; 696 int i;
267 697
268 for (i = 0; i < fdchangecnt; ++i) 698 for (i = 0; i < fdchangecnt; ++i)
269 { 699 {
270 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 702 ev_io *w;
273 703
274 int events = 0; 704 unsigned char events = 0;
275 705
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 707 events |= (unsigned char)w->events;
278 708
279 anfd->reify = 0; 709#if EV_SELECT_IS_WINSOCKET
280 710 if (events)
281 if (anfd->events != events)
282 { 711 {
283 method_modify (EV_A_ fd, anfd->events, events); 712 unsigned long arg;
284 anfd->events = events; 713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
716 anfd->handle = _get_osfhandle (fd);
717 #endif
718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
285 } 719 }
720#endif
721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
726 anfd->reify = 0;
727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
286 } 732 }
287 733
288 fdchangecnt = 0; 734 fdchangecnt = 0;
289} 735}
290 736
291static void 737void inline_size
292fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
293{ 739{
294 if (anfds [fd].reify || fdchangecnt < 0) 740 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
298 742
743 if (expect_true (!reify))
744 {
299 ++fdchangecnt; 745 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
302} 749}
303 750
304static void 751void inline_speed
305fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
306{ 753{
307 struct ev_io *w; 754 ev_io *w;
308 755
309 while ((w = (struct ev_io *)anfds [fd].head)) 756 while ((w = (ev_io *)anfds [fd].head))
310 { 757 {
311 ev_io_stop (EV_A_ w); 758 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 759 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 760 }
761}
762
763int inline_size
764fd_valid (int fd)
765{
766#ifdef _WIN32
767 return _get_osfhandle (fd) != -1;
768#else
769 return fcntl (fd, F_GETFD) != -1;
770#endif
314} 771}
315 772
316/* called on EBADF to verify fds */ 773/* called on EBADF to verify fds */
317static void 774static void noinline
318fd_ebadf (EV_P) 775fd_ebadf (EV_P)
319{ 776{
320 int fd; 777 int fd;
321 778
322 for (fd = 0; fd < anfdmax; ++fd) 779 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 780 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 781 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 782 fd_kill (EV_A_ fd);
326} 783}
327 784
328/* called on ENOMEM in select/poll to kill some fds and retry */ 785/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 786static void noinline
330fd_enomem (EV_P) 787fd_enomem (EV_P)
331{ 788{
332 int fd = anfdmax; 789 int fd;
333 790
334 while (fd--) 791 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 792 if (anfds [fd].events)
336 { 793 {
337 close (fd);
338 fd_kill (EV_A_ fd); 794 fd_kill (EV_A_ fd);
339 return; 795 return;
340 } 796 }
341} 797}
342 798
343/* susually called after fork if method needs to re-arm all fds from scratch */ 799/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 800static void noinline
345fd_rearm_all (EV_P) 801fd_rearm_all (EV_P)
346{ 802{
347 int fd; 803 int fd;
348 804
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 806 if (anfds [fd].events)
352 { 807 {
353 anfds [fd].events = 0; 808 anfds [fd].events = 0;
354 fd_change (fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
355 } 810 }
356} 811}
357 812
358/*****************************************************************************/ 813/*****************************************************************************/
359 814
360static void 815/*
361upheap (WT *heap, int k) 816 * the heap functions want a real array index. array index 0 uis guaranteed to not
362{ 817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
363 WT w = heap [k]; 818 * the branching factor of the d-tree.
819 */
364 820
365 while (k && heap [k >> 1]->at > w->at) 821/*
366 { 822 * at the moment we allow libev the luxury of two heaps,
367 heap [k] = heap [k >> 1]; 823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
368 heap [k]->active = k + 1; 824 * which is more cache-efficient.
369 k >>= 1; 825 * the difference is about 5% with 50000+ watchers.
370 } 826 */
827#if EV_USE_4HEAP
371 828
372 heap [k] = w; 829#define DHEAP 4
373 heap [k]->active = k + 1; 830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
374 833
375} 834/* away from the root */
376 835void inline_speed
377static void
378downheap (WT *heap, int N, int k) 836downheap (ANHE *heap, int N, int k)
379{ 837{
380 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
381 840
382 while (k < (N >> 1)) 841 for (;;)
383 { 842 {
384 int j = k << 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
385 846
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
387 ++j; 849 {
388 850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
389 if (w->at <= heap [j]->at) 851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
390 break; 863 break;
391 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
392 heap [k] = heap [j]; 903 heap [k] = heap [c];
393 heap [k]->active = k + 1; 904 ev_active (ANHE_w (heap [k])) = k;
905
394 k = j; 906 k = c;
395 } 907 }
396 908
397 heap [k] = w; 909 heap [k] = he;
398 heap [k]->active = k + 1; 910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
927 heap [k] = heap [p];
928 ev_active (ANHE_w (heap [k])) = k;
929 k = p;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936void inline_size
937adjustheap (ANHE *heap, int N, int k)
938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
940 upheap (heap, k);
941 else
942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
399} 955}
400 956
401/*****************************************************************************/ 957/*****************************************************************************/
402 958
403typedef struct 959typedef struct
404{ 960{
405 struct ev_watcher_list *head; 961 WL head;
406 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
407} ANSIG; 963} ANSIG;
408 964
409static ANSIG *signals; 965static ANSIG *signals;
410static int signalmax; 966static int signalmax;
411 967
412static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
413static sig_atomic_t volatile gotsig;
414 969
415static void 970void inline_size
416signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
417{ 972{
418 while (count--) 973 while (count--)
419 { 974 {
420 base->head = 0; 975 base->head = 0;
422 977
423 ++base; 978 ++base;
424 } 979 }
425} 980}
426 981
982/*****************************************************************************/
983
984void inline_speed
985fd_intern (int fd)
986{
987#ifdef _WIN32
988 unsigned long arg = 1;
989 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
990#else
991 fcntl (fd, F_SETFD, FD_CLOEXEC);
992 fcntl (fd, F_SETFL, O_NONBLOCK);
993#endif
994}
995
996static void noinline
997evpipe_init (EV_P)
998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
1014 fd_intern (evpipe [0]);
1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
1018
1019 ev_io_start (EV_A_ &pipeev);
1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
427static void 1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
1087}
1088
1089/*****************************************************************************/
1090
1091static void
428sighandler (int signum) 1092ev_sighandler (int signum)
429{ 1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
430 signals [signum - 1].gotsig = 1; 1102 signals [signum - 1].gotsig = 1;
431 1103 evpipe_write (EV_A_ &gotsig);
432 if (!gotsig)
433 {
434 int old_errno = errno;
435 gotsig = 1;
436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
438 }
439} 1104}
440 1105
441static void 1106void noinline
442sigcb (EV_P_ struct ev_io *iow, int revents) 1107ev_feed_signal_event (EV_P_ int signum)
443{ 1108{
444 struct ev_watcher_list *w; 1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
445 int signum; 1115 --signum;
446 1116
447 read (sigpipe [0], &revents, 1); 1117 if (signum < 0 || signum >= signalmax)
448 gotsig = 0; 1118 return;
449 1119
450 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig)
452 {
453 signals [signum].gotsig = 0; 1120 signals [signum].gotsig = 0;
454 1121
455 for (w = signals [signum].head; w; w = w->next) 1122 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL); 1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
457 }
458}
459
460static void
461siginit (EV_P)
462{
463#ifndef WIN32
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471
472 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 1124}
476 1125
477/*****************************************************************************/ 1126/*****************************************************************************/
478 1127
1128static WL childs [EV_PID_HASHSIZE];
1129
479#ifndef WIN32 1130#ifndef _WIN32
1131
1132static ev_signal childev;
1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
1138void inline_speed
1139child_reap (EV_P_ int chain, int pid, int status)
1140{
1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1143
1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
1148 {
1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1150 w->rpid = pid;
1151 w->rstatus = status;
1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1153 }
1154 }
1155}
480 1156
481#ifndef WCONTINUED 1157#ifndef WCONTINUED
482# define WCONTINUED 0 1158# define WCONTINUED 0
483#endif 1159#endif
484 1160
485static void 1161static void
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487{
488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 1162childcb (EV_P_ ev_signal *sw, int revents)
502{ 1163{
503 int pid, status; 1164 int pid, status;
504 1165
1166 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1167 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 1168 if (!WCONTINUED
1169 || errno != EINVAL
1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1171 return;
1172
507 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
1174 /* we need to do it this way so that the callback gets called before we continue */
508 event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 1176
510 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
1178 if (EV_PID_HASHSIZE > 1)
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
512 }
513} 1180}
514 1181
515#endif 1182#endif
516 1183
517/*****************************************************************************/ 1184/*****************************************************************************/
518 1185
1186#if EV_USE_PORT
1187# include "ev_port.c"
1188#endif
519#if EV_USE_KQUEUE 1189#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 1190# include "ev_kqueue.c"
521#endif 1191#endif
522#if EV_USE_EPOLL 1192#if EV_USE_EPOLL
523# include "ev_epoll.c" 1193# include "ev_epoll.c"
524#endif 1194#endif
525#if EV_USEV_POLL 1195#if EV_USE_POLL
526# include "ev_poll.c" 1196# include "ev_poll.c"
527#endif 1197#endif
528#if EV_USE_SELECT 1198#if EV_USE_SELECT
529# include "ev_select.c" 1199# include "ev_select.c"
530#endif 1200#endif
540{ 1210{
541 return EV_VERSION_MINOR; 1211 return EV_VERSION_MINOR;
542} 1212}
543 1213
544/* return true if we are running with elevated privileges and should ignore env variables */ 1214/* return true if we are running with elevated privileges and should ignore env variables */
545static int 1215int inline_size
546enable_secure (void) 1216enable_secure (void)
547{ 1217{
548#ifdef WIN32 1218#ifdef _WIN32
549 return 0; 1219 return 0;
550#else 1220#else
551 return getuid () != geteuid () 1221 return getuid () != geteuid ()
552 || getgid () != getegid (); 1222 || getgid () != getegid ();
553#endif 1223#endif
554} 1224}
555 1225
556int 1226unsigned int
557ev_method (EV_P) 1227ev_supported_backends (void)
558{ 1228{
559 return method; 1229 unsigned int flags = 0;
560}
561 1230
562static void 1231 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
563loop_init (EV_P_ int methods) 1232 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1233 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1234 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1235 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1236
1237 return flags;
1238}
1239
1240unsigned int
1241ev_recommended_backends (void)
564{ 1242{
565 if (!method) 1243 unsigned int flags = ev_supported_backends ();
1244
1245#ifndef __NetBSD__
1246 /* kqueue is borked on everything but netbsd apparently */
1247 /* it usually doesn't work correctly on anything but sockets and pipes */
1248 flags &= ~EVBACKEND_KQUEUE;
1249#endif
1250#ifdef __APPLE__
1251 // flags &= ~EVBACKEND_KQUEUE; for documentation
1252 flags &= ~EVBACKEND_POLL;
1253#endif
1254
1255 return flags;
1256}
1257
1258unsigned int
1259ev_embeddable_backends (void)
1260{
1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1262
1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
1268}
1269
1270unsigned int
1271ev_backend (EV_P)
1272{
1273 return backend;
1274}
1275
1276unsigned int
1277ev_loop_count (EV_P)
1278{
1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
1292}
1293
1294static void noinline
1295loop_init (EV_P_ unsigned int flags)
1296{
1297 if (!backend)
566 { 1298 {
567#if EV_USE_MONOTONIC 1299#if EV_USE_MONOTONIC
568 { 1300 {
569 struct timespec ts; 1301 struct timespec ts;
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 1303 have_monotonic = 1;
572 } 1304 }
573#endif 1305#endif
574 1306
575 rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 1308 mn_now = get_clock ();
577 now_floor = mn_now; 1309 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
579 1311
580 if (methods == EVMETHOD_AUTO) 1312 io_blocktime = 0.;
581 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
1320
1321 /* pid check not overridable via env */
1322#ifndef _WIN32
1323 if (flags & EVFLAG_FORKCHECK)
1324 curpid = getpid ();
1325#endif
1326
1327 if (!(flags & EVFLAG_NOENV)
1328 && !enable_secure ()
1329 && getenv ("LIBEV_FLAGS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
583 else
584 methods = EVMETHOD_ANY;
585 1331
586 method = 0; 1332 if (!(flags & 0x0000ffffU))
1333 flags |= ev_recommended_backends ();
1334
1335#if EV_USE_PORT
1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1337#endif
587#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1339 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
589#endif 1340#endif
590#if EV_USE_EPOLL 1341#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1342 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
592#endif 1343#endif
593#if EV_USEV_POLL 1344#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1345 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
595#endif 1346#endif
596#if EV_USE_SELECT 1347#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
598#endif 1349#endif
599 }
600}
601 1350
602void 1351 ev_init (&pipeev, pipecb);
1352 ev_set_priority (&pipeev, EV_MAXPRI);
1353 }
1354}
1355
1356static void noinline
603loop_destroy (EV_P) 1357loop_destroy (EV_P)
604{ 1358{
1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1377
1378#if EV_USE_INOTIFY
1379 if (fs_fd >= 0)
1380 close (fs_fd);
1381#endif
1382
1383 if (backend_fd >= 0)
1384 close (backend_fd);
1385
1386#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1388#endif
605#if EV_USE_KQUEUE 1389#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1390 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
607#endif 1391#endif
608#if EV_USE_EPOLL 1392#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1393 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
610#endif 1394#endif
611#if EV_USEV_POLL 1395#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1396 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
613#endif 1397#endif
614#if EV_USE_SELECT 1398#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1399 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
616#endif 1400#endif
617 1401
618 method = 0; 1402 for (i = NUMPRI; i--; )
619 /*TODO*/ 1403 {
620} 1404 array_free (pending, [i]);
1405#if EV_IDLE_ENABLE
1406 array_free (idle, [i]);
1407#endif
1408 }
621 1409
622void 1410 ev_free (anfds); anfdmax = 0;
1411
1412 /* have to use the microsoft-never-gets-it-right macro */
1413 array_free (fdchange, EMPTY);
1414 array_free (timer, EMPTY);
1415#if EV_PERIODIC_ENABLE
1416 array_free (periodic, EMPTY);
1417#endif
1418#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY);
1420#endif
1421 array_free (prepare, EMPTY);
1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
1426
1427 backend = 0;
1428}
1429
1430#if EV_USE_INOTIFY
1431void inline_size infy_fork (EV_P);
1432#endif
1433
1434void inline_size
623loop_fork (EV_P) 1435loop_fork (EV_P)
624{ 1436{
625 /*TODO*/ 1437#if EV_USE_PORT
1438 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1439#endif
1440#if EV_USE_KQUEUE
1441 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1442#endif
626#if EV_USE_EPOLL 1443#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1444 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1445#endif
1446#if EV_USE_INOTIFY
1447 infy_fork (EV_A);
1448#endif
1449
1450 if (ev_is_active (&pipeev))
1451 {
1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1458
1459 ev_ref (EV_A);
1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1469 close (evpipe [0]);
1470 close (evpipe [1]);
1471 }
1472
1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1476 }
1477
1478 postfork = 0;
1479}
1480
1481#if EV_MULTIPLICITY
1482
1483struct ev_loop *
1484ev_loop_new (unsigned int flags)
1485{
1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1487
1488 memset (loop, 0, sizeof (struct ev_loop));
1489
1490 loop_init (EV_A_ flags);
1491
1492 if (ev_backend (EV_A))
1493 return loop;
1494
1495 return 0;
1496}
1497
1498void
1499ev_loop_destroy (EV_P)
1500{
1501 loop_destroy (EV_A);
1502 ev_free (loop);
1503}
1504
1505void
1506ev_loop_fork (EV_P)
1507{
1508 postfork = 1; /* must be in line with ev_default_fork */
1509}
1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
628#endif 1606# endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif 1607#endif
632} 1608}
1609
1610#endif /* multiplicity */
633 1611
634#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
635struct ev_loop * 1613struct ev_loop *
636ev_loop_new (int methods) 1614ev_default_loop_init (unsigned int flags)
637{ 1615#else
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1616int
639 1617ev_default_loop (unsigned int flags)
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif 1618#endif
662 1619{
1620 if (!ev_default_loop_ptr)
1621 {
663#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else 1624#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1; 1625 ev_default_loop_ptr = 1;
685#endif 1626#endif
686 1627
687 loop_init (EV_A_ methods); 1628 loop_init (EV_A_ flags);
688 1629
689 if (ev_method (EV_A)) 1630 if (ev_backend (EV_A))
690 { 1631 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A);
694
695#ifndef WIN32 1632#ifndef _WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 1637#endif
701 } 1638 }
702 else 1639 else
703 default_loop = 0; 1640 ev_default_loop_ptr = 0;
704 } 1641 }
705 1642
706 return default_loop; 1643 return ev_default_loop_ptr;
707} 1644}
708 1645
709void 1646void
710ev_default_destroy (void) 1647ev_default_destroy (void)
711{ 1648{
712#if EV_MULTIPLICITY 1649#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 1650 struct ev_loop *loop = ev_default_loop_ptr;
714#endif 1651#endif
715 1652
1653#ifndef _WIN32
716 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
718 1656#endif
719 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724 1657
725 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
726} 1659}
727 1660
728void 1661void
729ev_default_fork (EV_P) 1662ev_default_fork (void)
730{ 1663{
731 loop_fork (EV_A); 1664#if EV_MULTIPLICITY
1665 struct ev_loop *loop = ev_default_loop_ptr;
1666#endif
732 1667
733 ev_io_stop (EV_A_ &sigev); 1668 if (backend)
734 close (sigpipe [0]); 1669 postfork = 1; /* must be in line with ev_loop_fork */
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 1670}
741 1671
742/*****************************************************************************/ 1672/*****************************************************************************/
743 1673
744static void 1674void
1675ev_invoke (EV_P_ void *w, int revents)
1676{
1677 EV_CB_INVOKE ((W)w, revents);
1678}
1679
1680void inline_speed
745call_pending (EV_P) 1681call_pending (EV_P)
746{ 1682{
747 int pri; 1683 int pri;
748 1684
749 for (pri = NUMPRI; pri--; ) 1685 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri]) 1686 while (pendingcnt [pri])
751 { 1687 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1688 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 1689
754 if (p->w) 1690 if (expect_true (p->w))
755 { 1691 {
1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1693
756 p->w->pending = 0; 1694 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
758 } 1697 }
759 } 1698 }
760} 1699}
761 1700
762static void 1701#if EV_IDLE_ENABLE
1702void inline_size
1703idle_reify (EV_P)
1704{
1705 if (expect_false (idleall))
1706 {
1707 int pri;
1708
1709 for (pri = NUMPRI; pri--; )
1710 {
1711 if (pendingcnt [pri])
1712 break;
1713
1714 if (idlecnt [pri])
1715 {
1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1717 break;
1718 }
1719 }
1720 }
1721}
1722#endif
1723
1724void inline_size
763timers_reify (EV_P) 1725timers_reify (EV_P)
764{ 1726{
1727 EV_FREQUENT_CHECK;
1728
765 while (timercnt && timers [0]->at <= mn_now) 1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
766 { 1730 {
767 struct ev_timer *w = timers [0]; 1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
768 1734
769 /* first reschedule or stop timer */ 1735 /* first reschedule or stop timer */
770 if (w->repeat) 1736 if (w->repeat)
771 { 1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
773 w->at = mn_now + w->repeat; 1743
1744 ANHE_at_cache (timers [HEAP0]);
774 downheap ((WT *)timers, timercnt, 0); 1745 downheap (timers, timercnt, HEAP0);
775 } 1746 }
776 else 1747 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1749
1750 EV_FREQUENT_CHECK;
779 event (EV_A_ (W)w, EV_TIMEOUT); 1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1752 }
781} 1753}
782 1754
783static void 1755#if EV_PERIODIC_ENABLE
1756void inline_size
784periodics_reify (EV_P) 1757periodics_reify (EV_P)
785{ 1758{
1759 EV_FREQUENT_CHECK;
1760
786 while (periodiccnt && periodics [0]->at <= rt_now) 1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
787 { 1762 {
788 struct ev_periodic *w = periodics [0]; 1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
789 1766
790 /* first reschedule or stop timer */ 1767 /* first reschedule or stop timer */
791 if (w->interval) 1768 if (w->reschedule_cb)
792 { 1769 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
795 downheap ((WT *)periodics, periodiccnt, 0); 1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
796 } 1795 }
797 else 1796 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1798
1799 EV_FREQUENT_CHECK;
800 event (EV_A_ (W)w, EV_PERIODIC); 1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1801 }
802} 1802}
803 1803
804static void 1804static void noinline
805periodics_reschedule (EV_P) 1805periodics_reschedule (EV_P)
806{ 1806{
807 int i; 1807 int i;
808 1808
809 /* adjust periodics after time jump */ 1809 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
811 { 1811 {
812 struct ev_periodic *w = periodics [i]; 1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
813 1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1823}
1824#endif
1825
1826void inline_speed
1827time_update (EV_P_ ev_tstamp max_block)
1828{
1829 int i;
1830
1831#if EV_USE_MONOTONIC
1832 if (expect_true (have_monotonic))
1833 {
1834 ev_tstamp odiff = rtmn_diff;
1835
1836 mn_now = get_clock ();
1837
1838 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1839 /* interpolate in the meantime */
1840 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
815 { 1841 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1842 ev_rt_now = rtmn_diff + mn_now;
1843 return;
1844 }
817 1845
818 if (fabs (diff) >= 1e-4) 1846 now_floor = mn_now;
1847 ev_rt_now = ev_time ();
1848
1849 /* loop a few times, before making important decisions.
1850 * on the choice of "4": one iteration isn't enough,
1851 * in case we get preempted during the calls to
1852 * ev_time and get_clock. a second call is almost guaranteed
1853 * to succeed in that case, though. and looping a few more times
1854 * doesn't hurt either as we only do this on time-jumps or
1855 * in the unlikely event of having been preempted here.
1856 */
1857 for (i = 4; --i; )
1858 {
1859 rtmn_diff = ev_rt_now - mn_now;
1860
1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1862 return; /* all is well */
1863
1864 ev_rt_now = ev_time ();
1865 mn_now = get_clock ();
1866 now_floor = mn_now;
1867 }
1868
1869# if EV_PERIODIC_ENABLE
1870 periodics_reschedule (EV_A);
1871# endif
1872 /* no timer adjustment, as the monotonic clock doesn't jump */
1873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1874 }
1875 else
1876#endif
1877 {
1878 ev_rt_now = ev_time ();
1879
1880 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1881 {
1882#if EV_PERIODIC_ENABLE
1883 periodics_reschedule (EV_A);
1884#endif
1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1886 for (i = 0; i < timercnt; ++i)
819 { 1887 {
820 ev_periodic_stop (EV_A_ w); 1888 ANHE *he = timers + i + HEAP0;
821 ev_periodic_start (EV_A_ w); 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
822 1890 ANHE_at_cache (*he);
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 } 1891 }
825 } 1892 }
826 }
827}
828 1893
829inline int
830time_update_monotonic (EV_P)
831{
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845}
846
847static void
848time_update (EV_P)
849{
850 int i;
851
852#if EV_USE_MONOTONIC
853 if (expect_true (have_monotonic))
854 {
855 if (time_update_monotonic (EV_A))
856 {
857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
861 rtmn_diff = rt_now - mn_now;
862
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */
865
866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 }
875 }
876 else
877#endif
878 {
879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 {
883 periodics_reschedule (EV_A);
884
885 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now;
888 }
889
890 mn_now = rt_now; 1894 mn_now = ev_rt_now;
891 } 1895 }
892} 1896}
893 1897
894void 1898void
895ev_ref (EV_P) 1899ev_ref (EV_P)
906static int loop_done; 1910static int loop_done;
907 1911
908void 1912void
909ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
910{ 1914{
911 double block; 1915 loop_done = EVUNLOOP_CANCEL;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1916
1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
913 1918
914 do 1919 do
915 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1925#ifndef _WIN32
1926 if (expect_false (curpid)) /* penalise the forking check even more */
1927 if (expect_false (getpid () != curpid))
1928 {
1929 curpid = getpid ();
1930 postfork = 1;
1931 }
1932#endif
1933
1934#if EV_FORK_ENABLE
1935 /* we might have forked, so queue fork handlers */
1936 if (expect_false (postfork))
1937 if (forkcnt)
1938 {
1939 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1940 call_pending (EV_A);
1941 }
1942#endif
1943
916 /* queue check watchers (and execute them) */ 1944 /* queue prepare watchers (and execute them) */
917 if (expect_false (preparecnt)) 1945 if (expect_false (preparecnt))
918 { 1946 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1947 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1948 call_pending (EV_A);
921 } 1949 }
922 1950
1951 if (expect_false (!activecnt))
1952 break;
1953
1954 /* we might have forked, so reify kernel state if necessary */
1955 if (expect_false (postfork))
1956 loop_fork (EV_A);
1957
923 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
924 fd_reify (EV_A); 1959 fd_reify (EV_A);
925 1960
926 /* calculate blocking time */ 1961 /* calculate blocking time */
1962 {
1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
927 1965
928 /* we only need this for !monotonic clockor timers, but as we basically 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
929 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934#endif
935 { 1967 {
936 rt_now = ev_time (); 1968 /* update time to cancel out callback processing overhead */
937 mn_now = rt_now; 1969 time_update (EV_A_ 1e100);
938 }
939 1970
940 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.;
942 else
943 {
944 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
945 1972
946 if (timercnt) 1973 if (timercnt)
947 { 1974 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
949 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
950 } 1977 }
951 1978
1979#if EV_PERIODIC_ENABLE
952 if (periodiccnt) 1980 if (periodiccnt)
953 { 1981 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
955 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
956 } 1984 }
1985#endif
957 1986
958 if (block < 0.) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
959 } 2000 }
960 2001
961 method_poll (EV_A_ block); 2002 ++loop_count;
2003 backend_poll (EV_A_ waittime);
962 2004
963 /* update rt_now, do magic */ 2005 /* update ev_rt_now, do magic */
964 time_update (EV_A); 2006 time_update (EV_A_ waittime + sleeptime);
2007 }
965 2008
966 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
2011#if EV_PERIODIC_ENABLE
968 periodics_reify (EV_A); /* absolute timers called first */ 2012 periodics_reify (EV_A); /* absolute timers called first */
2013#endif
969 2014
2015#if EV_IDLE_ENABLE
970 /* queue idle watchers unless io or timers are pending */ 2016 /* queue idle watchers unless other events are pending */
971 if (!pendingcnt) 2017 idle_reify (EV_A);
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2018#endif
973 2019
974 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
975 if (checkcnt) 2021 if (expect_false (checkcnt))
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 2023
978 call_pending (EV_A); 2024 call_pending (EV_A);
979 } 2025 }
980 while (activecnt && !loop_done); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
981 2031
982 if (loop_done != 2) 2032 if (loop_done == EVUNLOOP_ONE)
983 loop_done = 0; 2033 loop_done = EVUNLOOP_CANCEL;
984} 2034}
985 2035
986void 2036void
987ev_unloop (EV_P_ int how) 2037ev_unloop (EV_P_ int how)
988{ 2038{
989 loop_done = how; 2039 loop_done = how;
990} 2040}
991 2041
992/*****************************************************************************/ 2042/*****************************************************************************/
993 2043
994inline void 2044void inline_size
995wlist_add (WL *head, WL elem) 2045wlist_add (WL *head, WL elem)
996{ 2046{
997 elem->next = *head; 2047 elem->next = *head;
998 *head = elem; 2048 *head = elem;
999} 2049}
1000 2050
1001inline void 2051void inline_size
1002wlist_del (WL *head, WL elem) 2052wlist_del (WL *head, WL elem)
1003{ 2053{
1004 while (*head) 2054 while (*head)
1005 { 2055 {
1006 if (*head == elem) 2056 if (*head == elem)
1011 2061
1012 head = &(*head)->next; 2062 head = &(*head)->next;
1013 } 2063 }
1014} 2064}
1015 2065
1016inline void 2066void inline_speed
1017ev_clear_pending (EV_P_ W w) 2067clear_pending (EV_P_ W w)
1018{ 2068{
1019 if (w->pending) 2069 if (w->pending)
1020 { 2070 {
1021 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2071 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 w->pending = 0; 2072 w->pending = 0;
1023 } 2073 }
1024} 2074}
1025 2075
1026inline void 2076int
2077ev_clear_pending (EV_P_ void *w)
2078{
2079 W w_ = (W)w;
2080 int pending = w_->pending;
2081
2082 if (expect_true (pending))
2083 {
2084 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2085 w_->pending = 0;
2086 p->w = 0;
2087 return p->events;
2088 }
2089 else
2090 return 0;
2091}
2092
2093void inline_size
2094pri_adjust (EV_P_ W w)
2095{
2096 int pri = w->priority;
2097 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2098 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2099 w->priority = pri;
2100}
2101
2102void inline_speed
1027ev_start (EV_P_ W w, int active) 2103ev_start (EV_P_ W w, int active)
1028{ 2104{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2105 pri_adjust (EV_A_ w);
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
1032 w->active = active; 2106 w->active = active;
1033 ev_ref (EV_A); 2107 ev_ref (EV_A);
1034} 2108}
1035 2109
1036inline void 2110void inline_size
1037ev_stop (EV_P_ W w) 2111ev_stop (EV_P_ W w)
1038{ 2112{
1039 ev_unref (EV_A); 2113 ev_unref (EV_A);
1040 w->active = 0; 2114 w->active = 0;
1041} 2115}
1042 2116
1043/*****************************************************************************/ 2117/*****************************************************************************/
1044 2118
1045void 2119void noinline
1046ev_io_start (EV_P_ struct ev_io *w) 2120ev_io_start (EV_P_ ev_io *w)
1047{ 2121{
1048 int fd = w->fd; 2122 int fd = w->fd;
1049 2123
1050 if (ev_is_active (w)) 2124 if (expect_false (ev_is_active (w)))
1051 return; 2125 return;
1052 2126
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1054 2128
2129 EV_FREQUENT_CHECK;
2130
1055 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1058 2134
1059 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1060} 2136 w->events &= ~EV_IOFDSET;
1061 2137
1062void 2138 EV_FREQUENT_CHECK;
2139}
2140
2141void noinline
1063ev_io_stop (EV_P_ struct ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1064{ 2143{
1065 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1067 return; 2146 return;
1068 2147
2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
2151
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1071 2154
1072 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
1073}
1074 2156
1075void 2157 EV_FREQUENT_CHECK;
2158}
2159
2160void noinline
1076ev_timer_start (EV_P_ struct ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1077{ 2162{
1078 if (ev_is_active (w)) 2163 if (expect_false (ev_is_active (w)))
1079 return; 2164 return;
1080 2165
1081 w->at += mn_now; 2166 ev_at (w) += mn_now;
1082 2167
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1085 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1086 array_needsize (timers, timermax, timercnt, ); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1087 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1088 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
1089} 2177 upheap (timers, ev_active (w));
1090 2178
1091void 2179 EV_FREQUENT_CHECK;
2180
2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2182}
2183
2184void noinline
1092ev_timer_stop (EV_P_ struct ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1093{ 2186{
1094 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 2188 if (expect_false (!ev_is_active (w)))
1096 return; 2189 return;
1097 2190
1098 if (w->active < timercnt--) 2191 EV_FREQUENT_CHECK;
2192
2193 {
2194 int active = ev_active (w);
2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
2200 if (expect_true (active < timercnt + HEAP0))
1099 { 2201 {
1100 timers [w->active - 1] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 2203 adjustheap (timers, timercnt, active);
1102 } 2204 }
2205 }
1103 2206
1104 w->at = w->repeat; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1105 2210
1106 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1107} 2212}
1108 2213
1109void 2214void noinline
1110ev_timer_again (EV_P_ struct ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1111{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1112 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1113 { 2220 {
1114 if (w->repeat) 2221 if (w->repeat)
1115 { 2222 {
1116 w->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1117 downheap ((WT *)timers, timercnt, w->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1118 } 2226 }
1119 else 2227 else
1120 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1121 } 2229 }
1122 else if (w->repeat) 2230 else if (w->repeat)
2231 {
2232 ev_at (w) = w->repeat;
1123 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1124} 2234 }
1125 2235
1126void 2236 EV_FREQUENT_CHECK;
2237}
2238
2239#if EV_PERIODIC_ENABLE
2240void noinline
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1128{ 2242{
1129 if (ev_is_active (w)) 2243 if (expect_false (ev_is_active (w)))
1130 return; 2244 return;
1131 2245
2246 if (w->reschedule_cb)
2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2248 else if (w->interval)
2249 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2253 }
2254 else
2255 ev_at (w) = w->offset;
1137 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1140 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
1142} 2264 upheap (periodics, ev_active (w));
1143 2265
1144void 2266 EV_FREQUENT_CHECK;
2267
2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2269}
2270
2271void noinline
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1146{ 2273{
1147 ev_clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 2275 if (expect_false (!ev_is_active (w)))
1149 return; 2276 return;
1150 2277
1151 if (w->active < periodiccnt--) 2278 EV_FREQUENT_CHECK;
2279
2280 {
2281 int active = ev_active (w);
2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
2287 if (expect_true (active < periodiccnt + HEAP0))
1152 { 2288 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2290 adjustheap (periodics, periodiccnt, active);
1155 } 2291 }
2292 }
2293
2294 EV_FREQUENT_CHECK;
1156 2295
1157 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1158} 2297}
1159 2298
1160void 2299void noinline
1161ev_idle_start (EV_P_ struct ev_idle *w) 2300ev_periodic_again (EV_P_ ev_periodic *w)
1162{ 2301{
1163 if (ev_is_active (w)) 2302 /* TODO: use adjustheap and recalculation */
1164 return;
1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169}
1170
1171void
1172ev_idle_stop (EV_P_ struct ev_idle *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w); 2303 ev_periodic_stop (EV_A_ w);
2304 ev_periodic_start (EV_A_ w);
1180} 2305}
1181 2306#endif
1182void
1183ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191}
1192
1193void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202}
1203
1204void
1205ev_check_start (EV_P_ struct ev_check *w)
1206{
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213}
1214
1215void
1216ev_check_stop (EV_P_ struct ev_check *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224}
1225 2307
1226#ifndef SA_RESTART 2308#ifndef SA_RESTART
1227# define SA_RESTART 0 2309# define SA_RESTART 0
1228#endif 2310#endif
1229 2311
1230void 2312void noinline
1231ev_signal_start (EV_P_ struct ev_signal *w) 2313ev_signal_start (EV_P_ ev_signal *w)
1232{ 2314{
1233#if EV_MULTIPLICITY 2315#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2316 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1235#endif 2317#endif
1236 if (ev_is_active (w)) 2318 if (expect_false (ev_is_active (w)))
1237 return; 2319 return;
1238 2320
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1241 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1244 2343
1245 if (!w->next) 2344 if (!((WL)w)->next)
1246 { 2345 {
2346#if _WIN32
2347 signal (w->signum, ev_sighandler);
2348#else
1247 struct sigaction sa; 2349 struct sigaction sa;
1248 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1249 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2354#endif
1252 } 2355 }
1253}
1254 2356
1255void 2357 EV_FREQUENT_CHECK;
2358}
2359
2360void noinline
1256ev_signal_stop (EV_P_ struct ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1257{ 2362{
1258 ev_clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w)) 2364 if (expect_false (!ev_is_active (w)))
1260 return; 2365 return;
1261 2366
2367 EV_FREQUENT_CHECK;
2368
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1264 2371
1265 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1266 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
1267}
1268 2374
2375 EV_FREQUENT_CHECK;
2376}
2377
1269void 2378void
1270ev_child_start (EV_P_ struct ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1271{ 2380{
1272#if EV_MULTIPLICITY 2381#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1274#endif 2383#endif
1275 if (ev_is_active (w)) 2384 if (expect_false (ev_is_active (w)))
1276 return; 2385 return;
1277 2386
2387 EV_FREQUENT_CHECK;
2388
1278 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1280}
1281 2391
2392 EV_FREQUENT_CHECK;
2393}
2394
1282void 2395void
1283ev_child_stop (EV_P_ struct ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1284{ 2397{
1285 ev_clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1287 return; 2400 return;
1288 2401
2402 EV_FREQUENT_CHECK;
2403
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1291} 2408}
2409
2410#if EV_STAT_ENABLE
2411
2412# ifdef _WIN32
2413# undef lstat
2414# define lstat(a,b) _stati64 (a,b)
2415# endif
2416
2417#define DEF_STAT_INTERVAL 5.0074891
2418#define MIN_STAT_INTERVAL 0.1074891
2419
2420static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2421
2422#if EV_USE_INOTIFY
2423# define EV_INOTIFY_BUFSIZE 8192
2424
2425static void noinline
2426infy_add (EV_P_ ev_stat *w)
2427{
2428 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2429
2430 if (w->wd < 0)
2431 {
2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2433
2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2438 {
2439 char path [4096];
2440 strcpy (path, w->path);
2441
2442 do
2443 {
2444 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2445 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2446
2447 char *pend = strrchr (path, '/');
2448
2449 if (!pend)
2450 break; /* whoops, no '/', complain to your admin */
2451
2452 *pend = 0;
2453 w->wd = inotify_add_watch (fs_fd, path, mask);
2454 }
2455 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2456 }
2457 }
2458 else
2459 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2460
2461 if (w->wd >= 0)
2462 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2463}
2464
2465static void noinline
2466infy_del (EV_P_ ev_stat *w)
2467{
2468 int slot;
2469 int wd = w->wd;
2470
2471 if (wd < 0)
2472 return;
2473
2474 w->wd = -2;
2475 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2476 wlist_del (&fs_hash [slot].head, (WL)w);
2477
2478 /* remove this watcher, if others are watching it, they will rearm */
2479 inotify_rm_watch (fs_fd, wd);
2480}
2481
2482static void noinline
2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2484{
2485 if (slot < 0)
2486 /* overflow, need to check for all hahs slots */
2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2488 infy_wd (EV_A_ slot, wd, ev);
2489 else
2490 {
2491 WL w_;
2492
2493 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2494 {
2495 ev_stat *w = (ev_stat *)w_;
2496 w_ = w_->next; /* lets us remove this watcher and all before it */
2497
2498 if (w->wd == wd || wd == -1)
2499 {
2500 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2501 {
2502 w->wd = -1;
2503 infy_add (EV_A_ w); /* re-add, no matter what */
2504 }
2505
2506 stat_timer_cb (EV_A_ &w->timer, 0);
2507 }
2508 }
2509 }
2510}
2511
2512static void
2513infy_cb (EV_P_ ev_io *w, int revents)
2514{
2515 char buf [EV_INOTIFY_BUFSIZE];
2516 struct inotify_event *ev = (struct inotify_event *)buf;
2517 int ofs;
2518 int len = read (fs_fd, buf, sizeof (buf));
2519
2520 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2521 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2522}
2523
2524void inline_size
2525infy_init (EV_P)
2526{
2527 if (fs_fd != -2)
2528 return;
2529
2530 fs_fd = inotify_init ();
2531
2532 if (fs_fd >= 0)
2533 {
2534 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2535 ev_set_priority (&fs_w, EV_MAXPRI);
2536 ev_io_start (EV_A_ &fs_w);
2537 }
2538}
2539
2540void inline_size
2541infy_fork (EV_P)
2542{
2543 int slot;
2544
2545 if (fs_fd < 0)
2546 return;
2547
2548 close (fs_fd);
2549 fs_fd = inotify_init ();
2550
2551 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2552 {
2553 WL w_ = fs_hash [slot].head;
2554 fs_hash [slot].head = 0;
2555
2556 while (w_)
2557 {
2558 ev_stat *w = (ev_stat *)w_;
2559 w_ = w_->next; /* lets us add this watcher */
2560
2561 w->wd = -1;
2562
2563 if (fs_fd >= 0)
2564 infy_add (EV_A_ w); /* re-add, no matter what */
2565 else
2566 ev_timer_start (EV_A_ &w->timer);
2567 }
2568
2569 }
2570}
2571
2572#endif
2573
2574void
2575ev_stat_stat (EV_P_ ev_stat *w)
2576{
2577 if (lstat (w->path, &w->attr) < 0)
2578 w->attr.st_nlink = 0;
2579 else if (!w->attr.st_nlink)
2580 w->attr.st_nlink = 1;
2581}
2582
2583static void noinline
2584stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2585{
2586 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2587
2588 /* we copy this here each the time so that */
2589 /* prev has the old value when the callback gets invoked */
2590 w->prev = w->attr;
2591 ev_stat_stat (EV_A_ w);
2592
2593 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2594 if (
2595 w->prev.st_dev != w->attr.st_dev
2596 || w->prev.st_ino != w->attr.st_ino
2597 || w->prev.st_mode != w->attr.st_mode
2598 || w->prev.st_nlink != w->attr.st_nlink
2599 || w->prev.st_uid != w->attr.st_uid
2600 || w->prev.st_gid != w->attr.st_gid
2601 || w->prev.st_rdev != w->attr.st_rdev
2602 || w->prev.st_size != w->attr.st_size
2603 || w->prev.st_atime != w->attr.st_atime
2604 || w->prev.st_mtime != w->attr.st_mtime
2605 || w->prev.st_ctime != w->attr.st_ctime
2606 ) {
2607 #if EV_USE_INOTIFY
2608 infy_del (EV_A_ w);
2609 infy_add (EV_A_ w);
2610 ev_stat_stat (EV_A_ w); /* avoid race... */
2611 #endif
2612
2613 ev_feed_event (EV_A_ w, EV_STAT);
2614 }
2615}
2616
2617void
2618ev_stat_start (EV_P_ ev_stat *w)
2619{
2620 if (expect_false (ev_is_active (w)))
2621 return;
2622
2623 /* since we use memcmp, we need to clear any padding data etc. */
2624 memset (&w->prev, 0, sizeof (ev_statdata));
2625 memset (&w->attr, 0, sizeof (ev_statdata));
2626
2627 ev_stat_stat (EV_A_ w);
2628
2629 if (w->interval < MIN_STAT_INTERVAL)
2630 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2631
2632 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2633 ev_set_priority (&w->timer, ev_priority (w));
2634
2635#if EV_USE_INOTIFY
2636 infy_init (EV_A);
2637
2638 if (fs_fd >= 0)
2639 infy_add (EV_A_ w);
2640 else
2641#endif
2642 ev_timer_start (EV_A_ &w->timer);
2643
2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2647}
2648
2649void
2650ev_stat_stop (EV_P_ ev_stat *w)
2651{
2652 clear_pending (EV_A_ (W)w);
2653 if (expect_false (!ev_is_active (w)))
2654 return;
2655
2656 EV_FREQUENT_CHECK;
2657
2658#if EV_USE_INOTIFY
2659 infy_del (EV_A_ w);
2660#endif
2661 ev_timer_stop (EV_A_ &w->timer);
2662
2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2666}
2667#endif
2668
2669#if EV_IDLE_ENABLE
2670void
2671ev_idle_start (EV_P_ ev_idle *w)
2672{
2673 if (expect_false (ev_is_active (w)))
2674 return;
2675
2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2679
2680 {
2681 int active = ++idlecnt [ABSPRI (w)];
2682
2683 ++idleall;
2684 ev_start (EV_A_ (W)w, active);
2685
2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2687 idles [ABSPRI (w)][active - 1] = w;
2688 }
2689
2690 EV_FREQUENT_CHECK;
2691}
2692
2693void
2694ev_idle_stop (EV_P_ ev_idle *w)
2695{
2696 clear_pending (EV_A_ (W)w);
2697 if (expect_false (!ev_is_active (w)))
2698 return;
2699
2700 EV_FREQUENT_CHECK;
2701
2702 {
2703 int active = ev_active (w);
2704
2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2707
2708 ev_stop (EV_A_ (W)w);
2709 --idleall;
2710 }
2711
2712 EV_FREQUENT_CHECK;
2713}
2714#endif
2715
2716void
2717ev_prepare_start (EV_P_ ev_prepare *w)
2718{
2719 if (expect_false (ev_is_active (w)))
2720 return;
2721
2722 EV_FREQUENT_CHECK;
2723
2724 ev_start (EV_A_ (W)w, ++preparecnt);
2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2729}
2730
2731void
2732ev_prepare_stop (EV_P_ ev_prepare *w)
2733{
2734 clear_pending (EV_A_ (W)w);
2735 if (expect_false (!ev_is_active (w)))
2736 return;
2737
2738 EV_FREQUENT_CHECK;
2739
2740 {
2741 int active = ev_active (w);
2742
2743 prepares [active - 1] = prepares [--preparecnt];
2744 ev_active (prepares [active - 1]) = active;
2745 }
2746
2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_check_start (EV_P_ ev_check *w)
2754{
2755 if (expect_false (ev_is_active (w)))
2756 return;
2757
2758 EV_FREQUENT_CHECK;
2759
2760 ev_start (EV_A_ (W)w, ++checkcnt);
2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2765}
2766
2767void
2768ev_check_stop (EV_P_ ev_check *w)
2769{
2770 clear_pending (EV_A_ (W)w);
2771 if (expect_false (!ev_is_active (w)))
2772 return;
2773
2774 EV_FREQUENT_CHECK;
2775
2776 {
2777 int active = ev_active (w);
2778
2779 checks [active - 1] = checks [--checkcnt];
2780 ev_active (checks [active - 1]) = active;
2781 }
2782
2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2786}
2787
2788#if EV_EMBED_ENABLE
2789void noinline
2790ev_embed_sweep (EV_P_ ev_embed *w)
2791{
2792 ev_loop (w->other, EVLOOP_NONBLOCK);
2793}
2794
2795static void
2796embed_io_cb (EV_P_ ev_io *io, int revents)
2797{
2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2799
2800 if (ev_cb (w))
2801 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2802 else
2803 ev_loop (w->other, EVLOOP_NONBLOCK);
2804}
2805
2806static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810
2811 {
2812 struct ev_loop *loop = w->other;
2813
2814 while (fdchangecnt)
2815 {
2816 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 }
2819 }
2820}
2821
2822#if 0
2823static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{
2826 ev_idle_stop (EV_A_ idle);
2827}
2828#endif
2829
2830void
2831ev_embed_start (EV_P_ ev_embed *w)
2832{
2833 if (expect_false (ev_is_active (w)))
2834 return;
2835
2836 {
2837 struct ev_loop *loop = w->other;
2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2840 }
2841
2842 EV_FREQUENT_CHECK;
2843
2844 ev_set_priority (&w->io, ev_priority (w));
2845 ev_io_start (EV_A_ &w->io);
2846
2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare);
2850
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852
2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2856}
2857
2858void
2859ev_embed_stop (EV_P_ ev_embed *w)
2860{
2861 clear_pending (EV_A_ (W)w);
2862 if (expect_false (!ev_is_active (w)))
2863 return;
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare);
2869
2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2873}
2874#endif
2875
2876#if EV_FORK_ENABLE
2877void
2878ev_fork_start (EV_P_ ev_fork *w)
2879{
2880 if (expect_false (ev_is_active (w)))
2881 return;
2882
2883 EV_FREQUENT_CHECK;
2884
2885 ev_start (EV_A_ (W)w, ++forkcnt);
2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2890}
2891
2892void
2893ev_fork_stop (EV_P_ ev_fork *w)
2894{
2895 clear_pending (EV_A_ (W)w);
2896 if (expect_false (!ev_is_active (w)))
2897 return;
2898
2899 EV_FREQUENT_CHECK;
2900
2901 {
2902 int active = ev_active (w);
2903
2904 forks [active - 1] = forks [--forkcnt];
2905 ev_active (forks [active - 1]) = active;
2906 }
2907
2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2911}
2912#endif
2913
2914#if EV_ASYNC_ENABLE
2915void
2916ev_async_start (EV_P_ ev_async *w)
2917{
2918 if (expect_false (ev_is_active (w)))
2919 return;
2920
2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++asynccnt);
2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_async_stop (EV_P_ ev_async *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 asyncs [active - 1] = asyncs [--asynccnt];
2945 ev_active (asyncs [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_async_send (EV_P_ ev_async *w)
2955{
2956 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync);
2958}
2959#endif
1292 2960
1293/*****************************************************************************/ 2961/*****************************************************************************/
1294 2962
1295struct ev_once 2963struct ev_once
1296{ 2964{
1297 struct ev_io io; 2965 ev_io io;
1298 struct ev_timer to; 2966 ev_timer to;
1299 void (*cb)(int revents, void *arg); 2967 void (*cb)(int revents, void *arg);
1300 void *arg; 2968 void *arg;
1301}; 2969};
1302 2970
1303static void 2971static void
1306 void (*cb)(int revents, void *arg) = once->cb; 2974 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 2975 void *arg = once->arg;
1308 2976
1309 ev_io_stop (EV_A_ &once->io); 2977 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 2978 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 2979 ev_free (once);
1312 2980
1313 cb (revents, arg); 2981 cb (revents, arg);
1314} 2982}
1315 2983
1316static void 2984static void
1317once_cb_io (EV_P_ struct ev_io *w, int revents) 2985once_cb_io (EV_P_ ev_io *w, int revents)
1318{ 2986{
1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2987 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1320} 2988}
1321 2989
1322static void 2990static void
1323once_cb_to (EV_P_ struct ev_timer *w, int revents) 2991once_cb_to (EV_P_ ev_timer *w, int revents)
1324{ 2992{
1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2993 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1326} 2994}
1327 2995
1328void 2996void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2997ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 2998{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 2999 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 3000
1333 if (!once) 3001 if (expect_false (!once))
3002 {
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3003 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 3004 return;
1336 { 3005 }
3006
1337 once->cb = cb; 3007 once->cb = cb;
1338 once->arg = arg; 3008 once->arg = arg;
1339 3009
1340 ev_watcher_init (&once->io, once_cb_io); 3010 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 3011 if (fd >= 0)
1342 { 3012 {
1343 ev_io_set (&once->io, fd, events); 3013 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io); 3014 ev_io_start (EV_A_ &once->io);
1345 } 3015 }
1346 3016
1347 ev_watcher_init (&once->to, once_cb_to); 3017 ev_init (&once->to, once_cb_to);
1348 if (timeout >= 0.) 3018 if (timeout >= 0.)
1349 { 3019 {
1350 ev_timer_set (&once->to, timeout, 0.); 3020 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to); 3021 ev_timer_start (EV_A_ &once->to);
1352 }
1353 } 3022 }
1354} 3023}
1355 3024
3025#if EV_MULTIPLICITY
3026 #include "ev_wrap.h"
3027#endif
3028
3029#ifdef __cplusplus
3030}
3031#endif
3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines