ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
86# endif
87
88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
94# endif
95
96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
102# endif
103
104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
33#endif 144#endif
34 145
35#include <math.h> 146#include <math.h>
36#include <stdlib.h> 147#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 148#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 149#include <stddef.h>
41 150
42#include <stdio.h> 151#include <stdio.h>
43 152
44#include <assert.h> 153#include <assert.h>
45#include <errno.h> 154#include <errno.h>
46#include <sys/types.h> 155#include <sys/types.h>
156#include <time.h>
157
158#include <signal.h>
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
47#ifndef WIN32 166#ifndef _WIN32
167# include <sys/time.h>
48# include <sys/wait.h> 168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
49#endif 176# endif
50#include <sys/time.h> 177#endif
51#include <time.h>
52 178
53/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
54 188
55#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
57#endif 207#endif
58 208
59#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
61#endif 211#endif
62 212
63#ifndef EV_USEV_POLL 213#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
65#endif 219#endif
66 220
67#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
68# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
69#endif 227#endif
70 228
71#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
73#endif 231#endif
74 232
75#ifndef EV_USE_REALTIME 233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
77#endif 242# endif
243#endif
78 244
79/**/ 245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 288
81#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
84#endif 292#endif
86#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
89#endif 297#endif
90 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
91/**/ 346/**/
92 347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 367
98#include "ev.h"
99
100#if __GNUC__ >= 3 368#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 370# define noinline __attribute__ ((noinline))
103#else 371#else
104# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
105# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
106#endif 377#endif
107 378
108#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
110 388
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
113 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
114typedef struct ev_watcher *W; 395typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
117 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
411
412#ifdef _WIN32
413# include "ev_win32.c"
414#endif
119 415
120/*****************************************************************************/ 416/*****************************************************************************/
121 417
418static void (*syserr_cb)(const char *msg);
419
420void
421ev_set_syserr_cb (void (*cb)(const char *msg))
422{
423 syserr_cb = cb;
424}
425
426static void noinline
427ev_syserr (const char *msg)
428{
429 if (!msg)
430 msg = "(libev) system error";
431
432 if (syserr_cb)
433 syserr_cb (msg);
434 else
435 {
436 perror (msg);
437 abort ();
438 }
439}
440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
457
458void
459ev_set_allocator (void *(*cb)(void *ptr, long size))
460{
461 alloc = cb;
462}
463
464inline_speed void *
465ev_realloc (void *ptr, long size)
466{
467 ptr = alloc (ptr, size);
468
469 if (!ptr && size)
470 {
471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
472 abort ();
473 }
474
475 return ptr;
476}
477
478#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0)
480
481/*****************************************************************************/
482
122typedef struct 483typedef struct
123{ 484{
124 struct ev_watcher_list *head; 485 WL head;
125 unsigned char events; 486 unsigned char events;
126 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
127} ANFD; 496} ANFD;
128 497
129typedef struct 498typedef struct
130{ 499{
131 W w; 500 W w;
132 int events; 501 int events;
133} ANPENDING; 502} ANPENDING;
134 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
135#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
136 531
137struct ev_loop 532 struct ev_loop
138{ 533 {
534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
140# include "ev_vars.h" 537 #include "ev_vars.h"
141};
142# undef VAR 538 #undef VAR
539 };
143# include "ev_wrap.h" 540 #include "ev_wrap.h"
541
542 static struct ev_loop default_loop_struct;
543 struct ev_loop *ev_default_loop_ptr;
144 544
145#else 545#else
146 546
547 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 549 #include "ev_vars.h"
149# undef VAR 550 #undef VAR
551
552 static int ev_default_loop_ptr;
150 553
151#endif 554#endif
152 555
153/*****************************************************************************/ 556/*****************************************************************************/
154 557
155inline ev_tstamp 558ev_tstamp
156ev_time (void) 559ev_time (void)
157{ 560{
158#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
159 struct timespec ts; 564 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 567 }
568#endif
569
163 struct timeval tv; 570 struct timeval tv;
164 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 573}
168 574
169inline ev_tstamp 575ev_tstamp inline_size
170get_clock (void) 576get_clock (void)
171{ 577{
172#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
174 { 580 {
179#endif 585#endif
180 586
181 return ev_time (); 587 return ev_time ();
182} 588}
183 589
590#if EV_MULTIPLICITY
184ev_tstamp 591ev_tstamp
185ev_now (EV_P) 592ev_now (EV_P)
186{ 593{
187 return rt_now; 594 return ev_rt_now;
188} 595}
596#endif
189 597
190#define array_roundsize(base,n) ((n) | 4 & ~3) 598void
191 599ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 600{
193 if (expect_false ((cnt) > cur)) \ 601 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
206 625
207/*****************************************************************************/ 626/*****************************************************************************/
208 627
209static void 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 629
218 ++base; 630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 641 {
220} 642 ncur *= elem;
221 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 644 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 645 ncur /= elem;
224{
225 if (w->pending)
226 { 646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
660
661#define array_needsize(type,base,cur,cnt,init) \
662 if (expect_false ((cnt) > (cur))) \
663 { \
664 int ocur_ = (cur); \
665 (base) = (type *)array_realloc \
666 (sizeof (type), (base), &(cur), (cnt)); \
667 init ((base) + (ocur_), (cur) - ocur_); \
668 }
669
670#if 0
671#define array_slim(type,stem) \
672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
673 { \
674 stem ## max = array_roundsize (stem ## cnt >> 1); \
675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
677 }
678#endif
679
680#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682
683/*****************************************************************************/
684
685void noinline
686ev_feed_event (EV_P_ void *w, int revents)
687{
688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
690
691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 698 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 699 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 700}
236 701
237static void 702void inline_speed
238queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 704{
240 int i; 705 int i;
241 706
242 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
244} 709}
245 710
246static void 711/*****************************************************************************/
712
713void inline_speed
247fd_event (EV_P_ int fd, int events) 714fd_event (EV_P_ int fd, int revents)
248{ 715{
249 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 717 ev_io *w;
251 718
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 720 {
254 int ev = w->events & events; 721 int ev = w->events & revents;
255 722
256 if (ev) 723 if (ev)
257 event (EV_A_ (W)w, ev); 724 ev_feed_event (EV_A_ (W)w, ev);
258 } 725 }
259} 726}
260 727
261/*****************************************************************************/ 728void
729ev_feed_fd_event (EV_P_ int fd, int revents)
730{
731 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents);
733}
262 734
263static void 735void inline_size
264fd_reify (EV_P) 736fd_reify (EV_P)
265{ 737{
266 int i; 738 int i;
267 739
268 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
269 { 741 {
270 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 744 ev_io *w;
273 745
274 int events = 0; 746 unsigned char events = 0;
275 747
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 749 events |= (unsigned char)w->events;
278 750
279 anfd->reify = 0; 751#if EV_SELECT_IS_WINSOCKET
280 752 if (events)
281 if (anfd->events != events)
282 { 753 {
283 method_modify (EV_A_ fd, anfd->events, events); 754 unsigned long arg;
284 anfd->events = events; 755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
285 } 761 }
762#endif
763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
768 anfd->reify = 0;
769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV__IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
286 } 774 }
287 775
288 fdchangecnt = 0; 776 fdchangecnt = 0;
289} 777}
290 778
291static void 779void inline_size
292fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
293{ 781{
294 if (anfds [fd].reify || fdchangecnt < 0) 782 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
298 784
785 if (expect_true (!reify))
786 {
299 ++fdchangecnt; 787 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
302} 791}
303 792
304static void 793void inline_speed
305fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
306{ 795{
307 struct ev_io *w; 796 ev_io *w;
308 797
309 while ((w = (struct ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
310 { 799 {
311 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 802 }
803}
804
805int inline_size
806fd_valid (int fd)
807{
808#ifdef _WIN32
809 return _get_osfhandle (fd) != -1;
810#else
811 return fcntl (fd, F_GETFD) != -1;
812#endif
314} 813}
315 814
316/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
317static void 816static void noinline
318fd_ebadf (EV_P) 817fd_ebadf (EV_P)
319{ 818{
320 int fd; 819 int fd;
321 820
322 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 822 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
326} 825}
327 826
328/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 828static void noinline
330fd_enomem (EV_P) 829fd_enomem (EV_P)
331{ 830{
332 int fd = anfdmax; 831 int fd;
333 832
334 while (fd--) 833 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 834 if (anfds [fd].events)
336 { 835 {
337 close (fd);
338 fd_kill (EV_A_ fd); 836 fd_kill (EV_A_ fd);
339 return; 837 return;
340 } 838 }
341} 839}
342 840
343/* susually called after fork if method needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
344static void 842static void noinline
345fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
346{ 844{
347 int fd; 845 int fd;
348 846
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 848 if (anfds [fd].events)
352 { 849 {
353 anfds [fd].events = 0; 850 anfds [fd].events = 0;
354 fd_change (fd); 851 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1);
355 } 853 }
356} 854}
357 855
358/*****************************************************************************/ 856/*****************************************************************************/
359 857
360static void 858/*
361upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
362{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
363 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
364 863
365 while (k && heap [k >> 1]->at > w->at) 864/*
366 { 865 * at the moment we allow libev the luxury of two heaps,
367 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
368 heap [k]->active = k + 1; 867 * which is more cache-efficient.
369 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
370 } 869 */
870#if EV_USE_4HEAP
371 871
372 heap [k] = w; 872#define DHEAP 4
373 heap [k]->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
374 876
375} 877/* away from the root */
376 878void inline_speed
377static void
378downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
379{ 880{
380 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
381 883
382 while (k < (N >> 1)) 884 for (;;)
383 { 885 {
384 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
385 889
386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
387 ++j; 892 {
388 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
389 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
390 break; 906 break;
391 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
392 heap [k] = heap [j]; 946 heap [k] = heap [c];
393 heap [k]->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
394 k = j; 949 k = c;
395 } 950 }
396 951
397 heap [k] = w; 952 heap [k] = he;
398 heap [k]->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
954}
955#endif
956
957/* towards the root */
958void inline_speed
959upheap (ANHE *heap, int k)
960{
961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
978
979void inline_size
980adjustheap (ANHE *heap, int N, int k)
981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k);
984 else
985 downheap (heap, N, k);
986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
997 upheap (heap, i + HEAP0);
399} 998}
400 999
401/*****************************************************************************/ 1000/*****************************************************************************/
402 1001
403typedef struct 1002typedef struct
404{ 1003{
405 struct ev_watcher_list *head; 1004 WL head;
406 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
407} ANSIG; 1006} ANSIG;
408 1007
409static ANSIG *signals; 1008static ANSIG *signals;
410static int signalmax; 1009static int signalmax;
411 1010
412static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
413static sig_atomic_t volatile gotsig; 1012
1013/*****************************************************************************/
1014
1015void inline_speed
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
414 1077
415static void 1078static void
416signals_init (ANSIG *base, int count) 1079pipecb (EV_P_ ev_io *iow, int revents)
417{ 1080{
418 while (count--) 1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
419 { 1086 }
420 base->head = 0; 1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
421 base->gotsig = 0; 1097 gotsig = 0;
422 1098
423 ++base; 1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
424 } 1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
425} 1118}
1119
1120/*****************************************************************************/
426 1121
427static void 1122static void
428sighandler (int signum) 1123ev_sighandler (int signum)
429{ 1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
1129#if _WIN32
1130 signal (signum, ev_sighandler);
1131#endif
1132
430 signals [signum - 1].gotsig = 1; 1133 signals [signum - 1].gotsig = 1;
431 1134 evpipe_write (EV_A_ &gotsig);
432 if (!gotsig)
433 {
434 int old_errno = errno;
435 gotsig = 1;
436 write (sigpipe [1], &signum, 1);
437 errno = old_errno;
438 }
439} 1135}
440 1136
441static void 1137void noinline
442sigcb (EV_P_ struct ev_io *iow, int revents) 1138ev_feed_signal_event (EV_P_ int signum)
443{ 1139{
444 struct ev_watcher_list *w; 1140 WL w;
1141
1142#if EV_MULTIPLICITY
1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1144#endif
1145
445 int signum; 1146 --signum;
446 1147
447 read (sigpipe [0], &revents, 1); 1148 if (signum < 0 || signum >= signalmax)
448 gotsig = 0; 1149 return;
449 1150
450 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig)
452 {
453 signals [signum].gotsig = 0; 1151 signals [signum].gotsig = 0;
454 1152
455 for (w = signals [signum].head; w; w = w->next) 1153 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL); 1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
457 }
458}
459
460static void
461siginit (EV_P)
462{
463#ifndef WIN32
464 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
465 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
466
467 /* rather than sort out wether we really need nb, set it */
468 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
469 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
470#endif
471
472 ev_io_set (&sigev, sigpipe [0], EV_READ);
473 ev_io_start (EV_A_ &sigev);
474 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 1155}
476 1156
477/*****************************************************************************/ 1157/*****************************************************************************/
478 1158
1159static WL childs [EV_PID_HASHSIZE];
1160
479#ifndef WIN32 1161#ifndef _WIN32
1162
1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
480 1187
481#ifndef WCONTINUED 1188#ifndef WCONTINUED
482# define WCONTINUED 0 1189# define WCONTINUED 0
483#endif 1190#endif
484 1191
485static void 1192static void
486child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
487{
488 struct ev_child *w;
489
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid)
492 {
493 w->priority = sw->priority; /* need to do it *now* */
494 w->rpid = pid;
495 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD);
497 }
498}
499
500static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
502{ 1194{
503 int pid, status; 1195 int pid, status;
504 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
507 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
508 event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 1207
510 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
512 }
513} 1211}
514 1212
515#endif 1213#endif
516 1214
517/*****************************************************************************/ 1215/*****************************************************************************/
518 1216
1217#if EV_USE_PORT
1218# include "ev_port.c"
1219#endif
519#if EV_USE_KQUEUE 1220#if EV_USE_KQUEUE
520# include "ev_kqueue.c" 1221# include "ev_kqueue.c"
521#endif 1222#endif
522#if EV_USE_EPOLL 1223#if EV_USE_EPOLL
523# include "ev_epoll.c" 1224# include "ev_epoll.c"
524#endif 1225#endif
525#if EV_USEV_POLL 1226#if EV_USE_POLL
526# include "ev_poll.c" 1227# include "ev_poll.c"
527#endif 1228#endif
528#if EV_USE_SELECT 1229#if EV_USE_SELECT
529# include "ev_select.c" 1230# include "ev_select.c"
530#endif 1231#endif
540{ 1241{
541 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
542} 1243}
543 1244
544/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
545static int 1246int inline_size
546enable_secure (void) 1247enable_secure (void)
547{ 1248{
548#ifdef WIN32 1249#ifdef _WIN32
549 return 0; 1250 return 0;
550#else 1251#else
551 return getuid () != geteuid () 1252 return getuid () != geteuid ()
552 || getgid () != getegid (); 1253 || getgid () != getegid ();
553#endif 1254#endif
554} 1255}
555 1256
556int 1257unsigned int
557ev_method (EV_P) 1258ev_supported_backends (void)
558{ 1259{
559 return method; 1260 unsigned int flags = 0;
560}
561 1261
562static void 1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
563loop_init (EV_P_ int methods) 1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_recommended_backends (void)
564{ 1273{
565 if (!method) 1274 unsigned int flags = ev_supported_backends ();
1275
1276#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */
1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1279 flags &= ~EVBACKEND_KQUEUE;
1280#endif
1281#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif
1286
1287 return flags;
1288}
1289
1290unsigned int
1291ev_embeddable_backends (void)
1292{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300}
1301
1302unsigned int
1303ev_backend (EV_P)
1304{
1305 return backend;
1306}
1307
1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
1327loop_init (EV_P_ unsigned int flags)
1328{
1329 if (!backend)
566 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
567#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1343 {
1344 struct timespec ts;
1345
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1;
1348 }
1349#endif
1350
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends ();
1378
1379#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif
1382#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1384#endif
1385#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif
1388#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif
1391#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif
1394
1395 ev_init (&pipeev, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI);
1397 }
1398}
1399
1400static void noinline
1401loop_destroy (EV_P)
1402{
1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
1429
1430#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif
1433#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1435#endif
1436#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif
1439#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif
1442#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1444#endif
1445
1446 for (i = NUMPRI; i--; )
1447 {
1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1455
1456 /* have to use the microsoft-never-gets-it-right macro */
1457 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY);
1461#endif
1462#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464#endif
1465 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1470
1471 backend = 0;
1472}
1473
1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
1479loop_fork (EV_P)
1480{
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
1493
1494 if (ev_is_active (&pipeev))
1495 {
1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516
1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1520 }
1521
1522 postfork = 0;
1523}
1524
1525#if EV_MULTIPLICITY
1526
1527struct ev_loop *
1528ev_loop_new (unsigned int flags)
1529{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531
1532 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags);
1535
1536 if (ev_backend (EV_A))
1537 return loop;
1538
1539 return 0;
1540}
1541
1542void
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
568 { 1607 {
569 struct timespec ts; 1608 verify_watcher (EV_A_ (W)w);
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
571 have_monotonic = 1; 1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
572 } 1611 }
1612
1613 assert (timermax >= timercnt);
1614 verify_heap (EV_A_ timers, timercnt);
1615
1616#if EV_PERIODIC_ENABLE
1617 assert (periodicmax >= periodiccnt);
1618 verify_heap (EV_A_ periodics, periodiccnt);
1619#endif
1620
1621 for (i = NUMPRI; i--; )
1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
1630
1631#if EV_FORK_ENABLE
1632 assert (forkmax >= forkcnt);
1633 array_verify (EV_A_ (W *)forks, forkcnt);
1634#endif
1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
573#endif 1650# endif
574
575 rt_now = ev_time ();
576 mn_now = get_clock ();
577 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now;
579
580 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS"));
583 else
584 methods = EVMETHOD_ANY;
585
586 method = 0;
587#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif 1651#endif
590#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif
593#if EV_USEV_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif
596#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif
599 }
600} 1652}
601 1653
602void 1654#endif /* multiplicity */
603loop_destroy (EV_P)
604{
605#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif
608#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif
611#if EV_USEV_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif
614#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif
617
618 method = 0;
619 /*TODO*/
620}
621
622void
623loop_fork (EV_P)
624{
625 /*TODO*/
626#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif
629#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif
632}
633 1655
634#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
635struct ev_loop * 1657struct ev_loop *
636ev_loop_new (int methods) 1658ev_default_loop_init (unsigned int flags)
637{ 1659#else
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1660int
639 1661ev_default_loop (unsigned int flags)
640 loop_init (EV_A_ methods);
641
642 if (ev_methods (EV_A))
643 return loop;
644
645 return 0;
646}
647
648void
649ev_loop_destroy (EV_P)
650{
651 loop_destroy (EV_A);
652 free (loop);
653}
654
655void
656ev_loop_fork (EV_P)
657{
658 loop_fork (EV_A);
659}
660
661#endif 1662#endif
662 1663{
1664 if (!ev_default_loop_ptr)
1665 {
663#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop *
668#else 1668#else
669static int default_loop;
670
671int
672#endif
673ev_default_loop (int methods)
674{
675 if (sigpipe [0] == sigpipe [1])
676 if (pipe (sigpipe))
677 return 0;
678
679 if (!default_loop)
680 {
681#if EV_MULTIPLICITY
682 struct ev_loop *loop = default_loop = &default_loop_struct;
683#else
684 default_loop = 1; 1669 ev_default_loop_ptr = 1;
685#endif 1670#endif
686 1671
687 loop_init (EV_A_ methods); 1672 loop_init (EV_A_ flags);
688 1673
689 if (ev_method (EV_A)) 1674 if (ev_backend (EV_A))
690 { 1675 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A);
694
695#ifndef WIN32 1676#ifndef _WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
698 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
699 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
700#endif 1681#endif
701 } 1682 }
702 else 1683 else
703 default_loop = 0; 1684 ev_default_loop_ptr = 0;
704 } 1685 }
705 1686
706 return default_loop; 1687 return ev_default_loop_ptr;
707} 1688}
708 1689
709void 1690void
710ev_default_destroy (void) 1691ev_default_destroy (void)
711{ 1692{
712#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 1694 struct ev_loop *loop = ev_default_loop_ptr;
714#endif 1695#endif
715 1696
1697 ev_default_loop_ptr = 0;
1698
1699#ifndef _WIN32
716 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
718 1702#endif
719 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev);
721
722 close (sigpipe [0]); sigpipe [0] = 0;
723 close (sigpipe [1]); sigpipe [1] = 0;
724 1703
725 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
726} 1705}
727 1706
728void 1707void
729ev_default_fork (EV_P) 1708ev_default_fork (void)
730{ 1709{
731 loop_fork (EV_A); 1710#if EV_MULTIPLICITY
1711 struct ev_loop *loop = ev_default_loop_ptr;
1712#endif
732 1713
733 ev_io_stop (EV_A_ &sigev); 1714 postfork = 1; /* must be in line with ev_loop_fork */
734 close (sigpipe [0]);
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 1715}
741 1716
742/*****************************************************************************/ 1717/*****************************************************************************/
743 1718
744static void 1719void
1720ev_invoke (EV_P_ void *w, int revents)
1721{
1722 EV_CB_INVOKE ((W)w, revents);
1723}
1724
1725void inline_speed
745call_pending (EV_P) 1726call_pending (EV_P)
746{ 1727{
747 int pri; 1728 int pri;
748 1729
749 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
750 while (pendingcnt [pri]) 1731 while (pendingcnt [pri])
751 { 1732 {
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 1734
754 if (p->w) 1735 if (expect_true (p->w))
755 { 1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
756 p->w->pending = 0; 1739 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
758 } 1742 }
759 } 1743 }
760} 1744}
761 1745
762static void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
763timers_reify (EV_P) 1770timers_reify (EV_P)
764{ 1771{
1772 EV_FREQUENT_CHECK;
1773
765 while (timercnt && timers [0]->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
766 { 1775 {
767 struct ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
768 1779
769 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
770 if (w->repeat) 1781 if (w->repeat)
771 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
773 w->at = mn_now + w->repeat; 1788
1789 ANHE_at_cache (timers [HEAP0]);
774 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
775 } 1791 }
776 else 1792 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1794
1795 EV_FREQUENT_CHECK;
779 event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1797 }
781} 1798}
782 1799
783static void 1800#if EV_PERIODIC_ENABLE
1801void inline_size
784periodics_reify (EV_P) 1802periodics_reify (EV_P)
785{ 1803{
1804 EV_FREQUENT_CHECK;
1805
786 while (periodiccnt && periodics [0]->at <= rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
787 { 1807 {
788 struct ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1809
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
789 1811
790 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
791 if (w->interval) 1813 if (w->reschedule_cb)
792 { 1814 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1816
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
795 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else if (w->interval)
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
796 } 1840 }
797 else 1841 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1843
1844 EV_FREQUENT_CHECK;
800 event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1846 }
802} 1847}
803 1848
804static void 1849static void noinline
805periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
806{ 1851{
807 int i; 1852 int i;
808 1853
809 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
811 { 1856 {
812 struct ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
813 1858
1859 if (w->reschedule_cb)
1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1861 else if (w->interval)
1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1878 {
1879 ev_tstamp odiff = rtmn_diff;
1880
1881 mn_now = get_clock ();
1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
815 { 1886 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1887 ev_rt_now = rtmn_diff + mn_now;
1888 return;
1889 }
817 1890
818 if (fabs (diff) >= 1e-4) 1891 now_floor = mn_now;
1892 ev_rt_now = ev_time ();
1893
1894 /* loop a few times, before making important decisions.
1895 * on the choice of "4": one iteration isn't enough,
1896 * in case we get preempted during the calls to
1897 * ev_time and get_clock. a second call is almost guaranteed
1898 * to succeed in that case, though. and looping a few more times
1899 * doesn't hurt either as we only do this on time-jumps or
1900 * in the unlikely event of having been preempted here.
1901 */
1902 for (i = 4; --i; )
1903 {
1904 rtmn_diff = ev_rt_now - mn_now;
1905
1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
819 { 1932 {
820 ev_periodic_stop (EV_A_ w); 1933 ANHE *he = timers + i + HEAP0;
821 ev_periodic_start (EV_A_ w); 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
822 1935 ANHE_at_cache (*he);
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 } 1936 }
825 } 1937 }
826 }
827}
828 1938
829inline int
830time_update_monotonic (EV_P)
831{
832 mn_now = get_clock ();
833
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 {
836 rt_now = rtmn_diff + mn_now;
837 return 0;
838 }
839 else
840 {
841 now_floor = mn_now;
842 rt_now = ev_time ();
843 return 1;
844 }
845}
846
847static void
848time_update (EV_P)
849{
850 int i;
851
852#if EV_USE_MONOTONIC
853 if (expect_true (have_monotonic))
854 {
855 if (time_update_monotonic (EV_A))
856 {
857 ev_tstamp odiff = rtmn_diff;
858
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 {
861 rtmn_diff = rt_now - mn_now;
862
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */
865
866 rt_now = ev_time ();
867 mn_now = get_clock ();
868 now_floor = mn_now;
869 }
870
871 periodics_reschedule (EV_A);
872 /* no timer adjustment, as the monotonic clock doesn't jump */
873 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
874 }
875 }
876 else
877#endif
878 {
879 rt_now = ev_time ();
880
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 {
883 periodics_reschedule (EV_A);
884
885 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now;
888 }
889
890 mn_now = rt_now; 1939 mn_now = ev_rt_now;
891 } 1940 }
892} 1941}
893 1942
894void 1943void
895ev_ref (EV_P) 1944ev_ref (EV_P)
901ev_unref (EV_P) 1950ev_unref (EV_P)
902{ 1951{
903 --activecnt; 1952 --activecnt;
904} 1953}
905 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
906static int loop_done; 1961static int loop_done;
907 1962
908void 1963void
909ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
910{ 1965{
911 double block; 1966 loop_done = EVUNLOOP_CANCEL;
912 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1967
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
913 1969
914 do 1970 do
915 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
916 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
917 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
918 { 1997 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1999 call_pending (EV_A);
921 } 2000 }
922 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
2005 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork))
2007 loop_fork (EV_A);
2008
923 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
924 fd_reify (EV_A); 2010 fd_reify (EV_A);
925 2011
926 /* calculate blocking time */ 2012 /* calculate blocking time */
2013 {
2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
927 2016
928 /* we only need this for !monotonic clockor timers, but as we basically 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
929 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A);
933 else
934#endif
935 { 2018 {
936 rt_now = ev_time (); 2019 /* update time to cancel out callback processing overhead */
937 mn_now = rt_now; 2020 time_update (EV_A_ 1e100);
938 }
939 2021
940 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.;
942 else
943 {
944 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
945 2023
946 if (timercnt) 2024 if (timercnt)
947 { 2025 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
949 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
950 } 2028 }
951 2029
2030#if EV_PERIODIC_ENABLE
952 if (periodiccnt) 2031 if (periodiccnt)
953 { 2032 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
955 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
956 } 2035 }
2036#endif
957 2037
958 if (block < 0.) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
959 } 2051 }
960 2052
961 method_poll (EV_A_ block); 2053 ++loop_count;
2054 backend_poll (EV_A_ waittime);
962 2055
963 /* update rt_now, do magic */ 2056 /* update ev_rt_now, do magic */
964 time_update (EV_A); 2057 time_update (EV_A_ waittime + sleeptime);
2058 }
965 2059
966 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
2062#if EV_PERIODIC_ENABLE
968 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
2064#endif
969 2065
2066#if EV_IDLE_ENABLE
970 /* queue idle watchers unless io or timers are pending */ 2067 /* queue idle watchers unless other events are pending */
971 if (!pendingcnt) 2068 idle_reify (EV_A);
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
973 2070
974 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
975 if (checkcnt) 2072 if (expect_false (checkcnt))
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
977 2074
978 call_pending (EV_A); 2075 call_pending (EV_A);
979 } 2076 }
980 while (activecnt && !loop_done); 2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
981 2082
982 if (loop_done != 2) 2083 if (loop_done == EVUNLOOP_ONE)
983 loop_done = 0; 2084 loop_done = EVUNLOOP_CANCEL;
984} 2085}
985 2086
986void 2087void
987ev_unloop (EV_P_ int how) 2088ev_unloop (EV_P_ int how)
988{ 2089{
989 loop_done = how; 2090 loop_done = how;
990} 2091}
991 2092
992/*****************************************************************************/ 2093/*****************************************************************************/
993 2094
994inline void 2095void inline_size
995wlist_add (WL *head, WL elem) 2096wlist_add (WL *head, WL elem)
996{ 2097{
997 elem->next = *head; 2098 elem->next = *head;
998 *head = elem; 2099 *head = elem;
999} 2100}
1000 2101
1001inline void 2102void inline_size
1002wlist_del (WL *head, WL elem) 2103wlist_del (WL *head, WL elem)
1003{ 2104{
1004 while (*head) 2105 while (*head)
1005 { 2106 {
1006 if (*head == elem) 2107 if (*head == elem)
1011 2112
1012 head = &(*head)->next; 2113 head = &(*head)->next;
1013 } 2114 }
1014} 2115}
1015 2116
1016inline void 2117void inline_speed
1017ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1018{ 2119{
1019 if (w->pending) 2120 if (w->pending)
1020 { 2121 {
1021 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1022 w->pending = 0; 2123 w->pending = 0;
1023 } 2124 }
1024} 2125}
1025 2126
1026inline void 2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
2153void inline_speed
1027ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1028{ 2155{
1029 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1030 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1031
1032 w->active = active; 2157 w->active = active;
1033 ev_ref (EV_A); 2158 ev_ref (EV_A);
1034} 2159}
1035 2160
1036inline void 2161void inline_size
1037ev_stop (EV_P_ W w) 2162ev_stop (EV_P_ W w)
1038{ 2163{
1039 ev_unref (EV_A); 2164 ev_unref (EV_A);
1040 w->active = 0; 2165 w->active = 0;
1041} 2166}
1042 2167
1043/*****************************************************************************/ 2168/*****************************************************************************/
1044 2169
1045void 2170void noinline
1046ev_io_start (EV_P_ struct ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1047{ 2172{
1048 int fd = w->fd; 2173 int fd = w->fd;
1049 2174
1050 if (ev_is_active (w)) 2175 if (expect_false (ev_is_active (w)))
1051 return; 2176 return;
1052 2177
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
1054 2182
1055 ev_start (EV_A_ (W)w, 1); 2183 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2185 wlist_add (&anfds[fd].head, (WL)w);
1058 2186
1059 fd_change (EV_A_ fd); 2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1060} 2188 w->events &= ~EV__IOFDSET;
1061 2189
1062void 2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
1063ev_io_stop (EV_P_ struct ev_io *w) 2194ev_io_stop (EV_P_ ev_io *w)
1064{ 2195{
1065 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 2197 if (expect_false (!ev_is_active (w)))
1067 return; 2198 return;
1068 2199
2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2201
2202 EV_FREQUENT_CHECK;
2203
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2204 wlist_del (&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 2205 ev_stop (EV_A_ (W)w);
1071 2206
1072 fd_change (EV_A_ w->fd); 2207 fd_change (EV_A_ w->fd, 1);
1073}
1074 2208
1075void 2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
1076ev_timer_start (EV_P_ struct ev_timer *w) 2213ev_timer_start (EV_P_ ev_timer *w)
1077{ 2214{
1078 if (ev_is_active (w)) 2215 if (expect_false (ev_is_active (w)))
1079 return; 2216 return;
1080 2217
1081 w->at += mn_now; 2218 ev_at (w) += mn_now;
1082 2219
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
1085 ev_start (EV_A_ (W)w, ++timercnt); 2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1086 array_needsize (timers, timermax, timercnt, ); 2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1087 timers [timercnt - 1] = w; 2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
1088 upheap ((WT *)timers, timercnt - 1); 2228 ANHE_at_cache (timers [ev_active (w)]);
1089} 2229 upheap (timers, ev_active (w));
1090 2230
1091void 2231 EV_FREQUENT_CHECK;
2232
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234}
2235
2236void noinline
1092ev_timer_stop (EV_P_ struct ev_timer *w) 2237ev_timer_stop (EV_P_ ev_timer *w)
1093{ 2238{
1094 ev_clear_pending (EV_A_ (W)w); 2239 clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 2240 if (expect_false (!ev_is_active (w)))
1096 return; 2241 return;
1097 2242
1098 if (w->active < timercnt--) 2243 EV_FREQUENT_CHECK;
2244
2245 {
2246 int active = ev_active (w);
2247
2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2249
2250 --timercnt;
2251
2252 if (expect_true (active < timercnt + HEAP0))
1099 { 2253 {
1100 timers [w->active - 1] = timers [timercnt]; 2254 timers [active] = timers [timercnt + HEAP0];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 2255 adjustheap (timers, timercnt, active);
1102 } 2256 }
2257 }
1103 2258
1104 w->at = w->repeat; 2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
1105 2262
1106 ev_stop (EV_A_ (W)w); 2263 ev_stop (EV_A_ (W)w);
1107} 2264}
1108 2265
1109void 2266void noinline
1110ev_timer_again (EV_P_ struct ev_timer *w) 2267ev_timer_again (EV_P_ ev_timer *w)
1111{ 2268{
2269 EV_FREQUENT_CHECK;
2270
1112 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1113 { 2272 {
1114 if (w->repeat) 2273 if (w->repeat)
1115 { 2274 {
1116 w->at = mn_now + w->repeat; 2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
1117 downheap ((WT *)timers, timercnt, w->active - 1); 2277 adjustheap (timers, timercnt, ev_active (w));
1118 } 2278 }
1119 else 2279 else
1120 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1121 } 2281 }
1122 else if (w->repeat) 2282 else if (w->repeat)
2283 {
2284 ev_at (w) = w->repeat;
1123 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1124} 2286 }
1125 2287
1126void 2288 EV_FREQUENT_CHECK;
2289}
2290
2291#if EV_PERIODIC_ENABLE
2292void noinline
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1128{ 2294{
1129 if (ev_is_active (w)) 2295 if (expect_false (ev_is_active (w)))
1130 return; 2296 return;
1131 2297
2298 if (w->reschedule_cb)
2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2300 else if (w->interval)
2301 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2305 }
2306 else
2307 ev_at (w) = w->offset;
1137 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1140 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
1142} 2316 upheap (periodics, ev_active (w));
1143 2317
1144void 2318 EV_FREQUENT_CHECK;
2319
2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2321}
2322
2323void noinline
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1146{ 2325{
1147 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 2327 if (expect_false (!ev_is_active (w)))
1149 return; 2328 return;
1150 2329
1151 if (w->active < periodiccnt--) 2330 EV_FREQUENT_CHECK;
2331
2332 {
2333 int active = ev_active (w);
2334
2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2336
2337 --periodiccnt;
2338
2339 if (expect_true (active < periodiccnt + HEAP0))
1152 { 2340 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2342 adjustheap (periodics, periodiccnt, active);
1155 } 2343 }
2344 }
2345
2346 EV_FREQUENT_CHECK;
1156 2347
1157 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1158} 2349}
1159 2350
1160void 2351void noinline
1161ev_idle_start (EV_P_ struct ev_idle *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1162{ 2353{
1163 if (ev_is_active (w)) 2354 /* TODO: use adjustheap and recalculation */
1164 return;
1165
1166 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, );
1168 idles [idlecnt - 1] = w;
1169}
1170
1171void
1172ev_idle_stop (EV_P_ struct ev_idle *w)
1173{
1174 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w))
1176 return;
1177
1178 idles [w->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w); 2355 ev_periodic_stop (EV_A_ w);
2356 ev_periodic_start (EV_A_ w);
1180} 2357}
1181 2358#endif
1182void
1183ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{
1185 if (ev_is_active (w))
1186 return;
1187
1188 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, );
1190 prepares [preparecnt - 1] = w;
1191}
1192
1193void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{
1196 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w))
1198 return;
1199
1200 prepares [w->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w);
1202}
1203
1204void
1205ev_check_start (EV_P_ struct ev_check *w)
1206{
1207 if (ev_is_active (w))
1208 return;
1209
1210 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, );
1212 checks [checkcnt - 1] = w;
1213}
1214
1215void
1216ev_check_stop (EV_P_ struct ev_check *w)
1217{
1218 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w))
1220 return;
1221
1222 checks [w->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w);
1224}
1225 2359
1226#ifndef SA_RESTART 2360#ifndef SA_RESTART
1227# define SA_RESTART 0 2361# define SA_RESTART 0
1228#endif 2362#endif
1229 2363
1230void 2364void noinline
1231ev_signal_start (EV_P_ struct ev_signal *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1232{ 2366{
1233#if EV_MULTIPLICITY 2367#if EV_MULTIPLICITY
1234 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1235#endif 2369#endif
1236 if (ev_is_active (w)) 2370 if (expect_false (ev_is_active (w)))
1237 return; 2371 return;
1238 2372
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
2378
2379 {
2380#ifndef _WIN32
2381 sigset_t full, prev;
2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
2391 }
1240 2392
1241 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1244 2395
1245 if (!w->next) 2396 if (!((WL)w)->next)
1246 { 2397 {
2398#if _WIN32
2399 signal (w->signum, ev_sighandler);
2400#else
1247 struct sigaction sa; 2401 struct sigaction sa;
1248 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1249 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
2406#endif
1252 } 2407 }
1253}
1254 2408
1255void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1256ev_signal_stop (EV_P_ struct ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1257{ 2414{
1258 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1259 if (!ev_is_active (w)) 2416 if (expect_false (!ev_is_active (w)))
1260 return; 2417 return;
1261 2418
2419 EV_FREQUENT_CHECK;
2420
1262 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1263 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1264 2423
1265 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1266 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
1267}
1268 2426
2427 EV_FREQUENT_CHECK;
2428}
2429
1269void 2430void
1270ev_child_start (EV_P_ struct ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1271{ 2432{
1272#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1273 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1274#endif 2435#endif
1275 if (ev_is_active (w)) 2436 if (expect_false (ev_is_active (w)))
1276 return; 2437 return;
1277 2438
2439 EV_FREQUENT_CHECK;
2440
1278 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1279 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1280}
1281 2443
2444 EV_FREQUENT_CHECK;
2445}
2446
1282void 2447void
1283ev_child_stop (EV_P_ struct ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1284{ 2449{
1285 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1286 if (ev_is_active (w)) 2451 if (expect_false (!ev_is_active (w)))
1287 return; 2452 return;
1288 2453
2454 EV_FREQUENT_CHECK;
2455
1289 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1290 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1291} 2460}
2461
2462#if EV_STAT_ENABLE
2463
2464# ifdef _WIN32
2465# undef lstat
2466# define lstat(a,b) _stati64 (a,b)
2467# endif
2468
2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891
2472
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474
2475#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477
2478static void noinline
2479infy_add (EV_P_ ev_stat *w)
2480{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482
2483 if (w->wd < 0)
2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487
2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 {
2493 char path [4096];
2494 strcpy (path, w->path);
2495
2496 do
2497 {
2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2500
2501 char *pend = strrchr (path, '/');
2502
2503 if (!pend || pend == path)
2504 break;
2505
2506 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 }
2511 }
2512
2513 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
2534}
2535
2536static void noinline
2537infy_del (EV_P_ ev_stat *w)
2538{
2539 int slot;
2540 int wd = w->wd;
2541
2542 if (wd < 0)
2543 return;
2544
2545 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w);
2548
2549 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd);
2551}
2552
2553static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{
2556 if (slot < 0)
2557 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2559 infy_wd (EV_A_ slot, wd, ev);
2560 else
2561 {
2562 WL w_;
2563
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2565 {
2566 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */
2568
2569 if (w->wd == wd || wd == -1)
2570 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2574 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */
2576 }
2577
2578 stat_timer_cb (EV_A_ &w->timer, 0);
2579 }
2580 }
2581 }
2582}
2583
2584static void
2585infy_cb (EV_P_ ev_io *w, int revents)
2586{
2587 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf));
2591
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594}
2595
2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
2620infy_init (EV_P)
2621{
2622 if (fs_fd != -2)
2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2628
2629 fs_fd = inotify_init ();
2630
2631 if (fs_fd >= 0)
2632 {
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w);
2636 }
2637}
2638
2639void inline_size
2640infy_fork (EV_P)
2641{
2642 int slot;
2643
2644 if (fs_fd < 0)
2645 return;
2646
2647 close (fs_fd);
2648 fs_fd = inotify_init ();
2649
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 {
2652 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0;
2654
2655 while (w_)
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us add this watcher */
2659
2660 w->wd = -1;
2661
2662 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else
2665 ev_timer_again (EV_A_ &w->timer);
2666 }
2667 }
2668}
2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
2676#endif
2677
2678void
2679ev_stat_stat (EV_P_ ev_stat *w)
2680{
2681 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1;
2685}
2686
2687static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691
2692 /* we copy this here each the time so that */
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w);
2696
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
2710 ) {
2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2714 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w);
2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2718 #endif
2719
2720 ev_feed_event (EV_A_ w, EV_STAT);
2721 }
2722}
2723
2724void
2725ev_stat_start (EV_P_ ev_stat *w)
2726{
2727 if (expect_false (ev_is_active (w)))
2728 return;
2729
2730 ev_stat_stat (EV_A_ w);
2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2733 w->interval = MIN_STAT_INTERVAL;
2734
2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2736 ev_set_priority (&w->timer, ev_priority (w));
2737
2738#if EV_USE_INOTIFY
2739 infy_init (EV_A);
2740
2741 if (fs_fd >= 0)
2742 infy_add (EV_A_ w);
2743 else
2744#endif
2745 ev_timer_again (EV_A_ &w->timer);
2746
2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_stat_stop (EV_P_ ev_stat *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w);
2763#endif
2764 ev_timer_stop (EV_A_ &w->timer);
2765
2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
2773void
2774ev_idle_start (EV_P_ ev_idle *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
2787 ev_start (EV_A_ (W)w, active);
2788
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_idle_stop (EV_P_ ev_idle *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817#endif
2818
2819void
2820ev_prepare_start (EV_P_ ev_prepare *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_prepare_stop (EV_P_ ev_prepare *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 prepares [active - 1] = prepares [--preparecnt];
2847 ev_active (prepares [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854
2855void
2856ev_check_start (EV_P_ ev_check *w)
2857{
2858 if (expect_false (ev_is_active (w)))
2859 return;
2860
2861 EV_FREQUENT_CHECK;
2862
2863 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870void
2871ev_check_stop (EV_P_ ev_check *w)
2872{
2873 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w)))
2875 return;
2876
2877 EV_FREQUENT_CHECK;
2878
2879 {
2880 int active = ev_active (w);
2881
2882 checks [active - 1] = checks [--checkcnt];
2883 ev_active (checks [active - 1]) = active;
2884 }
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890
2891#if EV_EMBED_ENABLE
2892void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w)
2894{
2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2896}
2897
2898static void
2899embed_io_cb (EV_P_ ev_io *io, int revents)
2900{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902
2903 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2949
2950void
2951ev_embed_start (EV_P_ ev_embed *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 {
2957 struct ev_loop *loop = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 }
2961
2962 EV_FREQUENT_CHECK;
2963
2964 ev_set_priority (&w->io, ev_priority (w));
2965 ev_io_start (EV_A_ &w->io);
2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2979}
2980
2981void
2982ev_embed_stop (EV_P_ ev_embed *w)
2983{
2984 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w)))
2986 return;
2987
2988 EV_FREQUENT_CHECK;
2989
2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996#endif
2997
2998#if EV_FORK_ENABLE
2999void
3000ev_fork_start (EV_P_ ev_fork *w)
3001{
3002 if (expect_false (ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
3012}
3013
3014void
3015ev_fork_stop (EV_P_ ev_fork *w)
3016{
3017 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w)))
3019 return;
3020
3021 EV_FREQUENT_CHECK;
3022
3023 {
3024 int active = ev_active (w);
3025
3026 forks [active - 1] = forks [--forkcnt];
3027 ev_active (forks [active - 1]) = active;
3028 }
3029
3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
3080}
3081#endif
1292 3082
1293/*****************************************************************************/ 3083/*****************************************************************************/
1294 3084
1295struct ev_once 3085struct ev_once
1296{ 3086{
1297 struct ev_io io; 3087 ev_io io;
1298 struct ev_timer to; 3088 ev_timer to;
1299 void (*cb)(int revents, void *arg); 3089 void (*cb)(int revents, void *arg);
1300 void *arg; 3090 void *arg;
1301}; 3091};
1302 3092
1303static void 3093static void
1304once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
1305{ 3095{
1306 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 3097 void *arg = once->arg;
1308 3098
1309 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 3101 ev_free (once);
1312 3102
1313 cb (revents, arg); 3103 cb (revents, arg);
1314} 3104}
1315 3105
1316static void 3106static void
1317once_cb_io (EV_P_ struct ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
1318{ 3108{
1319 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1320} 3112}
1321 3113
1322static void 3114static void
1323once_cb_to (EV_P_ struct ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
1324{ 3116{
1325 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1326} 3120}
1327 3121
1328void 3122void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 3124{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 3126
1333 if (!once) 3127 if (expect_false (!once))
3128 {
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 3130 return;
1336 { 3131 }
3132
1337 once->cb = cb; 3133 once->cb = cb;
1338 once->arg = arg; 3134 once->arg = arg;
1339 3135
1340 ev_watcher_init (&once->io, once_cb_io); 3136 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 3137 if (fd >= 0)
3138 {
3139 ev_io_set (&once->io, fd, events);
3140 ev_io_start (EV_A_ &once->io);
3141 }
3142
3143 ev_init (&once->to, once_cb_to);
3144 if (timeout >= 0.)
3145 {
3146 ev_timer_set (&once->to, timeout, 0.);
3147 ev_timer_start (EV_A_ &once->to);
3148 }
3149}
3150
3151/*****************************************************************************/
3152
3153#if 0
3154void
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3156{
3157 int i, j;
3158 ev_watcher_list *wl, *wn;
3159
3160 if (types & (EV_IO | EV_EMBED))
3161 for (i = 0; i < anfdmax; ++i)
3162 for (wl = anfds [i].head; wl; )
1342 { 3163 {
1343 ev_io_set (&once->io, fd, events); 3164 wn = wl->next;
1344 ev_io_start (EV_A_ &once->io); 3165
3166#if EV_EMBED_ENABLE
3167 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3168 {
3169 if (types & EV_EMBED)
3170 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3171 }
3172 else
3173#endif
3174#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ;
3177 else
3178#endif
3179 if ((ev_io *)wl != &pipeev)
3180 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl);
3182
3183 wl = wn;
1345 } 3184 }
1346 3185
1347 ev_watcher_init (&once->to, once_cb_to); 3186 if (types & (EV_TIMER | EV_STAT))
1348 if (timeout >= 0.) 3187 for (i = timercnt + HEAP0; i-- > HEAP0; )
3188#if EV_STAT_ENABLE
3189 /*TODO: timer is not always active*/
3190 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1349 { 3191 {
1350 ev_timer_set (&once->to, timeout, 0.); 3192 if (types & EV_STAT)
1351 ev_timer_start (EV_A_ &once->to); 3193 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1352 } 3194 }
1353 } 3195 else
1354} 3196#endif
3197 if (types & EV_TIMER)
3198 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1355 3199
3200#if EV_PERIODIC_ENABLE
3201 if (types & EV_PERIODIC)
3202 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3203 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3204#endif
3205
3206#if EV_IDLE_ENABLE
3207 if (types & EV_IDLE)
3208 for (j = NUMPRI; i--; )
3209 for (i = idlecnt [j]; i--; )
3210 cb (EV_A_ EV_IDLE, idles [j][i]);
3211#endif
3212
3213#if EV_FORK_ENABLE
3214 if (types & EV_FORK)
3215 for (i = forkcnt; i--; )
3216 if (ev_cb (forks [i]) != embed_fork_cb)
3217 cb (EV_A_ EV_FORK, forks [i]);
3218#endif
3219
3220#if EV_ASYNC_ENABLE
3221 if (types & EV_ASYNC)
3222 for (i = asynccnt; i--; )
3223 cb (EV_A_ EV_ASYNC, asyncs [i]);
3224#endif
3225
3226 if (types & EV_PREPARE)
3227 for (i = preparecnt; i--; )
3228#if EV_EMBED_ENABLE
3229 if (ev_cb (prepares [i]) != embed_prepare_cb)
3230#endif
3231 cb (EV_A_ EV_PREPARE, prepares [i]);
3232
3233 if (types & EV_CHECK)
3234 for (i = checkcnt; i--; )
3235 cb (EV_A_ EV_CHECK, checks [i]);
3236
3237 if (types & EV_SIGNAL)
3238 for (i = 0; i < signalmax; ++i)
3239 for (wl = signals [i].head; wl; )
3240 {
3241 wn = wl->next;
3242 cb (EV_A_ EV_SIGNAL, wl);
3243 wl = wn;
3244 }
3245
3246 if (types & EV_CHILD)
3247 for (i = EV_PID_HASHSIZE; i--; )
3248 for (wl = childs [i]; wl; )
3249 {
3250 wn = wl->next;
3251 cb (EV_A_ EV_CHILD, wl);
3252 wl = wn;
3253 }
3254/* EV_STAT 0x00001000 /* stat data changed */
3255/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3256}
3257#endif
3258
3259#if EV_MULTIPLICITY
3260 #include "ev_wrap.h"
3261#endif
3262
3263#ifdef __cplusplus
3264}
3265#endif
3266

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines