ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.27 by root, Wed Oct 31 22:16:36 2007 UTC vs.
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
29 34
30#include <math.h> 35#include <math.h>
31#include <stdlib.h> 36#include <stdlib.h>
32#include <unistd.h> 37#include <unistd.h>
33#include <fcntl.h> 38#include <fcntl.h>
37#include <stdio.h> 42#include <stdio.h>
38 43
39#include <assert.h> 44#include <assert.h>
40#include <errno.h> 45#include <errno.h>
41#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
42#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
43#include <sys/time.h> 50#include <sys/time.h>
44#include <time.h> 51#include <time.h>
45 52
53/**/
54
46#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
47# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
49# endif 84#endif
50#endif
51 85
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
62#endif 89#endif
90
91/**/
63 92
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 97
68#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 113
70typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
73 117
74static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 119
84/*****************************************************************************/ 120/*****************************************************************************/
85 121
86ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
87ev_time (void) 156ev_time (void)
88{ 157{
89#if HAVE_REALTIME 158#if EV_USE_REALTIME
90 struct timespec ts; 159 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 161 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 162#else
94 struct timeval tv; 163 struct timeval tv;
95 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 166#endif
98} 167}
99 168
100static ev_tstamp 169inline ev_tstamp
101get_clock (void) 170get_clock (void)
102{ 171{
103#if HAVE_MONOTONIC 172#if EV_USE_MONOTONIC
104 if (have_monotonic) 173 if (expect_true (have_monotonic))
105 { 174 {
106 struct timespec ts; 175 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 178 }
110#endif 179#endif
111 180
112 return ev_time (); 181 return ev_time ();
113} 182}
114 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
190#define array_roundsize(base,n) ((n) | 4 & ~3)
191
115#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
117 { \ 194 { \
118 int newcnt = cur; \ 195 int newcnt = cur; \
119 do \ 196 do \
120 { \ 197 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 198 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 199 } \
123 while ((cnt) > newcnt); \ 200 while ((cnt) > newcnt); \
124 \ 201 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 202 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 203 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 204 cur = newcnt; \
128 } 205 }
129 206
130/*****************************************************************************/ 207/*****************************************************************************/
131 208
132typedef struct
133{
134 struct ev_io *head;
135 int events;
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static void 209static void
142anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
143{ 211{
144 while (count--) 212 while (count--)
145 { 213 {
146 base->head = 0; 214 base->head = 0;
147 base->events = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
148 ++base; 218 ++base;
149 } 219 }
150} 220}
151 221
152typedef struct
153{
154 W w;
155 int events;
156} ANPENDING;
157
158static ANPENDING *pendings;
159static int pendingmax, pendingcnt;
160
161static void 222static void
162event (W w, int events) 223event (EV_P_ W w, int events)
163{ 224{
164 if (w->active) 225 if (w->pending)
165 { 226 {
166 w->pending = ++pendingcnt;
167 array_needsize (pendings, pendingmax, pendingcnt, );
168 pendings [pendingcnt - 1].w = w;
169 pendings [pendingcnt - 1].events = events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
170 } 229 }
171}
172 230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
173static void 237static void
174queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
175{ 239{
176 int i; 240 int i;
177 241
178 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
179 event (events [i], type); 243 event (EV_A_ events [i], type);
180} 244}
181 245
182static void 246static void
183fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
184{ 248{
185 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
186 struct ev_io *w; 250 struct ev_io *w;
187 251
188 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
189 { 253 {
190 int ev = w->events & events; 254 int ev = w->events & events;
191 255
192 if (ev) 256 if (ev)
193 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
194 } 258 }
195} 259}
196 260
197/*****************************************************************************/ 261/*****************************************************************************/
198 262
199static int *fdchanges;
200static int fdchangemax, fdchangecnt;
201
202static void 263static void
203fd_reify (void) 264fd_reify (EV_P)
204{ 265{
205 int i; 266 int i;
206 267
207 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
208 { 269 {
210 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
211 struct ev_io *w; 272 struct ev_io *w;
212 273
213 int events = 0; 274 int events = 0;
214 275
215 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
216 events |= w->events; 277 events |= w->events;
217 278
218 anfd->events &= ~EV_REIFY; 279 anfd->reify = 0;
219 280
220 if (anfd->events != events) 281 if (anfd->events != events)
221 { 282 {
222 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
223 anfd->events = events; 284 anfd->events = events;
224 } 285 }
225 } 286 }
226 287
227 fdchangecnt = 0; 288 fdchangecnt = 0;
228} 289}
229 290
230static void 291static void
231fd_change (int fd) 292fd_change (EV_P_ int fd)
232{ 293{
233 if (anfds [fd].events & EV_REIFY) 294 if (anfds [fd].reify || fdchangecnt < 0)
234 return; 295 return;
235 296
236 anfds [fd].events |= EV_REIFY; 297 anfds [fd].reify = 1;
237 298
238 ++fdchangecnt; 299 ++fdchangecnt;
239 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
240 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
241} 302}
242 303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
243/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
244static void 317static void
245fd_recheck (void) 318fd_ebadf (EV_P)
246{ 319{
247 int fd; 320 int fd;
248 321
249 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
250 if (anfds [fd].events) 323 if (anfds [fd].events)
251 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
252 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
253 { 336 {
254 event ((W)anfds [fd].head, EV_ERROR); 337 close (fd);
255 evio_stop (anfds [fd].head); 338 fd_kill (EV_A_ fd);
339 return;
256 } 340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
257} 356}
258 357
259/*****************************************************************************/ 358/*****************************************************************************/
260 359
261static struct ev_timer **timers;
262static int timermax, timercnt;
263
264static struct ev_periodic **periodics;
265static int periodicmax, periodiccnt;
266
267static void 360static void
268upheap (WT *timers, int k) 361upheap (WT *heap, int k)
269{ 362{
270 WT w = timers [k]; 363 WT w = heap [k];
271 364
272 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
273 { 366 {
274 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
275 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
276 k >>= 1; 369 k >>= 1;
277 } 370 }
278 371
279 timers [k] = w; 372 heap [k] = w;
280 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
281 374
282} 375}
283 376
284static void 377static void
285downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
286{ 379{
287 WT w = timers [k]; 380 WT w = heap [k];
288 381
289 while (k < (N >> 1)) 382 while (k < (N >> 1))
290 { 383 {
291 int j = k << 1; 384 int j = k << 1;
292 385
293 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
294 ++j; 387 ++j;
295 388
296 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
297 break; 390 break;
298 391
299 timers [k] = timers [j]; 392 heap [k] = heap [j];
300 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
301 k = j; 394 k = j;
302 } 395 }
303 396
304 timers [k] = w; 397 heap [k] = w;
305 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
306} 399}
307 400
308/*****************************************************************************/ 401/*****************************************************************************/
309 402
310typedef struct 403typedef struct
311{ 404{
312 struct ev_signal *head; 405 struct ev_watcher_list *head;
313 sig_atomic_t gotsig; 406 sig_atomic_t volatile gotsig;
314} ANSIG; 407} ANSIG;
315 408
316static ANSIG *signals; 409static ANSIG *signals;
317static int signalmax; 410static int signalmax;
318 411
319static int sigpipe [2]; 412static int sigpipe [2];
320static sig_atomic_t gotsig; 413static sig_atomic_t volatile gotsig;
321static struct ev_io sigev;
322 414
323static void 415static void
324signals_init (ANSIG *base, int count) 416signals_init (ANSIG *base, int count)
325{ 417{
326 while (count--) 418 while (count--)
327 { 419 {
328 base->head = 0; 420 base->head = 0;
329 base->gotsig = 0; 421 base->gotsig = 0;
422
330 ++base; 423 ++base;
331 } 424 }
332} 425}
333 426
334static void 427static void
336{ 429{
337 signals [signum - 1].gotsig = 1; 430 signals [signum - 1].gotsig = 1;
338 431
339 if (!gotsig) 432 if (!gotsig)
340 { 433 {
434 int old_errno = errno;
341 gotsig = 1; 435 gotsig = 1;
342 write (sigpipe [1], &gotsig, 1); 436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
343 } 438 }
344} 439}
345 440
346static void 441static void
347sigcb (struct ev_io *iow, int revents) 442sigcb (EV_P_ struct ev_io *iow, int revents)
348{ 443{
349 struct ev_signal *w; 444 struct ev_watcher_list *w;
350 int sig; 445 int signum;
351 446
447 read (sigpipe [0], &revents, 1);
352 gotsig = 0; 448 gotsig = 0;
353 read (sigpipe [0], &revents, 1);
354 449
355 for (sig = signalmax; sig--; ) 450 for (signum = signalmax; signum--; )
356 if (signals [sig].gotsig) 451 if (signals [signum].gotsig)
357 { 452 {
358 signals [sig].gotsig = 0; 453 signals [signum].gotsig = 0;
359 454
360 for (w = signals [sig].head; w; w = w->next) 455 for (w = signals [signum].head; w; w = w->next)
361 event ((W)w, EV_SIGNAL); 456 event (EV_A_ (W)w, EV_SIGNAL);
362 } 457 }
363} 458}
364 459
365static void 460static void
366siginit (void) 461siginit (EV_P)
367{ 462{
463#ifndef WIN32
368 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
369 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
370 466
371 /* rather than sort out wether we really need nb, set it */ 467 /* rather than sort out wether we really need nb, set it */
372 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
373 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
374 471
375 evio_set (&sigev, sigpipe [0], EV_READ); 472 ev_io_set (&sigev, sigpipe [0], EV_READ);
376 evio_start (&sigev); 473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
377} 475}
378 476
379/*****************************************************************************/ 477/*****************************************************************************/
380 478
381static struct ev_idle **idles; 479#ifndef WIN32
382static int idlemax, idlecnt;
383
384static struct ev_prepare **prepares;
385static int preparemax, preparecnt;
386
387static struct ev_check **checks;
388static int checkmax, checkcnt;
389
390/*****************************************************************************/
391
392static struct ev_child *childs [PID_HASHSIZE];
393static struct ev_signal childev;
394 480
395#ifndef WCONTINUED 481#ifndef WCONTINUED
396# define WCONTINUED 0 482# define WCONTINUED 0
397#endif 483#endif
398 484
399static void 485static void
400childcb (struct ev_signal *sw, int revents) 486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
401{ 487{
402 struct ev_child *w; 488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents)
502{
403 int pid, status; 503 int pid, status;
404 504
405 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
406 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 506 {
407 if (w->pid == pid || w->pid == -1) 507 /* make sure we are called again until all childs have been reaped */
408 { 508 event (EV_A_ (W)sw, EV_SIGNAL);
409 w->status = status; 509
410 event ((W)w, EV_CHILD); 510 child_reap (EV_A_ sw, pid, pid, status);
411 } 511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 }
412} 513}
514
515#endif
413 516
414/*****************************************************************************/ 517/*****************************************************************************/
415 518
519#if EV_USE_KQUEUE
520# include "ev_kqueue.c"
521#endif
416#if HAVE_EPOLL 522#if EV_USE_EPOLL
417# include "ev_epoll.c" 523# include "ev_epoll.c"
418#endif 524#endif
525#if EV_USEV_POLL
526# include "ev_poll.c"
527#endif
419#if HAVE_SELECT 528#if EV_USE_SELECT
420# include "ev_select.c" 529# include "ev_select.c"
421#endif 530#endif
422 531
423int 532int
424ev_version_major (void) 533ev_version_major (void)
430ev_version_minor (void) 539ev_version_minor (void)
431{ 540{
432 return EV_VERSION_MINOR; 541 return EV_VERSION_MINOR;
433} 542}
434 543
435int ev_init (int flags) 544/* return true if we are running with elevated privileges and should ignore env variables */
545static int
546enable_secure (void)
436{ 547{
548#ifdef WIN32
549 return 0;
550#else
551 return getuid () != geteuid ()
552 || getgid () != getegid ();
553#endif
554}
555
556int
557ev_method (EV_P)
558{
559 return method;
560}
561
562static void
563loop_init (EV_P_ int methods)
564{
437 if (!ev_method) 565 if (!method)
438 { 566 {
439#if HAVE_MONOTONIC 567#if EV_USE_MONOTONIC
440 { 568 {
441 struct timespec ts; 569 struct timespec ts;
442 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 570 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
443 have_monotonic = 1; 571 have_monotonic = 1;
444 } 572 }
445#endif 573#endif
446 574
447 ev_now = ev_time (); 575 rt_now = ev_time ();
448 now = get_clock (); 576 mn_now = get_clock ();
577 now_floor = mn_now;
449 diff = ev_now - now; 578 rtmn_diff = rt_now - mn_now;
450 579
580 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif
590#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif
596#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif
599 }
600}
601
602void
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633
634#if EV_MULTIPLICITY
635struct ev_loop *
636ev_loop_new (int methods)
637{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
639
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif
662
663#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
451 if (pipe (sigpipe)) 676 if (pipe (sigpipe))
452 return 0; 677 return 0;
453 678
454 ev_method = EVMETHOD_NONE; 679 if (!default_loop)
455#if HAVE_EPOLL 680 {
456 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1;
457#endif 685#endif
458#if HAVE_SELECT
459 if (ev_method == EVMETHOD_NONE) select_init (flags);
460#endif
461 686
687 loop_init (EV_A_ methods);
688
462 if (ev_method) 689 if (ev_method (EV_A))
463 { 690 {
464 evw_init (&sigev, sigcb); 691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
465 siginit (); 693 siginit (EV_A);
466 694
695#ifndef WIN32
467 evsignal_init (&childev, childcb, SIGCHLD); 696 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI);
468 evsignal_start (&childev); 698 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif
469 } 701 }
702 else
703 default_loop = 0;
470 } 704 }
471 705
472 return ev_method; 706 return default_loop;
473} 707}
474 708
475/*****************************************************************************/
476
477void 709void
478ev_prefork (void) 710ev_default_destroy (void)
479{ 711{
480 /* nop */ 712#if EV_MULTIPLICITY
481} 713 struct ev_loop *loop = default_loop;
482
483void
484ev_postfork_parent (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_child (void)
491{
492#if HAVE_EPOLL
493 if (ev_method == EVMETHOD_EPOLL)
494 epoll_postfork_child ();
495#endif 714#endif
496 715
716 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev);
718
719 ev_ref (EV_A); /* signal watcher */
497 evio_stop (&sigev); 720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724
725 loop_destroy (EV_A);
726}
727
728void
729ev_default_fork (EV_P)
730{
731 loop_fork (EV_A);
732
733 ev_io_stop (EV_A_ &sigev);
498 close (sigpipe [0]); 734 close (sigpipe [0]);
499 close (sigpipe [1]); 735 close (sigpipe [1]);
500 pipe (sigpipe); 736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
501 siginit (); 739 siginit (EV_A);
502} 740}
503 741
504/*****************************************************************************/ 742/*****************************************************************************/
505 743
506static void 744static void
507call_pending (void) 745call_pending (EV_P)
508{ 746{
747 int pri;
748
749 for (pri = NUMPRI; pri--; )
509 while (pendingcnt) 750 while (pendingcnt [pri])
510 { 751 {
511 ANPENDING *p = pendings + --pendingcnt; 752 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
512 753
513 if (p->w) 754 if (p->w)
514 { 755 {
515 p->w->pending = 0; 756 p->w->pending = 0;
516 p->w->cb (p->w, p->events); 757 p->w->cb (EV_A_ p->w, p->events);
517 } 758 }
518 } 759 }
519} 760}
520 761
521static void 762static void
522timers_reify (void) 763timers_reify (EV_P)
523{ 764{
524 while (timercnt && timers [0]->at <= now) 765 while (timercnt && timers [0]->at <= mn_now)
525 { 766 {
526 struct ev_timer *w = timers [0]; 767 struct ev_timer *w = timers [0];
527
528 event ((W)w, EV_TIMEOUT);
529 768
530 /* first reschedule or stop timer */ 769 /* first reschedule or stop timer */
531 if (w->repeat) 770 if (w->repeat)
532 { 771 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 773 w->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 774 downheap ((WT *)timers, timercnt, 0);
536 } 775 }
537 else 776 else
538 evtimer_stop (w); /* nonrepeating: stop timer */ 777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 }
540}
541 778
779 event (EV_A_ (W)w, EV_TIMEOUT);
780 }
781}
782
542static void 783static void
543periodics_reify (void) 784periodics_reify (EV_P)
544{ 785{
545 while (periodiccnt && periodics [0]->at <= ev_now) 786 while (periodiccnt && periodics [0]->at <= rt_now)
546 { 787 {
547 struct ev_periodic *w = periodics [0]; 788 struct ev_periodic *w = periodics [0];
548 789
549 /* first reschedule or stop timer */ 790 /* first reschedule or stop timer */
550 if (w->interval) 791 if (w->interval)
551 { 792 {
552 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
553 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
554 downheap ((WT *)periodics, periodiccnt, 0); 795 downheap ((WT *)periodics, periodiccnt, 0);
555 } 796 }
556 else 797 else
557 evperiodic_stop (w); /* nonrepeating: stop timer */ 798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
558 799
559 event ((W)w, EV_TIMEOUT); 800 event (EV_A_ (W)w, EV_PERIODIC);
560 } 801 }
561} 802}
562 803
563static void 804static void
564periodics_reschedule (ev_tstamp diff) 805periodics_reschedule (EV_P)
565{ 806{
566 int i; 807 int i;
567 808
568 /* adjust periodics after time jump */ 809 /* adjust periodics after time jump */
569 for (i = 0; i < periodiccnt; ++i) 810 for (i = 0; i < periodiccnt; ++i)
570 { 811 {
571 struct ev_periodic *w = periodics [i]; 812 struct ev_periodic *w = periodics [i];
572 813
573 if (w->interval) 814 if (w->interval)
574 { 815 {
575 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
576 817
577 if (fabs (diff) >= 1e-4) 818 if (fabs (diff) >= 1e-4)
578 { 819 {
579 evperiodic_stop (w); 820 ev_periodic_stop (EV_A_ w);
580 evperiodic_start (w); 821 ev_periodic_start (EV_A_ w);
581 822
582 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
583 } 824 }
584 } 825 }
585 } 826 }
586} 827}
587 828
829inline int
830time_update_monotonic (EV_P)
831{
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845}
846
588static void 847static void
589time_update (void) 848time_update (EV_P)
590{ 849{
591 int i; 850 int i;
592 851
593 ev_now = ev_time (); 852#if EV_USE_MONOTONIC
594
595 if (have_monotonic) 853 if (expect_true (have_monotonic))
596 { 854 {
597 ev_tstamp odiff = diff; 855 if (time_update_monotonic (EV_A))
598
599 for (i = 4; --i; ) /* loop a few times, before making important decisions */
600 { 856 {
601 now = get_clock (); 857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
602 diff = ev_now - now; 861 rtmn_diff = rt_now - mn_now;
603 862
604 if (fabs (odiff - diff) < MIN_TIMEJUMP) 863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
605 return; /* all is well */ 864 return; /* all is well */
606 865
607 ev_now = ev_time (); 866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
608 } 874 }
609
610 periodics_reschedule (diff - odiff);
611 /* no timer adjustment, as the monotonic clock doesn't jump */
612 } 875 }
613 else 876 else
877#endif
614 { 878 {
615 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
616 { 882 {
617 periodics_reschedule (ev_now - now); 883 periodics_reschedule (EV_A);
618 884
619 /* adjust timers. this is easy, as the offset is the same for all */ 885 /* adjust timers. this is easy, as the offset is the same for all */
620 for (i = 0; i < timercnt; ++i) 886 for (i = 0; i < timercnt; ++i)
621 timers [i]->at += diff; 887 timers [i]->at += rt_now - mn_now;
622 } 888 }
623 889
624 now = ev_now; 890 mn_now = rt_now;
625 } 891 }
626} 892}
627 893
628int ev_loop_done; 894void
895ev_ref (EV_P)
896{
897 ++activecnt;
898}
629 899
900void
901ev_unref (EV_P)
902{
903 --activecnt;
904}
905
906static int loop_done;
907
908void
630void ev_loop (int flags) 909ev_loop (EV_P_ int flags)
631{ 910{
632 double block; 911 double block;
633 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
634 913
635 do 914 do
636 { 915 {
637 /* queue check watchers (and execute them) */ 916 /* queue check watchers (and execute them) */
638 if (preparecnt) 917 if (expect_false (preparecnt))
639 { 918 {
640 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
641 call_pending (); 920 call_pending (EV_A);
642 } 921 }
643 922
644 /* update fd-related kernel structures */ 923 /* update fd-related kernel structures */
645 fd_reify (); 924 fd_reify (EV_A);
646 925
647 /* calculate blocking time */ 926 /* calculate blocking time */
648 927
649 /* we only need this for !monotonic clockor timers, but as we basically 928 /* we only need this for !monotonic clockor timers, but as we basically
650 always have timers, we just calculate it always */ 929 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934#endif
935 {
651 ev_now = ev_time (); 936 rt_now = ev_time ();
937 mn_now = rt_now;
938 }
652 939
653 if (flags & EVLOOP_NONBLOCK || idlecnt) 940 if (flags & EVLOOP_NONBLOCK || idlecnt)
654 block = 0.; 941 block = 0.;
655 else 942 else
656 { 943 {
657 block = MAX_BLOCKTIME; 944 block = MAX_BLOCKTIME;
658 945
659 if (timercnt) 946 if (timercnt)
660 { 947 {
661 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 948 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
662 if (block > to) block = to; 949 if (block > to) block = to;
663 } 950 }
664 951
665 if (periodiccnt) 952 if (periodiccnt)
666 { 953 {
667 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
668 if (block > to) block = to; 955 if (block > to) block = to;
669 } 956 }
670 957
671 if (block < 0.) block = 0.; 958 if (block < 0.) block = 0.;
672 } 959 }
673 960
674 method_poll (block); 961 method_poll (EV_A_ block);
675 962
676 /* update ev_now, do magic */ 963 /* update rt_now, do magic */
677 time_update (); 964 time_update (EV_A);
678 965
679 /* queue pending timers and reschedule them */ 966 /* queue pending timers and reschedule them */
680 timers_reify (); /* relative timers called last */ 967 timers_reify (EV_A); /* relative timers called last */
681 periodics_reify (); /* absolute timers called first */ 968 periodics_reify (EV_A); /* absolute timers called first */
682 969
683 /* queue idle watchers unless io or timers are pending */ 970 /* queue idle watchers unless io or timers are pending */
684 if (!pendingcnt) 971 if (!pendingcnt)
685 queue_events ((W *)idles, idlecnt, EV_IDLE); 972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
686 973
687 /* queue check watchers, to be executed first */ 974 /* queue check watchers, to be executed first */
688 if (checkcnt) 975 if (checkcnt)
689 queue_events ((W *)checks, checkcnt, EV_CHECK); 976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
690 977
691 call_pending (); 978 call_pending (EV_A);
692 } 979 }
693 while (!ev_loop_done); 980 while (activecnt && !loop_done);
694 981
695 if (ev_loop_done != 2) 982 if (loop_done != 2)
696 ev_loop_done = 0; 983 loop_done = 0;
984}
985
986void
987ev_unloop (EV_P_ int how)
988{
989 loop_done = how;
697} 990}
698 991
699/*****************************************************************************/ 992/*****************************************************************************/
700 993
701static void 994inline void
702wlist_add (WL *head, WL elem) 995wlist_add (WL *head, WL elem)
703{ 996{
704 elem->next = *head; 997 elem->next = *head;
705 *head = elem; 998 *head = elem;
706} 999}
707 1000
708static void 1001inline void
709wlist_del (WL *head, WL elem) 1002wlist_del (WL *head, WL elem)
710{ 1003{
711 while (*head) 1004 while (*head)
712 { 1005 {
713 if (*head == elem) 1006 if (*head == elem)
718 1011
719 head = &(*head)->next; 1012 head = &(*head)->next;
720 } 1013 }
721} 1014}
722 1015
723static void 1016inline void
724ev_clear (W w) 1017ev_clear_pending (EV_P_ W w)
725{ 1018{
726 if (w->pending) 1019 if (w->pending)
727 { 1020 {
728 pendings [w->pending - 1].w = 0; 1021 pendings [ABSPRI (w)][w->pending - 1].w = 0;
729 w->pending = 0; 1022 w->pending = 0;
730 } 1023 }
731} 1024}
732 1025
733static void 1026inline void
734ev_start (W w, int active) 1027ev_start (EV_P_ W w, int active)
735{ 1028{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
736 w->active = active; 1032 w->active = active;
1033 ev_ref (EV_A);
737} 1034}
738 1035
739static void 1036inline void
740ev_stop (W w) 1037ev_stop (EV_P_ W w)
741{ 1038{
1039 ev_unref (EV_A);
742 w->active = 0; 1040 w->active = 0;
743} 1041}
744 1042
745/*****************************************************************************/ 1043/*****************************************************************************/
746 1044
747void 1045void
748evio_start (struct ev_io *w) 1046ev_io_start (EV_P_ struct ev_io *w)
749{ 1047{
1048 int fd = w->fd;
1049
750 if (ev_is_active (w)) 1050 if (ev_is_active (w))
751 return; 1051 return;
752 1052
753 int fd = w->fd; 1053 assert (("ev_io_start called with negative fd", fd >= 0));
754 1054
755 ev_start ((W)w, 1); 1055 ev_start (EV_A_ (W)w, 1);
756 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
757 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1057 wlist_add ((WL *)&anfds[fd].head, (WL)w);
758 1058
759 fd_change (fd); 1059 fd_change (EV_A_ fd);
760} 1060}
761 1061
762void 1062void
763evio_stop (struct ev_io *w) 1063ev_io_stop (EV_P_ struct ev_io *w)
764{ 1064{
765 ev_clear ((W)w); 1065 ev_clear_pending (EV_A_ (W)w);
766 if (!ev_is_active (w)) 1066 if (!ev_is_active (w))
767 return; 1067 return;
768 1068
769 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
770 ev_stop ((W)w); 1070 ev_stop (EV_A_ (W)w);
771 1071
772 fd_change (w->fd); 1072 fd_change (EV_A_ w->fd);
773} 1073}
774 1074
775void 1075void
776evtimer_start (struct ev_timer *w) 1076ev_timer_start (EV_P_ struct ev_timer *w)
777{ 1077{
778 if (ev_is_active (w)) 1078 if (ev_is_active (w))
779 return; 1079 return;
780 1080
781 w->at += now; 1081 w->at += mn_now;
782 1082
783 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
784 1084
785 ev_start ((W)w, ++timercnt); 1085 ev_start (EV_A_ (W)w, ++timercnt);
786 array_needsize (timers, timermax, timercnt, ); 1086 array_needsize (timers, timermax, timercnt, );
787 timers [timercnt - 1] = w; 1087 timers [timercnt - 1] = w;
788 upheap ((WT *)timers, timercnt - 1); 1088 upheap ((WT *)timers, timercnt - 1);
789} 1089}
790 1090
791void 1091void
792evtimer_stop (struct ev_timer *w) 1092ev_timer_stop (EV_P_ struct ev_timer *w)
793{ 1093{
794 ev_clear ((W)w); 1094 ev_clear_pending (EV_A_ (W)w);
795 if (!ev_is_active (w)) 1095 if (!ev_is_active (w))
796 return; 1096 return;
797 1097
798 if (w->active < timercnt--) 1098 if (w->active < timercnt--)
799 { 1099 {
801 downheap ((WT *)timers, timercnt, w->active - 1); 1101 downheap ((WT *)timers, timercnt, w->active - 1);
802 } 1102 }
803 1103
804 w->at = w->repeat; 1104 w->at = w->repeat;
805 1105
806 ev_stop ((W)w); 1106 ev_stop (EV_A_ (W)w);
807} 1107}
808 1108
809void 1109void
810evtimer_again (struct ev_timer *w) 1110ev_timer_again (EV_P_ struct ev_timer *w)
811{ 1111{
812 if (ev_is_active (w)) 1112 if (ev_is_active (w))
813 { 1113 {
814 if (w->repeat) 1114 if (w->repeat)
815 { 1115 {
816 w->at = now + w->repeat; 1116 w->at = mn_now + w->repeat;
817 downheap ((WT *)timers, timercnt, w->active - 1); 1117 downheap ((WT *)timers, timercnt, w->active - 1);
818 } 1118 }
819 else 1119 else
820 evtimer_stop (w); 1120 ev_timer_stop (EV_A_ w);
821 } 1121 }
822 else if (w->repeat) 1122 else if (w->repeat)
823 evtimer_start (w); 1123 ev_timer_start (EV_A_ w);
824} 1124}
825 1125
826void 1126void
827evperiodic_start (struct ev_periodic *w) 1127ev_periodic_start (EV_P_ struct ev_periodic *w)
828{ 1128{
829 if (ev_is_active (w)) 1129 if (ev_is_active (w))
830 return; 1130 return;
831 1131
832 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
833 1133
834 /* this formula differs from the one in periodic_reify because we do not always round up */ 1134 /* this formula differs from the one in periodic_reify because we do not always round up */
835 if (w->interval) 1135 if (w->interval)
836 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
837 1137
838 ev_start ((W)w, ++periodiccnt); 1138 ev_start (EV_A_ (W)w, ++periodiccnt);
839 array_needsize (periodics, periodicmax, periodiccnt, ); 1139 array_needsize (periodics, periodicmax, periodiccnt, );
840 periodics [periodiccnt - 1] = w; 1140 periodics [periodiccnt - 1] = w;
841 upheap ((WT *)periodics, periodiccnt - 1); 1141 upheap ((WT *)periodics, periodiccnt - 1);
842} 1142}
843 1143
844void 1144void
845evperiodic_stop (struct ev_periodic *w) 1145ev_periodic_stop (EV_P_ struct ev_periodic *w)
846{ 1146{
847 ev_clear ((W)w); 1147 ev_clear_pending (EV_A_ (W)w);
848 if (!ev_is_active (w)) 1148 if (!ev_is_active (w))
849 return; 1149 return;
850 1150
851 if (w->active < periodiccnt--) 1151 if (w->active < periodiccnt--)
852 { 1152 {
853 periodics [w->active - 1] = periodics [periodiccnt]; 1153 periodics [w->active - 1] = periodics [periodiccnt];
854 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1154 downheap ((WT *)periodics, periodiccnt, w->active - 1);
855 } 1155 }
856 1156
857 ev_stop ((W)w); 1157 ev_stop (EV_A_ (W)w);
858} 1158}
859 1159
860void 1160void
861evsignal_start (struct ev_signal *w) 1161ev_idle_start (EV_P_ struct ev_idle *w)
862{ 1162{
863 if (ev_is_active (w)) 1163 if (ev_is_active (w))
864 return; 1164 return;
865 1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169}
1170
1171void
1172ev_idle_stop (EV_P_ struct ev_idle *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w);
1180}
1181
1182void
1183ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191}
1192
1193void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202}
1203
1204void
1205ev_check_start (EV_P_ struct ev_check *w)
1206{
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213}
1214
1215void
1216ev_check_stop (EV_P_ struct ev_check *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224}
1225
1226#ifndef SA_RESTART
1227# define SA_RESTART 0
1228#endif
1229
1230void
1231ev_signal_start (EV_P_ struct ev_signal *w)
1232{
1233#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1235#endif
1236 if (ev_is_active (w))
1237 return;
1238
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240
866 ev_start ((W)w, 1); 1241 ev_start (EV_A_ (W)w, 1);
867 array_needsize (signals, signalmax, w->signum, signals_init); 1242 array_needsize (signals, signalmax, w->signum, signals_init);
868 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
869 1244
870 if (!w->next) 1245 if (!w->next)
871 { 1246 {
872 struct sigaction sa; 1247 struct sigaction sa;
873 sa.sa_handler = sighandler; 1248 sa.sa_handler = sighandler;
874 sigfillset (&sa.sa_mask); 1249 sigfillset (&sa.sa_mask);
875 sa.sa_flags = 0; 1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
876 sigaction (w->signum, &sa, 0); 1251 sigaction (w->signum, &sa, 0);
877 } 1252 }
878} 1253}
879 1254
880void 1255void
881evsignal_stop (struct ev_signal *w) 1256ev_signal_stop (EV_P_ struct ev_signal *w)
882{ 1257{
883 ev_clear ((W)w); 1258 ev_clear_pending (EV_A_ (W)w);
884 if (!ev_is_active (w)) 1259 if (!ev_is_active (w))
885 return; 1260 return;
886 1261
887 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
888 ev_stop ((W)w); 1263 ev_stop (EV_A_ (W)w);
889 1264
890 if (!signals [w->signum - 1].head) 1265 if (!signals [w->signum - 1].head)
891 signal (w->signum, SIG_DFL); 1266 signal (w->signum, SIG_DFL);
892} 1267}
893 1268
894void evidle_start (struct ev_idle *w) 1269void
1270ev_child_start (EV_P_ struct ev_child *w)
895{ 1271{
1272#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop));
1274#endif
896 if (ev_is_active (w)) 1275 if (ev_is_active (w))
897 return; 1276 return;
898 1277
899 ev_start ((W)w, ++idlecnt); 1278 ev_start (EV_A_ (W)w, 1);
900 array_needsize (idles, idlemax, idlecnt, ); 1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
901 idles [idlecnt - 1] = w;
902} 1280}
903 1281
904void evidle_stop (struct ev_idle *w) 1282void
1283ev_child_stop (EV_P_ struct ev_child *w)
905{ 1284{
906 ev_clear ((W)w); 1285 ev_clear_pending (EV_A_ (W)w);
907 if (ev_is_active (w)) 1286 if (ev_is_active (w))
908 return; 1287 return;
909 1288
910 idles [w->active - 1] = idles [--idlecnt];
911 ev_stop ((W)w);
912}
913
914void evprepare_start (struct ev_prepare *w)
915{
916 if (ev_is_active (w))
917 return;
918
919 ev_start ((W)w, ++preparecnt);
920 array_needsize (prepares, preparemax, preparecnt, );
921 prepares [preparecnt - 1] = w;
922}
923
924void evprepare_stop (struct ev_prepare *w)
925{
926 ev_clear ((W)w);
927 if (ev_is_active (w))
928 return;
929
930 prepares [w->active - 1] = prepares [--preparecnt];
931 ev_stop ((W)w);
932}
933
934void evcheck_start (struct ev_check *w)
935{
936 if (ev_is_active (w))
937 return;
938
939 ev_start ((W)w, ++checkcnt);
940 array_needsize (checks, checkmax, checkcnt, );
941 checks [checkcnt - 1] = w;
942}
943
944void evcheck_stop (struct ev_check *w)
945{
946 ev_clear ((W)w);
947 if (ev_is_active (w))
948 return;
949
950 checks [w->active - 1] = checks [--checkcnt];
951 ev_stop ((W)w);
952}
953
954void evchild_start (struct ev_child *w)
955{
956 if (ev_is_active (w))
957 return;
958
959 ev_start ((W)w, 1);
960 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
961}
962
963void evchild_stop (struct ev_child *w)
964{
965 ev_clear ((W)w);
966 if (ev_is_active (w))
967 return;
968
969 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970 ev_stop ((W)w); 1290 ev_stop (EV_A_ (W)w);
971} 1291}
972 1292
973/*****************************************************************************/ 1293/*****************************************************************************/
974 1294
975struct ev_once 1295struct ev_once
979 void (*cb)(int revents, void *arg); 1299 void (*cb)(int revents, void *arg);
980 void *arg; 1300 void *arg;
981}; 1301};
982 1302
983static void 1303static void
984once_cb (struct ev_once *once, int revents) 1304once_cb (EV_P_ struct ev_once *once, int revents)
985{ 1305{
986 void (*cb)(int revents, void *arg) = once->cb; 1306 void (*cb)(int revents, void *arg) = once->cb;
987 void *arg = once->arg; 1307 void *arg = once->arg;
988 1308
989 evio_stop (&once->io); 1309 ev_io_stop (EV_A_ &once->io);
990 evtimer_stop (&once->to); 1310 ev_timer_stop (EV_A_ &once->to);
991 free (once); 1311 free (once);
992 1312
993 cb (revents, arg); 1313 cb (revents, arg);
994} 1314}
995 1315
996static void 1316static void
997once_cb_io (struct ev_io *w, int revents) 1317once_cb_io (EV_P_ struct ev_io *w, int revents)
998{ 1318{
999 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1000} 1320}
1001 1321
1002static void 1322static void
1003once_cb_to (struct ev_timer *w, int revents) 1323once_cb_to (EV_P_ struct ev_timer *w, int revents)
1004{ 1324{
1005 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1006} 1326}
1007 1327
1008void 1328void
1009ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1010{ 1330{
1011 struct ev_once *once = malloc (sizeof (struct ev_once)); 1331 struct ev_once *once = malloc (sizeof (struct ev_once));
1012 1332
1013 if (!once) 1333 if (!once)
1014 cb (EV_ERROR, arg); 1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1015 else 1335 else
1016 { 1336 {
1017 once->cb = cb; 1337 once->cb = cb;
1018 once->arg = arg; 1338 once->arg = arg;
1019 1339
1020 evw_init (&once->io, once_cb_io); 1340 ev_watcher_init (&once->io, once_cb_io);
1021
1022 if (fd >= 0) 1341 if (fd >= 0)
1023 { 1342 {
1024 evio_set (&once->io, fd, events); 1343 ev_io_set (&once->io, fd, events);
1025 evio_start (&once->io); 1344 ev_io_start (EV_A_ &once->io);
1026 } 1345 }
1027 1346
1028 evw_init (&once->to, once_cb_to); 1347 ev_watcher_init (&once->to, once_cb_to);
1029
1030 if (timeout >= 0.) 1348 if (timeout >= 0.)
1031 { 1349 {
1032 evtimer_set (&once->to, timeout, 0.); 1350 ev_timer_set (&once->to, timeout, 0.);
1033 evtimer_start (&once->to); 1351 ev_timer_start (EV_A_ &once->to);
1034 } 1352 }
1035 } 1353 }
1036} 1354}
1037 1355
1038/*****************************************************************************/
1039
1040#if 0
1041
1042struct ev_io wio;
1043
1044static void
1045sin_cb (struct ev_io *w, int revents)
1046{
1047 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1048}
1049
1050static void
1051ocb (struct ev_timer *w, int revents)
1052{
1053 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1054 evtimer_stop (w);
1055 evtimer_start (w);
1056}
1057
1058static void
1059scb (struct ev_signal *w, int revents)
1060{
1061 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1062 evio_stop (&wio);
1063 evio_start (&wio);
1064}
1065
1066static void
1067gcb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "generic %x\n", revents);
1070
1071}
1072
1073int main (void)
1074{
1075 ev_init (0);
1076
1077 evio_init (&wio, sin_cb, 0, EV_READ);
1078 evio_start (&wio);
1079
1080 struct ev_timer t[10000];
1081
1082#if 0
1083 int i;
1084 for (i = 0; i < 10000; ++i)
1085 {
1086 struct ev_timer *w = t + i;
1087 evw_init (w, ocb, i);
1088 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1089 evtimer_start (w);
1090 if (drand48 () < 0.5)
1091 evtimer_stop (w);
1092 }
1093#endif
1094
1095 struct ev_timer t1;
1096 evtimer_init (&t1, ocb, 5, 10);
1097 evtimer_start (&t1);
1098
1099 struct ev_signal sig;
1100 evsignal_init (&sig, scb, SIGQUIT);
1101 evsignal_start (&sig);
1102
1103 struct ev_check cw;
1104 evcheck_init (&cw, gcb);
1105 evcheck_start (&cw);
1106
1107 struct ev_idle iw;
1108 evidle_init (&iw, gcb);
1109 evidle_start (&iw);
1110
1111 ev_loop (0);
1112
1113 return 0;
1114}
1115
1116#endif
1117
1118
1119
1120

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines