ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.57 by root, Sun Nov 4 16:43:53 2007 UTC vs.
Revision 1.91 by root, Sun Nov 11 00:06:48 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 161
162#include "ev_win32.c"
163
120/*****************************************************************************/ 164/*****************************************************************************/
121 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
122typedef struct 214typedef struct
123{ 215{
124 struct ev_watcher_list *head; 216 WL head;
125 unsigned char events; 217 unsigned char events;
126 unsigned char reify; 218 unsigned char reify;
127} ANFD; 219} ANFD;
128 220
129typedef struct 221typedef struct
132 int events; 224 int events;
133} ANPENDING; 225} ANPENDING;
134 226
135#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
136 228
137struct ev_loop 229 struct ev_loop
138{ 230 {
231 ev_tstamp ev_rt_now;
139# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
140# include "ev_vars.h" 233 #include "ev_vars.h"
141};
142# undef VAR 234 #undef VAR
235 };
143# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
144 240
145#else 241#else
146 242
243 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 245 #include "ev_vars.h"
149# undef VAR 246 #undef VAR
247
248 static int default_loop;
150 249
151#endif 250#endif
152 251
153/*****************************************************************************/ 252/*****************************************************************************/
154 253
179#endif 278#endif
180 279
181 return ev_time (); 280 return ev_time ();
182} 281}
183 282
283#if EV_MULTIPLICITY
184ev_tstamp 284ev_tstamp
185ev_now (EV_P) 285ev_now (EV_P)
186{ 286{
187 return rt_now; 287 return ev_rt_now;
188} 288}
289#endif
189 290
190#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
191 292
192#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
194 { \ 295 { \
195 int newcnt = cur; \ 296 int newcnt = cur; \
196 do \ 297 do \
197 { \ 298 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 300 } \
200 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
201 \ 302 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 305 cur = newcnt; \
205 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 323
207/*****************************************************************************/ 324/*****************************************************************************/
208 325
209static void 326static void
210anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
217 334
218 ++base; 335 ++base;
219 } 336 }
220} 337}
221 338
222static void 339void
223event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
224{ 341{
342 W w_ = (W)w;
343
225 if (w->pending) 344 if (w_->pending)
226 { 345 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 347 return;
229 } 348 }
230 349
231 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 354}
236 355
237static void 356static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 358{
240 int i; 359 int i;
241 360
242 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
244} 363}
245 364
246static void 365inline void
247fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
248{ 367{
249 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 369 struct ev_io *w;
251 370
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 372 {
254 int ev = w->events & events; 373 int ev = w->events & revents;
255 374
256 if (ev) 375 if (ev)
257 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
258 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
259} 384}
260 385
261/*****************************************************************************/ 386/*****************************************************************************/
262 387
263static void 388static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 402 events |= w->events;
278 403
279 anfd->reify = 0; 404 anfd->reify = 0;
280 405
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 407 anfd->events = events;
285 }
286 } 408 }
287 409
288 fdchangecnt = 0; 410 fdchangecnt = 0;
289} 411}
290 412
291static void 413static void
292fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
293{ 415{
294 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
295 return; 417 return;
296 418
297 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
298 420
299 ++fdchangecnt; 421 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
302} 424}
303 425
304static void 426static void
305fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
307 struct ev_io *w; 429 struct ev_io *w;
308 430
309 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
310 { 432 {
311 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
314} 446}
315 447
316/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
317static void 449static void
318fd_ebadf (EV_P) 450fd_ebadf (EV_P)
319{ 451{
320 int fd; 452 int fd;
321 453
322 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 455 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
326} 458}
327 459
328/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 461static void
330fd_enomem (EV_P) 462fd_enomem (EV_P)
331{ 463{
332 int fd = anfdmax; 464 int fd;
333 465
334 while (fd--) 466 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 467 if (anfds [fd].events)
336 { 468 {
337 close (fd);
338 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
339 return; 470 return;
340 } 471 }
341} 472}
342 473
343/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 475static void
345fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
346{ 477{
347 int fd; 478 int fd;
348 479
349 /* this should be highly optimised to not do anything but set a flag */ 480 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 481 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 482 if (anfds [fd].events)
352 { 483 {
353 anfds [fd].events = 0; 484 anfds [fd].events = 0;
354 fd_change (fd); 485 fd_change (EV_A_ fd);
355 } 486 }
356} 487}
357 488
358/*****************************************************************************/ 489/*****************************************************************************/
359 490
363 WT w = heap [k]; 494 WT w = heap [k];
364 495
365 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
366 { 497 {
367 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
369 k >>= 1; 500 k >>= 1;
370 } 501 }
371 502
372 heap [k] = w; 503 heap [k] = w;
373 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
374 505
375} 506}
376 507
377static void 508static void
378downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
388 519
389 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
390 break; 521 break;
391 522
392 heap [k] = heap [j]; 523 heap [k] = heap [j];
393 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
394 k = j; 525 k = j;
395 } 526 }
396 527
397 heap [k] = w; 528 heap [k] = w;
398 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
399} 542}
400 543
401/*****************************************************************************/ 544/*****************************************************************************/
402 545
403typedef struct 546typedef struct
404{ 547{
405 struct ev_watcher_list *head; 548 WL head;
406 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
407} ANSIG; 550} ANSIG;
408 551
409static ANSIG *signals; 552static ANSIG *signals;
410static int signalmax; 553static int signalmax;
411 554
412static int sigpipe [2]; 555static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
414 558
415static void 559static void
416signals_init (ANSIG *base, int count) 560signals_init (ANSIG *base, int count)
417{ 561{
418 while (count--) 562 while (count--)
425} 569}
426 570
427static void 571static void
428sighandler (int signum) 572sighandler (int signum)
429{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
430 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
431 579
432 if (!gotsig) 580 if (!gotsig)
433 { 581 {
434 int old_errno = errno; 582 int old_errno = errno;
435 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
436 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
437 errno = old_errno; 589 errno = old_errno;
438 } 590 }
439} 591}
440 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
441static void 613static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
443{ 615{
444 struct ev_watcher_list *w;
445 int signum; 616 int signum;
446 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
447 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
448 gotsig = 0; 623 gotsig = 0;
449 624
450 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
452 { 627 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458} 628}
459 629
460static void 630static void
461siginit (EV_P) 631siginit (EV_P)
462{ 632{
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 645}
476 646
477/*****************************************************************************/ 647/*****************************************************************************/
478 648
649static struct ev_child *childs [PID_HASHSIZE];
650
479#ifndef WIN32 651#ifndef WIN32
652
653static struct ev_signal childev;
480 654
481#ifndef WCONTINUED 655#ifndef WCONTINUED
482# define WCONTINUED 0 656# define WCONTINUED 0
483#endif 657#endif
484 658
488 struct ev_child *w; 662 struct ev_child *w;
489 663
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
492 { 666 {
493 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 668 w->rpid = pid;
495 w->rstatus = status; 669 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 671 }
498} 672}
499 673
500static void 674static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
503 int pid, status; 677 int pid, status;
504 678
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 680 {
507 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 683
510 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 } 686 }
513} 687}
520# include "ev_kqueue.c" 694# include "ev_kqueue.c"
521#endif 695#endif
522#if EV_USE_EPOLL 696#if EV_USE_EPOLL
523# include "ev_epoll.c" 697# include "ev_epoll.c"
524#endif 698#endif
525#if EV_USEV_POLL 699#if EV_USE_POLL
526# include "ev_poll.c" 700# include "ev_poll.c"
527#endif 701#endif
528#if EV_USE_SELECT 702#if EV_USE_SELECT
529# include "ev_select.c" 703# include "ev_select.c"
530#endif 704#endif
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 745 have_monotonic = 1;
572 } 746 }
573#endif 747#endif
574 748
575 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 750 mn_now = get_clock ();
577 now_floor = mn_now; 751 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
579 753
580 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
583 else 757 else
584 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
585 759
586 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
587#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif 766#endif
590#if EV_USE_EPOLL 767#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif 769#endif
593#if EV_USEV_POLL 770#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif 772#endif
596#if EV_USE_SELECT 773#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
599 } 779 }
600} 780}
601 781
602void 782void
603loop_destroy (EV_P) 783loop_destroy (EV_P)
604{ 784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
605#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif 792#endif
608#if EV_USE_EPOLL 793#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif 795#endif
611#if EV_USEV_POLL 796#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif 798#endif
614#if EV_USE_SELECT 799#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif 801#endif
617 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
618 method = 0; 814 method = 0;
619 /*TODO*/
620} 815}
621 816
622void 817static void
623loop_fork (EV_P) 818loop_fork (EV_P)
624{ 819{
625 /*TODO*/
626#if EV_USE_EPOLL 820#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif 822#endif
629#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
632} 843}
633 844
634#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
635struct ev_loop * 846struct ev_loop *
636ev_loop_new (int methods) 847ev_loop_new (int methods)
637{ 848{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
639 852
640 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
641 854
642 if (ev_methods (EV_A)) 855 if (ev_method (EV_A))
643 return loop; 856 return loop;
644 857
645 return 0; 858 return 0;
646} 859}
647 860
648void 861void
649ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
650{ 863{
651 loop_destroy (EV_A); 864 loop_destroy (EV_A);
652 free (loop); 865 ev_free (loop);
653} 866}
654 867
655void 868void
656ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
657{ 870{
658 loop_fork (EV_A); 871 postfork = 1;
659} 872}
660 873
661#endif 874#endif
662 875
663#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 877struct ev_loop *
668#else 878#else
669static int default_loop;
670
671int 879int
672#endif 880#endif
673ev_default_loop (int methods) 881ev_default_loop (int methods)
674{ 882{
675 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
686 894
687 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
688 896
689 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
690 { 898 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 899 siginit (EV_A);
694 900
695#ifndef WIN32 901#ifndef WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
711{ 917{
712#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
713 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
714#endif 920#endif
715 921
922#ifndef WIN32
716 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
717 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
718 926
719 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
720 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
721 929
722 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
724 932
725 loop_destroy (EV_A); 933 loop_destroy (EV_A);
726} 934}
727 935
728void 936void
729ev_default_fork (EV_P) 937ev_default_fork (void)
730{ 938{
731 loop_fork (EV_A); 939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
732 942
733 ev_io_stop (EV_A_ &sigev); 943 if (method)
734 close (sigpipe [0]); 944 postfork = 1;
735 close (sigpipe [1]);
736 pipe (sigpipe);
737
738 ev_ref (EV_A); /* signal watcher */
739 siginit (EV_A);
740} 945}
741 946
742/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
743 960
744static void 961static void
745call_pending (EV_P) 962call_pending (EV_P)
746{ 963{
747 int pri; 964 int pri;
752 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
753 970
754 if (p->w) 971 if (p->w)
755 { 972 {
756 p->w->pending = 0; 973 p->w->pending = 0;
757 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
758 } 975 }
759 } 976 }
760} 977}
761 978
762static void 979static void
763timers_reify (EV_P) 980timers_reify (EV_P)
764{ 981{
765 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
766 { 983 {
767 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
768 987
769 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
770 if (w->repeat) 989 if (w->repeat)
771 { 990 {
772 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992
773 w->at = mn_now + w->repeat; 993 ((WT)w)->at += w->repeat;
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
774 downheap ((WT *)timers, timercnt, 0); 997 downheap ((WT *)timers, timercnt, 0);
775 } 998 }
776 else 999 else
777 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
778 1001
779 event (EV_A_ (W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
780 } 1003 }
781} 1004}
782 1005
783static void 1006static void
784periodics_reify (EV_P) 1007periodics_reify (EV_P)
785{ 1008{
786 while (periodiccnt && periodics [0]->at <= rt_now) 1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
787 { 1010 {
788 struct ev_periodic *w = periodics [0]; 1011 struct ev_periodic *w = periodics [0];
789 1012
1013 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1014
790 /* first reschedule or stop timer */ 1015 /* first reschedule or stop timer */
791 if (w->interval) 1016 if (w->reschedule_cb)
792 { 1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval)
1024 {
793 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
794 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
795 downheap ((WT *)periodics, periodiccnt, 0); 1027 downheap ((WT *)periodics, periodiccnt, 0);
796 } 1028 }
797 else 1029 else
798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
799 1031
800 event (EV_A_ (W)w, EV_PERIODIC); 1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
801 } 1033 }
802} 1034}
803 1035
804static void 1036static void
805periodics_reschedule (EV_P) 1037periodics_reschedule (EV_P)
809 /* adjust periodics after time jump */ 1041 /* adjust periodics after time jump */
810 for (i = 0; i < periodiccnt; ++i) 1042 for (i = 0; i < periodiccnt; ++i)
811 { 1043 {
812 struct ev_periodic *w = periodics [i]; 1044 struct ev_periodic *w = periodics [i];
813 1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
814 if (w->interval) 1048 else if (w->interval)
815 {
816 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
817
818 if (fabs (diff) >= 1e-4)
819 {
820 ev_periodic_stop (EV_A_ w);
821 ev_periodic_start (EV_A_ w);
822
823 i = 0; /* restart loop, inefficient, but time jumps should be rare */
824 }
825 }
826 } 1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
827} 1055}
828 1056
829inline int 1057inline int
830time_update_monotonic (EV_P) 1058time_update_monotonic (EV_P)
831{ 1059{
832 mn_now = get_clock (); 1060 mn_now = get_clock ();
833 1061
834 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
835 { 1063 {
836 rt_now = rtmn_diff + mn_now; 1064 ev_rt_now = rtmn_diff + mn_now;
837 return 0; 1065 return 0;
838 } 1066 }
839 else 1067 else
840 { 1068 {
841 now_floor = mn_now; 1069 now_floor = mn_now;
842 rt_now = ev_time (); 1070 ev_rt_now = ev_time ();
843 return 1; 1071 return 1;
844 } 1072 }
845} 1073}
846 1074
847static void 1075static void
856 { 1084 {
857 ev_tstamp odiff = rtmn_diff; 1085 ev_tstamp odiff = rtmn_diff;
858 1086
859 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
860 { 1088 {
861 rtmn_diff = rt_now - mn_now; 1089 rtmn_diff = ev_rt_now - mn_now;
862 1090
863 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
864 return; /* all is well */ 1092 return; /* all is well */
865 1093
866 rt_now = ev_time (); 1094 ev_rt_now = ev_time ();
867 mn_now = get_clock (); 1095 mn_now = get_clock ();
868 now_floor = mn_now; 1096 now_floor = mn_now;
869 } 1097 }
870 1098
871 periodics_reschedule (EV_A); 1099 periodics_reschedule (EV_A);
874 } 1102 }
875 } 1103 }
876 else 1104 else
877#endif 1105#endif
878 { 1106 {
879 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
880 1108
881 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
882 { 1110 {
883 periodics_reschedule (EV_A); 1111 periodics_reschedule (EV_A);
884 1112
885 /* adjust timers. this is easy, as the offset is the same for all */ 1113 /* adjust timers. this is easy, as the offset is the same for all */
886 for (i = 0; i < timercnt; ++i) 1114 for (i = 0; i < timercnt; ++i)
887 timers [i]->at += rt_now - mn_now; 1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
888 } 1116 }
889 1117
890 mn_now = rt_now; 1118 mn_now = ev_rt_now;
891 } 1119 }
892} 1120}
893 1121
894void 1122void
895ev_ref (EV_P) 1123ev_ref (EV_P)
918 { 1146 {
919 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
920 call_pending (EV_A); 1148 call_pending (EV_A);
921 } 1149 }
922 1150
1151 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork))
1153 loop_fork (EV_A);
1154
923 /* update fd-related kernel structures */ 1155 /* update fd-related kernel structures */
924 fd_reify (EV_A); 1156 fd_reify (EV_A);
925 1157
926 /* calculate blocking time */ 1158 /* calculate blocking time */
927 1159
928 /* we only need this for !monotonic clockor timers, but as we basically 1160 /* we only need this for !monotonic clock or timers, but as we basically
929 always have timers, we just calculate it always */ 1161 always have timers, we just calculate it always */
930#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
931 if (expect_true (have_monotonic)) 1163 if (expect_true (have_monotonic))
932 time_update_monotonic (EV_A); 1164 time_update_monotonic (EV_A);
933 else 1165 else
934#endif 1166#endif
935 { 1167 {
936 rt_now = ev_time (); 1168 ev_rt_now = ev_time ();
937 mn_now = rt_now; 1169 mn_now = ev_rt_now;
938 } 1170 }
939 1171
940 if (flags & EVLOOP_NONBLOCK || idlecnt) 1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
941 block = 0.; 1173 block = 0.;
942 else 1174 else
943 { 1175 {
944 block = MAX_BLOCKTIME; 1176 block = MAX_BLOCKTIME;
945 1177
946 if (timercnt) 1178 if (timercnt)
947 { 1179 {
948 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
949 if (block > to) block = to; 1181 if (block > to) block = to;
950 } 1182 }
951 1183
952 if (periodiccnt) 1184 if (periodiccnt)
953 { 1185 {
954 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
955 if (block > to) block = to; 1187 if (block > to) block = to;
956 } 1188 }
957 1189
958 if (block < 0.) block = 0.; 1190 if (block < 0.) block = 0.;
959 } 1191 }
960 1192
961 method_poll (EV_A_ block); 1193 method_poll (EV_A_ block);
962 1194
963 /* update rt_now, do magic */ 1195 /* update ev_rt_now, do magic */
964 time_update (EV_A); 1196 time_update (EV_A);
965 1197
966 /* queue pending timers and reschedule them */ 1198 /* queue pending timers and reschedule them */
967 timers_reify (EV_A); /* relative timers called last */ 1199 timers_reify (EV_A); /* relative timers called last */
968 periodics_reify (EV_A); /* absolute timers called first */ 1200 periodics_reify (EV_A); /* absolute timers called first */
969 1201
970 /* queue idle watchers unless io or timers are pending */ 1202 /* queue idle watchers unless io or timers are pending */
971 if (!pendingcnt) 1203 if (idlecnt && !any_pending (EV_A))
972 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
973 1205
974 /* queue check watchers, to be executed first */ 1206 /* queue check watchers, to be executed first */
975 if (checkcnt) 1207 if (checkcnt)
976 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1051 return; 1283 return;
1052 1284
1053 assert (("ev_io_start called with negative fd", fd >= 0)); 1285 assert (("ev_io_start called with negative fd", fd >= 0));
1054 1286
1055 ev_start (EV_A_ (W)w, 1); 1287 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1057 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1058 1290
1059 fd_change (EV_A_ fd); 1291 fd_change (EV_A_ fd);
1060} 1292}
1061 1293
1064{ 1296{
1065 ev_clear_pending (EV_A_ (W)w); 1297 ev_clear_pending (EV_A_ (W)w);
1066 if (!ev_is_active (w)) 1298 if (!ev_is_active (w))
1067 return; 1299 return;
1068 1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1069 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1070 ev_stop (EV_A_ (W)w); 1304 ev_stop (EV_A_ (W)w);
1071 1305
1072 fd_change (EV_A_ w->fd); 1306 fd_change (EV_A_ w->fd);
1073} 1307}
1076ev_timer_start (EV_P_ struct ev_timer *w) 1310ev_timer_start (EV_P_ struct ev_timer *w)
1077{ 1311{
1078 if (ev_is_active (w)) 1312 if (ev_is_active (w))
1079 return; 1313 return;
1080 1314
1081 w->at += mn_now; 1315 ((WT)w)->at += mn_now;
1082 1316
1083 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1084 1318
1085 ev_start (EV_A_ (W)w, ++timercnt); 1319 ev_start (EV_A_ (W)w, ++timercnt);
1086 array_needsize (timers, timermax, timercnt, ); 1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1087 timers [timercnt - 1] = w; 1321 timers [timercnt - 1] = w;
1088 upheap ((WT *)timers, timercnt - 1); 1322 upheap ((WT *)timers, timercnt - 1);
1323
1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1089} 1325}
1090 1326
1091void 1327void
1092ev_timer_stop (EV_P_ struct ev_timer *w) 1328ev_timer_stop (EV_P_ struct ev_timer *w)
1093{ 1329{
1094 ev_clear_pending (EV_A_ (W)w); 1330 ev_clear_pending (EV_A_ (W)w);
1095 if (!ev_is_active (w)) 1331 if (!ev_is_active (w))
1096 return; 1332 return;
1097 1333
1334 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1335
1098 if (w->active < timercnt--) 1336 if (((W)w)->active < timercnt--)
1099 { 1337 {
1100 timers [w->active - 1] = timers [timercnt]; 1338 timers [((W)w)->active - 1] = timers [timercnt];
1101 downheap ((WT *)timers, timercnt, w->active - 1); 1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1102 } 1340 }
1103 1341
1104 w->at = w->repeat; 1342 ((WT)w)->at -= mn_now;
1105 1343
1106 ev_stop (EV_A_ (W)w); 1344 ev_stop (EV_A_ (W)w);
1107} 1345}
1108 1346
1109void 1347void
1110ev_timer_again (EV_P_ struct ev_timer *w) 1348ev_timer_again (EV_P_ struct ev_timer *w)
1111{ 1349{
1112 if (ev_is_active (w)) 1350 if (ev_is_active (w))
1113 { 1351 {
1114 if (w->repeat) 1352 if (w->repeat)
1115 {
1116 w->at = mn_now + w->repeat;
1117 downheap ((WT *)timers, timercnt, w->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1118 }
1119 else 1354 else
1120 ev_timer_stop (EV_A_ w); 1355 ev_timer_stop (EV_A_ w);
1121 } 1356 }
1122 else if (w->repeat) 1357 else if (w->repeat)
1123 ev_timer_start (EV_A_ w); 1358 ev_timer_start (EV_A_ w);
1127ev_periodic_start (EV_P_ struct ev_periodic *w) 1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1128{ 1363{
1129 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1130 return; 1365 return;
1131 1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1132 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1133
1134 /* this formula differs from the one in periodic_reify because we do not always round up */ 1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1135 if (w->interval)
1136 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1137 1375
1138 ev_start (EV_A_ (W)w, ++periodiccnt); 1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1139 array_needsize (periodics, periodicmax, periodiccnt, ); 1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1140 periodics [periodiccnt - 1] = w; 1378 periodics [periodiccnt - 1] = w;
1141 upheap ((WT *)periodics, periodiccnt - 1); 1379 upheap ((WT *)periodics, periodiccnt - 1);
1380
1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1142} 1382}
1143 1383
1144void 1384void
1145ev_periodic_stop (EV_P_ struct ev_periodic *w) 1385ev_periodic_stop (EV_P_ struct ev_periodic *w)
1146{ 1386{
1147 ev_clear_pending (EV_A_ (W)w); 1387 ev_clear_pending (EV_A_ (W)w);
1148 if (!ev_is_active (w)) 1388 if (!ev_is_active (w))
1149 return; 1389 return;
1150 1390
1391 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1392
1151 if (w->active < periodiccnt--) 1393 if (((W)w)->active < periodiccnt--)
1152 { 1394 {
1153 periodics [w->active - 1] = periodics [periodiccnt]; 1395 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1154 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1396 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1155 } 1397 }
1156 1398
1157 ev_stop (EV_A_ (W)w); 1399 ev_stop (EV_A_ (W)w);
1158} 1400}
1159 1401
1160void 1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w)
1404{
1405 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w);
1408}
1409
1410void
1161ev_idle_start (EV_P_ struct ev_idle *w) 1411ev_idle_start (EV_P_ struct ev_idle *w)
1162{ 1412{
1163 if (ev_is_active (w)) 1413 if (ev_is_active (w))
1164 return; 1414 return;
1165 1415
1166 ev_start (EV_A_ (W)w, ++idlecnt); 1416 ev_start (EV_A_ (W)w, ++idlecnt);
1167 array_needsize (idles, idlemax, idlecnt, ); 1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1168 idles [idlecnt - 1] = w; 1418 idles [idlecnt - 1] = w;
1169} 1419}
1170 1420
1171void 1421void
1172ev_idle_stop (EV_P_ struct ev_idle *w) 1422ev_idle_stop (EV_P_ struct ev_idle *w)
1173{ 1423{
1174 ev_clear_pending (EV_A_ (W)w); 1424 ev_clear_pending (EV_A_ (W)w);
1175 if (ev_is_active (w)) 1425 if (ev_is_active (w))
1176 return; 1426 return;
1177 1427
1178 idles [w->active - 1] = idles [--idlecnt]; 1428 idles [((W)w)->active - 1] = idles [--idlecnt];
1179 ev_stop (EV_A_ (W)w); 1429 ev_stop (EV_A_ (W)w);
1180} 1430}
1181 1431
1182void 1432void
1183ev_prepare_start (EV_P_ struct ev_prepare *w) 1433ev_prepare_start (EV_P_ struct ev_prepare *w)
1184{ 1434{
1185 if (ev_is_active (w)) 1435 if (ev_is_active (w))
1186 return; 1436 return;
1187 1437
1188 ev_start (EV_A_ (W)w, ++preparecnt); 1438 ev_start (EV_A_ (W)w, ++preparecnt);
1189 array_needsize (prepares, preparemax, preparecnt, ); 1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1190 prepares [preparecnt - 1] = w; 1440 prepares [preparecnt - 1] = w;
1191} 1441}
1192 1442
1193void 1443void
1194ev_prepare_stop (EV_P_ struct ev_prepare *w) 1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1195{ 1445{
1196 ev_clear_pending (EV_A_ (W)w); 1446 ev_clear_pending (EV_A_ (W)w);
1197 if (ev_is_active (w)) 1447 if (ev_is_active (w))
1198 return; 1448 return;
1199 1449
1200 prepares [w->active - 1] = prepares [--preparecnt]; 1450 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1201 ev_stop (EV_A_ (W)w); 1451 ev_stop (EV_A_ (W)w);
1202} 1452}
1203 1453
1204void 1454void
1205ev_check_start (EV_P_ struct ev_check *w) 1455ev_check_start (EV_P_ struct ev_check *w)
1206{ 1456{
1207 if (ev_is_active (w)) 1457 if (ev_is_active (w))
1208 return; 1458 return;
1209 1459
1210 ev_start (EV_A_ (W)w, ++checkcnt); 1460 ev_start (EV_A_ (W)w, ++checkcnt);
1211 array_needsize (checks, checkmax, checkcnt, ); 1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1212 checks [checkcnt - 1] = w; 1462 checks [checkcnt - 1] = w;
1213} 1463}
1214 1464
1215void 1465void
1216ev_check_stop (EV_P_ struct ev_check *w) 1466ev_check_stop (EV_P_ struct ev_check *w)
1217{ 1467{
1218 ev_clear_pending (EV_A_ (W)w); 1468 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 1469 if (ev_is_active (w))
1220 return; 1470 return;
1221 1471
1222 checks [w->active - 1] = checks [--checkcnt]; 1472 checks [((W)w)->active - 1] = checks [--checkcnt];
1223 ev_stop (EV_A_ (W)w); 1473 ev_stop (EV_A_ (W)w);
1224} 1474}
1225 1475
1226#ifndef SA_RESTART 1476#ifndef SA_RESTART
1227# define SA_RESTART 0 1477# define SA_RESTART 0
1237 return; 1487 return;
1238 1488
1239 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1240 1490
1241 ev_start (EV_A_ (W)w, 1); 1491 ev_start (EV_A_ (W)w, 1);
1242 array_needsize (signals, signalmax, w->signum, signals_init); 1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1243 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1244 1494
1245 if (!w->next) 1495 if (!((WL)w)->next)
1246 { 1496 {
1497#if WIN32
1498 signal (w->signum, sighandler);
1499#else
1247 struct sigaction sa; 1500 struct sigaction sa;
1248 sa.sa_handler = sighandler; 1501 sa.sa_handler = sighandler;
1249 sigfillset (&sa.sa_mask); 1502 sigfillset (&sa.sa_mask);
1250 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1251 sigaction (w->signum, &sa, 0); 1504 sigaction (w->signum, &sa, 0);
1505#endif
1252 } 1506 }
1253} 1507}
1254 1508
1255void 1509void
1256ev_signal_stop (EV_P_ struct ev_signal *w) 1510ev_signal_stop (EV_P_ struct ev_signal *w)
1306 void (*cb)(int revents, void *arg) = once->cb; 1560 void (*cb)(int revents, void *arg) = once->cb;
1307 void *arg = once->arg; 1561 void *arg = once->arg;
1308 1562
1309 ev_io_stop (EV_A_ &once->io); 1563 ev_io_stop (EV_A_ &once->io);
1310 ev_timer_stop (EV_A_ &once->to); 1564 ev_timer_stop (EV_A_ &once->to);
1311 free (once); 1565 ev_free (once);
1312 1566
1313 cb (revents, arg); 1567 cb (revents, arg);
1314} 1568}
1315 1569
1316static void 1570static void
1326} 1580}
1327 1581
1328void 1582void
1329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1330{ 1584{
1331 struct ev_once *once = malloc (sizeof (struct ev_once)); 1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1332 1586
1333 if (!once) 1587 if (!once)
1334 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1335 else 1589 else
1336 { 1590 {
1337 once->cb = cb; 1591 once->cb = cb;
1338 once->arg = arg; 1592 once->arg = arg;
1339 1593
1340 ev_watcher_init (&once->io, once_cb_io); 1594 ev_init (&once->io, once_cb_io);
1341 if (fd >= 0) 1595 if (fd >= 0)
1342 { 1596 {
1343 ev_io_set (&once->io, fd, events); 1597 ev_io_set (&once->io, fd, events);
1344 ev_io_start (EV_A_ &once->io); 1598 ev_io_start (EV_A_ &once->io);
1345 } 1599 }
1346 1600
1347 ev_watcher_init (&once->to, once_cb_to); 1601 ev_init (&once->to, once_cb_to);
1348 if (timeout >= 0.) 1602 if (timeout >= 0.)
1349 { 1603 {
1350 ev_timer_set (&once->to, timeout, 0.); 1604 ev_timer_set (&once->to, timeout, 0.);
1351 ev_timer_start (EV_A_ &once->to); 1605 ev_timer_start (EV_A_ &once->to);
1352 } 1606 }
1353 } 1607 }
1354} 1608}
1355 1609
1610#ifdef __cplusplus
1611}
1612#endif
1613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines