ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.389 by root, Wed Aug 3 15:31:23 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31#ifndef EV_EMBED 39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
36#include <stdlib.h> 167#include <stdlib.h>
37#include <unistd.h> 168#include <string.h>
38#include <fcntl.h> 169#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 170#include <stddef.h>
41 171
42#include <stdio.h> 172#include <stdio.h>
43 173
44#include <assert.h> 174#include <assert.h>
45#include <errno.h> 175#include <errno.h>
46#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188EV_CPP(extern "C" {)
189
47#ifndef WIN32 190#ifndef _WIN32
191# include <sys/time.h>
48# include <sys/wait.h> 192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
49#endif 200# endif
50#include <sys/time.h> 201# undef EV_AVOID_STDIO
51#include <time.h> 202#endif
52 203
53/**/ 204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
54 253
55#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
56# define EV_USE_MONOTONIC 1 258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
57#endif 272#endif
58 273
59#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 276#endif
62 277
63#ifndef EV_USEV_POLL 278#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
65#endif 284#endif
66 285
67#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
68# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
69#endif 292#endif
70 293
71#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
73#endif 296#endif
74 297
75#ifndef EV_USE_REALTIME 298#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 299# define EV_USE_PORT 0
300#endif
301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
77#endif 307# endif
308#endif
78 309
79/**/ 310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
80 373
81#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
84#endif 377#endif
86#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
89#endif 382#endif
90 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
91/**/ 448/**/
92 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 465
98#ifndef EV_EMBED 466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
99# include "ev.h" 467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following are taken from libecb */
470/* ecb.h start */
471
472/* many compilers define _GNUC_ to some versions but then only implement
473 * what their idiot authors think are the "more important" extensions,
474 * causing enourmous grief in return for some better fake benchmark numbers.
475 * or so.
476 * we try to detect these and simply assume they are not gcc - if they have
477 * an issue with that they should have done it right in the first place.
478 */
479#ifndef ECB_GCC_VERSION
480 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481 #define ECB_GCC_VERSION(major,minor) 0
482 #else
483 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
100#endif 484 #endif
485#endif
101 486
102#if __GNUC__ >= 3 487#if __cplusplus
103# define expect(expr,value) __builtin_expect ((expr),(value)) 488 #define ecb_inline static inline
104# define inline inline 489#elif ECB_GCC_VERSION(2,5)
490 #define ecb_inline static __inline__
491#elif ECB_C99
492 #define ecb_inline static inline
105#else 493#else
494 #define ecb_inline static
495#endif
496
497#ifndef ECB_MEMORY_FENCE
498 #if ECB_GCC_VERSION(2,5)
499 #if __x86
500 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE /* better be safe than sorry */
503 #elif __amd64
504 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
505 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507 #endif
508 #endif
509#endif
510
511#ifndef ECB_MEMORY_FENCE
512 #if ECB_GCC_VERSION(4,4)
513 #define ECB_MEMORY_FENCE __sync_synchronize ()
514 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
516 #elif _MSC_VER >= 1400 /* VC++ 2005 */
517 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
518 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
519 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
520 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
521 #elif defined(_WIN32)
522 #include <WinNT.h>
523 #define ECB_MEMORY_FENCE MemoryBarrier ()
524 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
525 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
526 #endif
527#endif
528
529#ifndef ECB_MEMORY_FENCE
530 #include <pthread.h>
531
532 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
533 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
534 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
535 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
536#endif
537
538#if ECB_GCC_VERSION(3,1)
539 #define ecb_attribute(attrlist) __attribute__(attrlist)
540 #define ecb_is_constant(expr) __builtin_constant_p (expr)
541 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
542 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
543#else
544 #define ecb_attribute(attrlist)
545 #define ecb_is_constant(expr) 0
106# define expect(expr,value) (expr) 546 #define ecb_expect(expr,value) (expr)
107# define inline static 547 #define ecb_prefetch(addr,rw,locality)
108#endif 548#endif
109 549
550#define ecb_noinline ecb_attribute ((__noinline__))
551#define ecb_noreturn ecb_attribute ((__noreturn__))
552#define ecb_unused ecb_attribute ((__unused__))
553#define ecb_const ecb_attribute ((__const__))
554#define ecb_pure ecb_attribute ((__pure__))
555
556#if ECB_GCC_VERSION(4,3)
557 #define ecb_artificial ecb_attribute ((__artificial__))
558 #define ecb_hot ecb_attribute ((__hot__))
559 #define ecb_cold ecb_attribute ((__cold__))
560#else
561 #define ecb_artificial
562 #define ecb_hot
563 #define ecb_cold
564#endif
565
566/* put around conditional expressions if you are very sure that the */
567/* expression is mostly true or mostly false. note that these return */
568/* booleans, not the expression. */
110#define expect_false(expr) expect ((expr) != 0, 0) 569#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
111#define expect_true(expr) expect ((expr) != 0, 1) 570#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
571/* ecb.h end */
112 572
573#define expect_false(cond) ecb_expect_false (cond)
574#define expect_true(cond) ecb_expect_true (cond)
575#define noinline ecb_noinline
576
577#define inline_size ecb_inline
578
579#if EV_FEATURE_CODE
580# define inline_speed ecb_inline
581#else
582# define inline_speed static noinline
583#endif
584
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 585#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
586
587#if EV_MINPRI == EV_MAXPRI
588# define ABSPRI(w) (((W)w), 0)
589#else
114#define ABSPRI(w) ((w)->priority - EV_MINPRI) 590# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
591#endif
115 592
593#define EMPTY /* required for microsofts broken pseudo-c compiler */
594#define EMPTY2(a,b) /* used to suppress some warnings */
595
116typedef struct ev_watcher *W; 596typedef ev_watcher *W;
117typedef struct ev_watcher_list *WL; 597typedef ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 598typedef ev_watcher_time *WT;
119 599
600#define ev_active(w) ((W)(w))->active
601#define ev_at(w) ((WT)(w))->at
602
603#if EV_USE_REALTIME
604/* sig_atomic_t is used to avoid per-thread variables or locking but still */
605/* giving it a reasonably high chance of working on typical architectures */
606static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
607#endif
608
609#if EV_USE_MONOTONIC
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 610static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
611#endif
612
613#ifndef EV_FD_TO_WIN32_HANDLE
614# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
615#endif
616#ifndef EV_WIN32_HANDLE_TO_FD
617# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
618#endif
619#ifndef EV_WIN32_CLOSE_FD
620# define EV_WIN32_CLOSE_FD(fd) close (fd)
621#endif
622
623#ifdef _WIN32
624# include "ev_win32.c"
625#endif
121 626
122/*****************************************************************************/ 627/*****************************************************************************/
123 628
629/* define a suitable floor function (only used by periodics atm) */
630
631#if EV_USE_FLOOR
632# include <math.h>
633# define ev_floor(v) floor (v)
634#else
635
636#include <float.h>
637
638/* a floor() replacement function, should be independent of ev_tstamp type */
639static ev_tstamp noinline
640ev_floor (ev_tstamp v)
641{
642 /* the choice of shift factor is not terribly important */
643#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
644 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
645#else
646 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
647#endif
648
649 /* argument too large for an unsigned long? */
650 if (expect_false (v >= shift))
651 {
652 ev_tstamp f;
653
654 if (v == v - 1.)
655 return v; /* very large number */
656
657 f = shift * ev_floor (v * (1. / shift));
658 return f + ev_floor (v - f);
659 }
660
661 /* special treatment for negative args? */
662 if (expect_false (v < 0.))
663 {
664 ev_tstamp f = -ev_floor (-v);
665
666 return f - (f == v ? 0 : 1);
667 }
668
669 /* fits into an unsigned long */
670 return (unsigned long)v;
671}
672
673#endif
674
675/*****************************************************************************/
676
677#ifdef __linux
678# include <sys/utsname.h>
679#endif
680
681static unsigned int noinline ecb_cold
682ev_linux_version (void)
683{
684#ifdef __linux
685 unsigned int v = 0;
686 struct utsname buf;
687 int i;
688 char *p = buf.release;
689
690 if (uname (&buf))
691 return 0;
692
693 for (i = 3+1; --i; )
694 {
695 unsigned int c = 0;
696
697 for (;;)
698 {
699 if (*p >= '0' && *p <= '9')
700 c = c * 10 + *p++ - '0';
701 else
702 {
703 p += *p == '.';
704 break;
705 }
706 }
707
708 v = (v << 8) | c;
709 }
710
711 return v;
712#else
713 return 0;
714#endif
715}
716
717/*****************************************************************************/
718
719#if EV_AVOID_STDIO
720static void noinline ecb_cold
721ev_printerr (const char *msg)
722{
723 write (STDERR_FILENO, msg, strlen (msg));
724}
725#endif
726
727static void (*syserr_cb)(const char *msg);
728
729void ecb_cold
730ev_set_syserr_cb (void (*cb)(const char *msg))
731{
732 syserr_cb = cb;
733}
734
735static void noinline ecb_cold
736ev_syserr (const char *msg)
737{
738 if (!msg)
739 msg = "(libev) system error";
740
741 if (syserr_cb)
742 syserr_cb (msg);
743 else
744 {
745#if EV_AVOID_STDIO
746 ev_printerr (msg);
747 ev_printerr (": ");
748 ev_printerr (strerror (errno));
749 ev_printerr ("\n");
750#else
751 perror (msg);
752#endif
753 abort ();
754 }
755}
756
757static void *
758ev_realloc_emul (void *ptr, long size)
759{
760#if __GLIBC__
761 return realloc (ptr, size);
762#else
763 /* some systems, notably openbsd and darwin, fail to properly
764 * implement realloc (x, 0) (as required by both ansi c-89 and
765 * the single unix specification, so work around them here.
766 */
767
768 if (size)
769 return realloc (ptr, size);
770
771 free (ptr);
772 return 0;
773#endif
774}
775
776static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
777
778void ecb_cold
779ev_set_allocator (void *(*cb)(void *ptr, long size))
780{
781 alloc = cb;
782}
783
784inline_speed void *
785ev_realloc (void *ptr, long size)
786{
787 ptr = alloc (ptr, size);
788
789 if (!ptr && size)
790 {
791#if EV_AVOID_STDIO
792 ev_printerr ("(libev) memory allocation failed, aborting.\n");
793#else
794 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
795#endif
796 abort ();
797 }
798
799 return ptr;
800}
801
802#define ev_malloc(size) ev_realloc (0, (size))
803#define ev_free(ptr) ev_realloc ((ptr), 0)
804
805/*****************************************************************************/
806
807/* set in reify when reification needed */
808#define EV_ANFD_REIFY 1
809
810/* file descriptor info structure */
124typedef struct 811typedef struct
125{ 812{
126 struct ev_watcher_list *head; 813 WL head;
127 unsigned char events; 814 unsigned char events; /* the events watched for */
815 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
816 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
128 unsigned char reify; 817 unsigned char unused;
818#if EV_USE_EPOLL
819 unsigned int egen; /* generation counter to counter epoll bugs */
820#endif
821#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
822 SOCKET handle;
823#endif
824#if EV_USE_IOCP
825 OVERLAPPED or, ow;
826#endif
129} ANFD; 827} ANFD;
130 828
829/* stores the pending event set for a given watcher */
131typedef struct 830typedef struct
132{ 831{
133 W w; 832 W w;
134 int events; 833 int events; /* the pending event set for the given watcher */
135} ANPENDING; 834} ANPENDING;
136 835
836#if EV_USE_INOTIFY
837/* hash table entry per inotify-id */
838typedef struct
839{
840 WL head;
841} ANFS;
842#endif
843
844/* Heap Entry */
845#if EV_HEAP_CACHE_AT
846 /* a heap element */
847 typedef struct {
848 ev_tstamp at;
849 WT w;
850 } ANHE;
851
852 #define ANHE_w(he) (he).w /* access watcher, read-write */
853 #define ANHE_at(he) (he).at /* access cached at, read-only */
854 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
855#else
856 /* a heap element */
857 typedef WT ANHE;
858
859 #define ANHE_w(he) (he)
860 #define ANHE_at(he) (he)->at
861 #define ANHE_at_cache(he)
862#endif
863
137#if EV_MULTIPLICITY 864#if EV_MULTIPLICITY
138 865
139struct ev_loop 866 struct ev_loop
140{ 867 {
868 ev_tstamp ev_rt_now;
869 #define ev_rt_now ((loop)->ev_rt_now)
141# define VAR(name,decl) decl; 870 #define VAR(name,decl) decl;
142# include "ev_vars.h" 871 #include "ev_vars.h"
143};
144# undef VAR 872 #undef VAR
873 };
145# include "ev_wrap.h" 874 #include "ev_wrap.h"
875
876 static struct ev_loop default_loop_struct;
877 struct ev_loop *ev_default_loop_ptr;
146 878
147#else 879#else
148 880
881 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 882 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 883 #include "ev_vars.h"
151# undef VAR 884 #undef VAR
152 885
886 static int ev_default_loop_ptr;
887
153#endif 888#endif
889
890#if EV_FEATURE_API
891# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
892# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
893# define EV_INVOKE_PENDING invoke_cb (EV_A)
894#else
895# define EV_RELEASE_CB (void)0
896# define EV_ACQUIRE_CB (void)0
897# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
898#endif
899
900#define EVBREAK_RECURSE 0x80
154 901
155/*****************************************************************************/ 902/*****************************************************************************/
156 903
157inline ev_tstamp 904#ifndef EV_HAVE_EV_TIME
905ev_tstamp
158ev_time (void) 906ev_time (void)
159{ 907{
160#if EV_USE_REALTIME 908#if EV_USE_REALTIME
909 if (expect_true (have_realtime))
910 {
161 struct timespec ts; 911 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 912 clock_gettime (CLOCK_REALTIME, &ts);
163 return ts.tv_sec + ts.tv_nsec * 1e-9; 913 return ts.tv_sec + ts.tv_nsec * 1e-9;
164#else 914 }
915#endif
916
165 struct timeval tv; 917 struct timeval tv;
166 gettimeofday (&tv, 0); 918 gettimeofday (&tv, 0);
167 return tv.tv_sec + tv.tv_usec * 1e-6; 919 return tv.tv_sec + tv.tv_usec * 1e-6;
168#endif
169} 920}
921#endif
170 922
171inline ev_tstamp 923inline_size ev_tstamp
172get_clock (void) 924get_clock (void)
173{ 925{
174#if EV_USE_MONOTONIC 926#if EV_USE_MONOTONIC
175 if (expect_true (have_monotonic)) 927 if (expect_true (have_monotonic))
176 { 928 {
181#endif 933#endif
182 934
183 return ev_time (); 935 return ev_time ();
184} 936}
185 937
938#if EV_MULTIPLICITY
186ev_tstamp 939ev_tstamp
187ev_now (EV_P) 940ev_now (EV_P)
188{ 941{
189 return rt_now; 942 return ev_rt_now;
190} 943}
944#endif
191 945
192#define array_roundsize(base,n) ((n) | 4 & ~3) 946void
193 947ev_sleep (ev_tstamp delay)
194#define array_needsize(base,cur,cnt,init) \ 948{
195 if (expect_false ((cnt) > cur)) \ 949 if (delay > 0.)
196 { \
197 int newcnt = cur; \
198 do \
199 { \
200 newcnt = array_roundsize (base, newcnt << 1); \
201 } \
202 while ((cnt) > newcnt); \
203 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \
206 cur = newcnt; \
207 } 950 {
951#if EV_USE_NANOSLEEP
952 struct timespec ts;
953
954 EV_TS_SET (ts, delay);
955 nanosleep (&ts, 0);
956#elif defined(_WIN32)
957 Sleep ((unsigned long)(delay * 1e3));
958#else
959 struct timeval tv;
960
961 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
962 /* something not guaranteed by newer posix versions, but guaranteed */
963 /* by older ones */
964 EV_TV_SET (tv, delay);
965 select (0, 0, 0, 0, &tv);
966#endif
967 }
968}
208 969
209/*****************************************************************************/ 970/*****************************************************************************/
210 971
211static void 972#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
212anfds_init (ANFD *base, int count)
213{
214 while (count--)
215 {
216 base->head = 0;
217 base->events = EV_NONE;
218 base->reify = 0;
219 973
220 ++base; 974/* find a suitable new size for the given array, */
975/* hopefully by rounding to a nice-to-malloc size */
976inline_size int
977array_nextsize (int elem, int cur, int cnt)
978{
979 int ncur = cur + 1;
980
981 do
982 ncur <<= 1;
983 while (cnt > ncur);
984
985 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
986 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
221 } 987 {
222} 988 ncur *= elem;
223 989 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
224static void 990 ncur = ncur - sizeof (void *) * 4;
225event (EV_P_ W w, int events) 991 ncur /= elem;
226{
227 if (w->pending)
228 { 992 }
993
994 return ncur;
995}
996
997static void * noinline ecb_cold
998array_realloc (int elem, void *base, int *cur, int cnt)
999{
1000 *cur = array_nextsize (elem, *cur, cnt);
1001 return ev_realloc (base, elem * *cur);
1002}
1003
1004#define array_init_zero(base,count) \
1005 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1006
1007#define array_needsize(type,base,cur,cnt,init) \
1008 if (expect_false ((cnt) > (cur))) \
1009 { \
1010 int ecb_unused ocur_ = (cur); \
1011 (base) = (type *)array_realloc \
1012 (sizeof (type), (base), &(cur), (cnt)); \
1013 init ((base) + (ocur_), (cur) - ocur_); \
1014 }
1015
1016#if 0
1017#define array_slim(type,stem) \
1018 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1019 { \
1020 stem ## max = array_roundsize (stem ## cnt >> 1); \
1021 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1022 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1023 }
1024#endif
1025
1026#define array_free(stem, idx) \
1027 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1028
1029/*****************************************************************************/
1030
1031/* dummy callback for pending events */
1032static void noinline
1033pendingcb (EV_P_ ev_prepare *w, int revents)
1034{
1035}
1036
1037void noinline
1038ev_feed_event (EV_P_ void *w, int revents)
1039{
1040 W w_ = (W)w;
1041 int pri = ABSPRI (w_);
1042
1043 if (expect_false (w_->pending))
1044 pendings [pri][w_->pending - 1].events |= revents;
1045 else
1046 {
1047 w_->pending = ++pendingcnt [pri];
1048 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1049 pendings [pri][w_->pending - 1].w = w_;
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1050 pendings [pri][w_->pending - 1].events = revents;
230 return;
231 } 1051 }
232
233 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 1052}
238 1053
239static void 1054inline_speed void
1055feed_reverse (EV_P_ W w)
1056{
1057 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1058 rfeeds [rfeedcnt++] = w;
1059}
1060
1061inline_size void
1062feed_reverse_done (EV_P_ int revents)
1063{
1064 do
1065 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1066 while (rfeedcnt);
1067}
1068
1069inline_speed void
240queue_events (EV_P_ W *events, int eventcnt, int type) 1070queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 1071{
242 int i; 1072 int i;
243 1073
244 for (i = 0; i < eventcnt; ++i) 1074 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 1075 ev_feed_event (EV_A_ events [i], type);
246} 1076}
247 1077
248static void 1078/*****************************************************************************/
1079
1080inline_speed void
249fd_event (EV_P_ int fd, int events) 1081fd_event_nocheck (EV_P_ int fd, int revents)
250{ 1082{
251 ANFD *anfd = anfds + fd; 1083 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 1084 ev_io *w;
253 1085
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1086 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
255 { 1087 {
256 int ev = w->events & events; 1088 int ev = w->events & revents;
257 1089
258 if (ev) 1090 if (ev)
259 event (EV_A_ (W)w, ev); 1091 ev_feed_event (EV_A_ (W)w, ev);
260 } 1092 }
261} 1093}
262 1094
263/*****************************************************************************/ 1095/* do not submit kernel events for fds that have reify set */
1096/* because that means they changed while we were polling for new events */
1097inline_speed void
1098fd_event (EV_P_ int fd, int revents)
1099{
1100 ANFD *anfd = anfds + fd;
264 1101
265static void 1102 if (expect_true (!anfd->reify))
1103 fd_event_nocheck (EV_A_ fd, revents);
1104}
1105
1106void
1107ev_feed_fd_event (EV_P_ int fd, int revents)
1108{
1109 if (fd >= 0 && fd < anfdmax)
1110 fd_event_nocheck (EV_A_ fd, revents);
1111}
1112
1113/* make sure the external fd watch events are in-sync */
1114/* with the kernel/libev internal state */
1115inline_size void
266fd_reify (EV_P) 1116fd_reify (EV_P)
267{ 1117{
268 int i; 1118 int i;
269 1119
1120#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
270 for (i = 0; i < fdchangecnt; ++i) 1121 for (i = 0; i < fdchangecnt; ++i)
271 { 1122 {
272 int fd = fdchanges [i]; 1123 int fd = fdchanges [i];
273 ANFD *anfd = anfds + fd; 1124 ANFD *anfd = anfds + fd;
274 struct ev_io *w;
275 1125
276 int events = 0; 1126 if (anfd->reify & EV__IOFDSET && anfd->head)
277
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events;
280
281 anfd->reify = 0;
282
283 if (anfd->events != events)
284 { 1127 {
1128 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1129
1130 if (handle != anfd->handle)
1131 {
1132 unsigned long arg;
1133
1134 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1135
1136 /* handle changed, but fd didn't - we need to do it in two steps */
285 method_modify (EV_A_ fd, anfd->events, events); 1137 backend_modify (EV_A_ fd, anfd->events, 0);
286 anfd->events = events; 1138 anfd->events = 0;
1139 anfd->handle = handle;
1140 }
287 } 1141 }
288 } 1142 }
1143#endif
1144
1145 for (i = 0; i < fdchangecnt; ++i)
1146 {
1147 int fd = fdchanges [i];
1148 ANFD *anfd = anfds + fd;
1149 ev_io *w;
1150
1151 unsigned char o_events = anfd->events;
1152 unsigned char o_reify = anfd->reify;
1153
1154 anfd->reify = 0;
1155
1156 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1157 {
1158 anfd->events = 0;
1159
1160 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1161 anfd->events |= (unsigned char)w->events;
1162
1163 if (o_events != anfd->events)
1164 o_reify = EV__IOFDSET; /* actually |= */
1165 }
1166
1167 if (o_reify & EV__IOFDSET)
1168 backend_modify (EV_A_ fd, o_events, anfd->events);
1169 }
289 1170
290 fdchangecnt = 0; 1171 fdchangecnt = 0;
291} 1172}
292 1173
293static void 1174/* something about the given fd changed */
1175inline_size void
294fd_change (EV_P_ int fd) 1176fd_change (EV_P_ int fd, int flags)
295{ 1177{
296 if (anfds [fd].reify || fdchangecnt < 0) 1178 unsigned char reify = anfds [fd].reify;
297 return;
298
299 anfds [fd].reify = 1; 1179 anfds [fd].reify |= flags;
300 1180
1181 if (expect_true (!reify))
1182 {
301 ++fdchangecnt; 1183 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1184 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
303 fdchanges [fdchangecnt - 1] = fd; 1185 fdchanges [fdchangecnt - 1] = fd;
1186 }
304} 1187}
305 1188
306static void 1189/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1190inline_speed void ecb_cold
307fd_kill (EV_P_ int fd) 1191fd_kill (EV_P_ int fd)
308{ 1192{
309 struct ev_io *w; 1193 ev_io *w;
310 1194
311 while ((w = (struct ev_io *)anfds [fd].head)) 1195 while ((w = (ev_io *)anfds [fd].head))
312 { 1196 {
313 ev_io_stop (EV_A_ w); 1197 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1198 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 1199 }
1200}
1201
1202/* check whether the given fd is actually valid, for error recovery */
1203inline_size int ecb_cold
1204fd_valid (int fd)
1205{
1206#ifdef _WIN32
1207 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1208#else
1209 return fcntl (fd, F_GETFD) != -1;
1210#endif
316} 1211}
317 1212
318/* called on EBADF to verify fds */ 1213/* called on EBADF to verify fds */
319static void 1214static void noinline ecb_cold
320fd_ebadf (EV_P) 1215fd_ebadf (EV_P)
321{ 1216{
322 int fd; 1217 int fd;
323 1218
324 for (fd = 0; fd < anfdmax; ++fd) 1219 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 1220 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1221 if (!fd_valid (fd) && errno == EBADF)
327 fd_kill (EV_A_ fd); 1222 fd_kill (EV_A_ fd);
328} 1223}
329 1224
330/* called on ENOMEM in select/poll to kill some fds and retry */ 1225/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 1226static void noinline ecb_cold
332fd_enomem (EV_P) 1227fd_enomem (EV_P)
333{ 1228{
334 int fd = anfdmax; 1229 int fd;
335 1230
336 while (fd--) 1231 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 1232 if (anfds [fd].events)
338 { 1233 {
339 close (fd);
340 fd_kill (EV_A_ fd); 1234 fd_kill (EV_A_ fd);
341 return; 1235 break;
342 } 1236 }
343} 1237}
344 1238
345/* susually called after fork if method needs to re-arm all fds from scratch */ 1239/* usually called after fork if backend needs to re-arm all fds from scratch */
346static void 1240static void noinline
347fd_rearm_all (EV_P) 1241fd_rearm_all (EV_P)
348{ 1242{
349 int fd; 1243 int fd;
350 1244
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 1245 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 1246 if (anfds [fd].events)
354 { 1247 {
355 anfds [fd].events = 0; 1248 anfds [fd].events = 0;
356 fd_change (fd); 1249 anfds [fd].emask = 0;
1250 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
357 } 1251 }
358} 1252}
359 1253
1254/* used to prepare libev internal fd's */
1255/* this is not fork-safe */
1256inline_speed void
1257fd_intern (int fd)
1258{
1259#ifdef _WIN32
1260 unsigned long arg = 1;
1261 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1262#else
1263 fcntl (fd, F_SETFD, FD_CLOEXEC);
1264 fcntl (fd, F_SETFL, O_NONBLOCK);
1265#endif
1266}
1267
360/*****************************************************************************/ 1268/*****************************************************************************/
361 1269
1270/*
1271 * the heap functions want a real array index. array index 0 is guaranteed to not
1272 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1273 * the branching factor of the d-tree.
1274 */
1275
1276/*
1277 * at the moment we allow libev the luxury of two heaps,
1278 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1279 * which is more cache-efficient.
1280 * the difference is about 5% with 50000+ watchers.
1281 */
1282#if EV_USE_4HEAP
1283
1284#define DHEAP 4
1285#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1286#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1287#define UPHEAP_DONE(p,k) ((p) == (k))
1288
1289/* away from the root */
1290inline_speed void
1291downheap (ANHE *heap, int N, int k)
1292{
1293 ANHE he = heap [k];
1294 ANHE *E = heap + N + HEAP0;
1295
1296 for (;;)
1297 {
1298 ev_tstamp minat;
1299 ANHE *minpos;
1300 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1301
1302 /* find minimum child */
1303 if (expect_true (pos + DHEAP - 1 < E))
1304 {
1305 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1306 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1307 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1308 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1309 }
1310 else if (pos < E)
1311 {
1312 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1313 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1314 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1315 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1316 }
1317 else
1318 break;
1319
1320 if (ANHE_at (he) <= minat)
1321 break;
1322
1323 heap [k] = *minpos;
1324 ev_active (ANHE_w (*minpos)) = k;
1325
1326 k = minpos - heap;
1327 }
1328
1329 heap [k] = he;
1330 ev_active (ANHE_w (he)) = k;
1331}
1332
1333#else /* 4HEAP */
1334
1335#define HEAP0 1
1336#define HPARENT(k) ((k) >> 1)
1337#define UPHEAP_DONE(p,k) (!(p))
1338
1339/* away from the root */
1340inline_speed void
1341downheap (ANHE *heap, int N, int k)
1342{
1343 ANHE he = heap [k];
1344
1345 for (;;)
1346 {
1347 int c = k << 1;
1348
1349 if (c >= N + HEAP0)
1350 break;
1351
1352 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1353 ? 1 : 0;
1354
1355 if (ANHE_at (he) <= ANHE_at (heap [c]))
1356 break;
1357
1358 heap [k] = heap [c];
1359 ev_active (ANHE_w (heap [k])) = k;
1360
1361 k = c;
1362 }
1363
1364 heap [k] = he;
1365 ev_active (ANHE_w (he)) = k;
1366}
1367#endif
1368
1369/* towards the root */
1370inline_speed void
1371upheap (ANHE *heap, int k)
1372{
1373 ANHE he = heap [k];
1374
1375 for (;;)
1376 {
1377 int p = HPARENT (k);
1378
1379 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1380 break;
1381
1382 heap [k] = heap [p];
1383 ev_active (ANHE_w (heap [k])) = k;
1384 k = p;
1385 }
1386
1387 heap [k] = he;
1388 ev_active (ANHE_w (he)) = k;
1389}
1390
1391/* move an element suitably so it is in a correct place */
1392inline_size void
1393adjustheap (ANHE *heap, int N, int k)
1394{
1395 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1396 upheap (heap, k);
1397 else
1398 downheap (heap, N, k);
1399}
1400
1401/* rebuild the heap: this function is used only once and executed rarely */
1402inline_size void
1403reheap (ANHE *heap, int N)
1404{
1405 int i;
1406
1407 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1408 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1409 for (i = 0; i < N; ++i)
1410 upheap (heap, i + HEAP0);
1411}
1412
1413/*****************************************************************************/
1414
1415/* associate signal watchers to a signal signal */
1416typedef struct
1417{
1418 EV_ATOMIC_T pending;
1419#if EV_MULTIPLICITY
1420 EV_P;
1421#endif
1422 WL head;
1423} ANSIG;
1424
1425static ANSIG signals [EV_NSIG - 1];
1426
1427/*****************************************************************************/
1428
1429#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1430
1431static void noinline ecb_cold
1432evpipe_init (EV_P)
1433{
1434 if (!ev_is_active (&pipe_w))
1435 {
1436# if EV_USE_EVENTFD
1437 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1438 if (evfd < 0 && errno == EINVAL)
1439 evfd = eventfd (0, 0);
1440
1441 if (evfd >= 0)
1442 {
1443 evpipe [0] = -1;
1444 fd_intern (evfd); /* doing it twice doesn't hurt */
1445 ev_io_set (&pipe_w, evfd, EV_READ);
1446 }
1447 else
1448# endif
1449 {
1450 while (pipe (evpipe))
1451 ev_syserr ("(libev) error creating signal/async pipe");
1452
1453 fd_intern (evpipe [0]);
1454 fd_intern (evpipe [1]);
1455 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1456 }
1457
1458 ev_io_start (EV_A_ &pipe_w);
1459 ev_unref (EV_A); /* watcher should not keep loop alive */
1460 }
1461}
1462
1463inline_speed void
1464evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1465{
1466 if (expect_true (*flag))
1467 return;
1468
1469 *flag = 1;
1470
1471 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1472
1473 pipe_write_skipped = 1;
1474
1475 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1476
1477 if (pipe_write_wanted)
1478 {
1479 int old_errno;
1480
1481 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1482
1483 old_errno = errno; /* save errno because write will clobber it */
1484
1485#if EV_USE_EVENTFD
1486 if (evfd >= 0)
1487 {
1488 uint64_t counter = 1;
1489 write (evfd, &counter, sizeof (uint64_t));
1490 }
1491 else
1492#endif
1493 {
1494 /* win32 people keep sending patches that change this write() to send() */
1495 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1496 /* so when you think this write should be a send instead, please find out */
1497 /* where your send() is from - it's definitely not the microsoft send, and */
1498 /* tell me. thank you. */
1499 write (evpipe [1], &(evpipe [1]), 1);
1500 }
1501
1502 errno = old_errno;
1503 }
1504}
1505
1506/* called whenever the libev signal pipe */
1507/* got some events (signal, async) */
362static void 1508static void
363upheap (WT *heap, int k) 1509pipecb (EV_P_ ev_io *iow, int revents)
364{ 1510{
365 WT w = heap [k]; 1511 int i;
366 1512
367 while (k && heap [k >> 1]->at > w->at) 1513 if (revents & EV_READ)
368 {
369 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1;
371 k >>= 1;
372 } 1514 {
1515#if EV_USE_EVENTFD
1516 if (evfd >= 0)
1517 {
1518 uint64_t counter;
1519 read (evfd, &counter, sizeof (uint64_t));
1520 }
1521 else
1522#endif
1523 {
1524 char dummy;
1525 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1526 read (evpipe [0], &dummy, 1);
1527 }
1528 }
373 1529
374 heap [k] = w; 1530 pipe_write_skipped = 0;
375 heap [k]->active = k + 1;
376 1531
1532#if EV_SIGNAL_ENABLE
1533 if (sig_pending)
1534 {
1535 sig_pending = 0;
1536
1537 for (i = EV_NSIG - 1; i--; )
1538 if (expect_false (signals [i].pending))
1539 ev_feed_signal_event (EV_A_ i + 1);
1540 }
1541#endif
1542
1543#if EV_ASYNC_ENABLE
1544 if (async_pending)
1545 {
1546 async_pending = 0;
1547
1548 for (i = asynccnt; i--; )
1549 if (asyncs [i]->sent)
1550 {
1551 asyncs [i]->sent = 0;
1552 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1553 }
1554 }
1555#endif
1556}
1557
1558/*****************************************************************************/
1559
1560void
1561ev_feed_signal (int signum)
1562{
1563#if EV_MULTIPLICITY
1564 EV_P = signals [signum - 1].loop;
1565
1566 if (!EV_A)
1567 return;
1568#endif
1569
1570 if (!ev_active (&pipe_w))
1571 return;
1572
1573 signals [signum - 1].pending = 1;
1574 evpipe_write (EV_A_ &sig_pending);
377} 1575}
378 1576
379static void 1577static void
380downheap (WT *heap, int N, int k) 1578ev_sighandler (int signum)
381{ 1579{
382 WT w = heap [k]; 1580#ifdef _WIN32
1581 signal (signum, ev_sighandler);
1582#endif
383 1583
384 while (k < (N >> 1)) 1584 ev_feed_signal (signum);
385 { 1585}
386 int j = k << 1;
387 1586
388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1587void noinline
389 ++j; 1588ev_feed_signal_event (EV_P_ int signum)
1589{
1590 WL w;
390 1591
391 if (w->at <= heap [j]->at) 1592 if (expect_false (signum <= 0 || signum > EV_NSIG))
1593 return;
1594
1595 --signum;
1596
1597#if EV_MULTIPLICITY
1598 /* it is permissible to try to feed a signal to the wrong loop */
1599 /* or, likely more useful, feeding a signal nobody is waiting for */
1600
1601 if (expect_false (signals [signum].loop != EV_A))
1602 return;
1603#endif
1604
1605 signals [signum].pending = 0;
1606
1607 for (w = signals [signum].head; w; w = w->next)
1608 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1609}
1610
1611#if EV_USE_SIGNALFD
1612static void
1613sigfdcb (EV_P_ ev_io *iow, int revents)
1614{
1615 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1616
1617 for (;;)
1618 {
1619 ssize_t res = read (sigfd, si, sizeof (si));
1620
1621 /* not ISO-C, as res might be -1, but works with SuS */
1622 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1623 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1624
1625 if (res < (ssize_t)sizeof (si))
392 break; 1626 break;
393
394 heap [k] = heap [j];
395 heap [k]->active = k + 1;
396 k = j;
397 } 1627 }
398
399 heap [k] = w;
400 heap [k]->active = k + 1;
401} 1628}
1629#endif
1630
1631#endif
402 1632
403/*****************************************************************************/ 1633/*****************************************************************************/
404 1634
405typedef struct 1635#if EV_CHILD_ENABLE
406{ 1636static WL childs [EV_PID_HASHSIZE];
407 struct ev_watcher_list *head;
408 sig_atomic_t volatile gotsig;
409} ANSIG;
410 1637
411static ANSIG *signals; 1638static ev_signal childev;
412static int signalmax;
413 1639
414static int sigpipe [2]; 1640#ifndef WIFCONTINUED
415static sig_atomic_t volatile gotsig; 1641# define WIFCONTINUED(status) 0
1642#endif
416 1643
417static void 1644/* handle a single child status event */
418signals_init (ANSIG *base, int count) 1645inline_speed void
1646child_reap (EV_P_ int chain, int pid, int status)
419{ 1647{
420 while (count--) 1648 ev_child *w;
421 { 1649 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
422 base->head = 0;
423 base->gotsig = 0;
424 1650
425 ++base; 1651 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
426 } 1652 {
427} 1653 if ((w->pid == pid || !w->pid)
428 1654 && (!traced || (w->flags & 1)))
429static void
430sighandler (int signum)
431{
432 signals [signum - 1].gotsig = 1;
433
434 if (!gotsig)
435 {
436 int old_errno = errno;
437 gotsig = 1;
438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
440 }
441}
442
443static void
444sigcb (EV_P_ struct ev_io *iow, int revents)
445{
446 struct ev_watcher_list *w;
447 int signum;
448
449 read (sigpipe [0], &revents, 1);
450 gotsig = 0;
451
452 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig)
454 { 1655 {
455 signals [signum].gotsig = 0; 1656 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
456 1657 w->rpid = pid;
457 for (w = signals [signum].head; w; w = w->next) 1658 w->rstatus = status;
458 event (EV_A_ (W)w, EV_SIGNAL); 1659 ev_feed_event (EV_A_ (W)w, EV_CHILD);
459 } 1660 }
1661 }
460} 1662}
461
462static void
463siginit (EV_P)
464{
465#ifndef WIN32
466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
468
469 /* rather than sort out wether we really need nb, set it */
470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
473
474 ev_io_set (&sigev, sigpipe [0], EV_READ);
475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
477}
478
479/*****************************************************************************/
480
481#ifndef WIN32
482 1663
483#ifndef WCONTINUED 1664#ifndef WCONTINUED
484# define WCONTINUED 0 1665# define WCONTINUED 0
485#endif 1666#endif
486 1667
1668/* called on sigchld etc., calls waitpid */
487static void 1669static void
488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
489{
490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 1670childcb (EV_P_ ev_signal *sw, int revents)
504{ 1671{
505 int pid, status; 1672 int pid, status;
506 1673
1674 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1675 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 1676 if (!WCONTINUED
1677 || errno != EINVAL
1678 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1679 return;
1680
509 /* make sure we are called again until all childs have been reaped */ 1681 /* make sure we are called again until all children have been reaped */
1682 /* we need to do it this way so that the callback gets called before we continue */
510 event (EV_A_ (W)sw, EV_SIGNAL); 1683 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 1684
512 child_reap (EV_A_ sw, pid, pid, status); 1685 child_reap (EV_A_ pid, pid, status);
1686 if ((EV_PID_HASHSIZE) > 1)
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1687 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
514 }
515} 1688}
516 1689
517#endif 1690#endif
518 1691
519/*****************************************************************************/ 1692/*****************************************************************************/
520 1693
1694#if EV_USE_IOCP
1695# include "ev_iocp.c"
1696#endif
1697#if EV_USE_PORT
1698# include "ev_port.c"
1699#endif
521#if EV_USE_KQUEUE 1700#if EV_USE_KQUEUE
522# include "ev_kqueue.c" 1701# include "ev_kqueue.c"
523#endif 1702#endif
524#if EV_USE_EPOLL 1703#if EV_USE_EPOLL
525# include "ev_epoll.c" 1704# include "ev_epoll.c"
526#endif 1705#endif
527#if EV_USEV_POLL 1706#if EV_USE_POLL
528# include "ev_poll.c" 1707# include "ev_poll.c"
529#endif 1708#endif
530#if EV_USE_SELECT 1709#if EV_USE_SELECT
531# include "ev_select.c" 1710# include "ev_select.c"
532#endif 1711#endif
533 1712
534int 1713int ecb_cold
535ev_version_major (void) 1714ev_version_major (void)
536{ 1715{
537 return EV_VERSION_MAJOR; 1716 return EV_VERSION_MAJOR;
538} 1717}
539 1718
540int 1719int ecb_cold
541ev_version_minor (void) 1720ev_version_minor (void)
542{ 1721{
543 return EV_VERSION_MINOR; 1722 return EV_VERSION_MINOR;
544} 1723}
545 1724
546/* return true if we are running with elevated privileges and should ignore env variables */ 1725/* return true if we are running with elevated privileges and should ignore env variables */
547static int 1726int inline_size ecb_cold
548enable_secure (void) 1727enable_secure (void)
549{ 1728{
550#ifdef WIN32 1729#ifdef _WIN32
551 return 0; 1730 return 0;
552#else 1731#else
553 return getuid () != geteuid () 1732 return getuid () != geteuid ()
554 || getgid () != getegid (); 1733 || getgid () != getegid ();
555#endif 1734#endif
556} 1735}
557 1736
1737unsigned int ecb_cold
1738ev_supported_backends (void)
1739{
1740 unsigned int flags = 0;
1741
1742 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1743 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1744 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1745 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1746 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1747
1748 return flags;
1749}
1750
1751unsigned int ecb_cold
1752ev_recommended_backends (void)
1753{
1754 unsigned int flags = ev_supported_backends ();
1755
1756#ifndef __NetBSD__
1757 /* kqueue is borked on everything but netbsd apparently */
1758 /* it usually doesn't work correctly on anything but sockets and pipes */
1759 flags &= ~EVBACKEND_KQUEUE;
1760#endif
1761#ifdef __APPLE__
1762 /* only select works correctly on that "unix-certified" platform */
1763 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1764 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1765#endif
1766#ifdef __FreeBSD__
1767 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1768#endif
1769
1770 return flags;
1771}
1772
1773unsigned int ecb_cold
1774ev_embeddable_backends (void)
1775{
1776 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1777
1778 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1779 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1780 flags &= ~EVBACKEND_EPOLL;
1781
1782 return flags;
1783}
1784
1785unsigned int
1786ev_backend (EV_P)
1787{
1788 return backend;
1789}
1790
1791#if EV_FEATURE_API
1792unsigned int
1793ev_iteration (EV_P)
1794{
1795 return loop_count;
1796}
1797
1798unsigned int
1799ev_depth (EV_P)
1800{
1801 return loop_depth;
1802}
1803
1804void
1805ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1806{
1807 io_blocktime = interval;
1808}
1809
1810void
1811ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1812{
1813 timeout_blocktime = interval;
1814}
1815
1816void
1817ev_set_userdata (EV_P_ void *data)
1818{
1819 userdata = data;
1820}
1821
1822void *
1823ev_userdata (EV_P)
1824{
1825 return userdata;
1826}
1827
1828void
1829ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1830{
1831 invoke_cb = invoke_pending_cb;
1832}
1833
1834void
1835ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1836{
1837 release_cb = release;
1838 acquire_cb = acquire;
1839}
1840#endif
1841
1842/* initialise a loop structure, must be zero-initialised */
1843static void noinline ecb_cold
1844loop_init (EV_P_ unsigned int flags)
1845{
1846 if (!backend)
1847 {
1848 origflags = flags;
1849
1850#if EV_USE_REALTIME
1851 if (!have_realtime)
1852 {
1853 struct timespec ts;
1854
1855 if (!clock_gettime (CLOCK_REALTIME, &ts))
1856 have_realtime = 1;
1857 }
1858#endif
1859
1860#if EV_USE_MONOTONIC
1861 if (!have_monotonic)
1862 {
1863 struct timespec ts;
1864
1865 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1866 have_monotonic = 1;
1867 }
1868#endif
1869
1870 /* pid check not overridable via env */
1871#ifndef _WIN32
1872 if (flags & EVFLAG_FORKCHECK)
1873 curpid = getpid ();
1874#endif
1875
1876 if (!(flags & EVFLAG_NOENV)
1877 && !enable_secure ()
1878 && getenv ("LIBEV_FLAGS"))
1879 flags = atoi (getenv ("LIBEV_FLAGS"));
1880
1881 ev_rt_now = ev_time ();
1882 mn_now = get_clock ();
1883 now_floor = mn_now;
1884 rtmn_diff = ev_rt_now - mn_now;
1885#if EV_FEATURE_API
1886 invoke_cb = ev_invoke_pending;
1887#endif
1888
1889 io_blocktime = 0.;
1890 timeout_blocktime = 0.;
1891 backend = 0;
1892 backend_fd = -1;
1893 sig_pending = 0;
1894#if EV_ASYNC_ENABLE
1895 async_pending = 0;
1896#endif
1897 pipe_write_skipped = 0;
1898 pipe_write_wanted = 0;
1899#if EV_USE_INOTIFY
1900 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1901#endif
1902#if EV_USE_SIGNALFD
1903 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1904#endif
1905
1906 if (!(flags & EVBACKEND_MASK))
1907 flags |= ev_recommended_backends ();
1908
1909#if EV_USE_IOCP
1910 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1911#endif
1912#if EV_USE_PORT
1913 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1914#endif
1915#if EV_USE_KQUEUE
1916 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1917#endif
1918#if EV_USE_EPOLL
1919 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1920#endif
1921#if EV_USE_POLL
1922 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1923#endif
1924#if EV_USE_SELECT
1925 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1926#endif
1927
1928 ev_prepare_init (&pending_w, pendingcb);
1929
1930#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1931 ev_init (&pipe_w, pipecb);
1932 ev_set_priority (&pipe_w, EV_MAXPRI);
1933#endif
1934 }
1935}
1936
1937/* free up a loop structure */
1938void ecb_cold
1939ev_loop_destroy (EV_P)
1940{
1941 int i;
1942
1943#if EV_MULTIPLICITY
1944 /* mimic free (0) */
1945 if (!EV_A)
1946 return;
1947#endif
1948
1949#if EV_CLEANUP_ENABLE
1950 /* queue cleanup watchers (and execute them) */
1951 if (expect_false (cleanupcnt))
1952 {
1953 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1954 EV_INVOKE_PENDING;
1955 }
1956#endif
1957
1958#if EV_CHILD_ENABLE
1959 if (ev_is_active (&childev))
1960 {
1961 ev_ref (EV_A); /* child watcher */
1962 ev_signal_stop (EV_A_ &childev);
1963 }
1964#endif
1965
1966 if (ev_is_active (&pipe_w))
1967 {
1968 /*ev_ref (EV_A);*/
1969 /*ev_io_stop (EV_A_ &pipe_w);*/
1970
1971#if EV_USE_EVENTFD
1972 if (evfd >= 0)
1973 close (evfd);
1974#endif
1975
1976 if (evpipe [0] >= 0)
1977 {
1978 EV_WIN32_CLOSE_FD (evpipe [0]);
1979 EV_WIN32_CLOSE_FD (evpipe [1]);
1980 }
1981 }
1982
1983#if EV_USE_SIGNALFD
1984 if (ev_is_active (&sigfd_w))
1985 close (sigfd);
1986#endif
1987
1988#if EV_USE_INOTIFY
1989 if (fs_fd >= 0)
1990 close (fs_fd);
1991#endif
1992
1993 if (backend_fd >= 0)
1994 close (backend_fd);
1995
1996#if EV_USE_IOCP
1997 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1998#endif
1999#if EV_USE_PORT
2000 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2001#endif
2002#if EV_USE_KQUEUE
2003 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2004#endif
2005#if EV_USE_EPOLL
2006 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2007#endif
2008#if EV_USE_POLL
2009 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2010#endif
2011#if EV_USE_SELECT
2012 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2013#endif
2014
2015 for (i = NUMPRI; i--; )
2016 {
2017 array_free (pending, [i]);
2018#if EV_IDLE_ENABLE
2019 array_free (idle, [i]);
2020#endif
2021 }
2022
2023 ev_free (anfds); anfds = 0; anfdmax = 0;
2024
2025 /* have to use the microsoft-never-gets-it-right macro */
2026 array_free (rfeed, EMPTY);
2027 array_free (fdchange, EMPTY);
2028 array_free (timer, EMPTY);
2029#if EV_PERIODIC_ENABLE
2030 array_free (periodic, EMPTY);
2031#endif
2032#if EV_FORK_ENABLE
2033 array_free (fork, EMPTY);
2034#endif
2035#if EV_CLEANUP_ENABLE
2036 array_free (cleanup, EMPTY);
2037#endif
2038 array_free (prepare, EMPTY);
2039 array_free (check, EMPTY);
2040#if EV_ASYNC_ENABLE
2041 array_free (async, EMPTY);
2042#endif
2043
2044 backend = 0;
2045
2046#if EV_MULTIPLICITY
2047 if (ev_is_default_loop (EV_A))
2048#endif
2049 ev_default_loop_ptr = 0;
2050#if EV_MULTIPLICITY
2051 else
2052 ev_free (EV_A);
2053#endif
2054}
2055
2056#if EV_USE_INOTIFY
2057inline_size void infy_fork (EV_P);
2058#endif
2059
2060inline_size void
2061loop_fork (EV_P)
2062{
2063#if EV_USE_PORT
2064 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2065#endif
2066#if EV_USE_KQUEUE
2067 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2068#endif
2069#if EV_USE_EPOLL
2070 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2071#endif
2072#if EV_USE_INOTIFY
2073 infy_fork (EV_A);
2074#endif
2075
2076 if (ev_is_active (&pipe_w))
2077 {
2078 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2079
2080 ev_ref (EV_A);
2081 ev_io_stop (EV_A_ &pipe_w);
2082
2083#if EV_USE_EVENTFD
2084 if (evfd >= 0)
2085 close (evfd);
2086#endif
2087
2088 if (evpipe [0] >= 0)
2089 {
2090 EV_WIN32_CLOSE_FD (evpipe [0]);
2091 EV_WIN32_CLOSE_FD (evpipe [1]);
2092 }
2093
2094#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2095 evpipe_init (EV_A);
2096 /* now iterate over everything, in case we missed something */
2097 pipecb (EV_A_ &pipe_w, EV_READ);
2098#endif
2099 }
2100
2101 postfork = 0;
2102}
2103
2104#if EV_MULTIPLICITY
2105
2106struct ev_loop * ecb_cold
2107ev_loop_new (unsigned int flags)
2108{
2109 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2110
2111 memset (EV_A, 0, sizeof (struct ev_loop));
2112 loop_init (EV_A_ flags);
2113
2114 if (ev_backend (EV_A))
2115 return EV_A;
2116
2117 ev_free (EV_A);
2118 return 0;
2119}
2120
2121#endif /* multiplicity */
2122
2123#if EV_VERIFY
2124static void noinline ecb_cold
2125verify_watcher (EV_P_ W w)
2126{
2127 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2128
2129 if (w->pending)
2130 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2131}
2132
2133static void noinline ecb_cold
2134verify_heap (EV_P_ ANHE *heap, int N)
2135{
2136 int i;
2137
2138 for (i = HEAP0; i < N + HEAP0; ++i)
2139 {
2140 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2141 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2142 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2143
2144 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2145 }
2146}
2147
2148static void noinline ecb_cold
2149array_verify (EV_P_ W *ws, int cnt)
2150{
2151 while (cnt--)
2152 {
2153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2154 verify_watcher (EV_A_ ws [cnt]);
2155 }
2156}
2157#endif
2158
2159#if EV_FEATURE_API
2160void ecb_cold
2161ev_verify (EV_P)
2162{
2163#if EV_VERIFY
2164 int i;
2165 WL w;
2166
2167 assert (activecnt >= -1);
2168
2169 assert (fdchangemax >= fdchangecnt);
2170 for (i = 0; i < fdchangecnt; ++i)
2171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2172
2173 assert (anfdmax >= 0);
2174 for (i = 0; i < anfdmax; ++i)
2175 for (w = anfds [i].head; w; w = w->next)
2176 {
2177 verify_watcher (EV_A_ (W)w);
2178 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2179 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2180 }
2181
2182 assert (timermax >= timercnt);
2183 verify_heap (EV_A_ timers, timercnt);
2184
2185#if EV_PERIODIC_ENABLE
2186 assert (periodicmax >= periodiccnt);
2187 verify_heap (EV_A_ periodics, periodiccnt);
2188#endif
2189
2190 for (i = NUMPRI; i--; )
2191 {
2192 assert (pendingmax [i] >= pendingcnt [i]);
2193#if EV_IDLE_ENABLE
2194 assert (idleall >= 0);
2195 assert (idlemax [i] >= idlecnt [i]);
2196 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2197#endif
2198 }
2199
2200#if EV_FORK_ENABLE
2201 assert (forkmax >= forkcnt);
2202 array_verify (EV_A_ (W *)forks, forkcnt);
2203#endif
2204
2205#if EV_CLEANUP_ENABLE
2206 assert (cleanupmax >= cleanupcnt);
2207 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2208#endif
2209
2210#if EV_ASYNC_ENABLE
2211 assert (asyncmax >= asynccnt);
2212 array_verify (EV_A_ (W *)asyncs, asynccnt);
2213#endif
2214
2215#if EV_PREPARE_ENABLE
2216 assert (preparemax >= preparecnt);
2217 array_verify (EV_A_ (W *)prepares, preparecnt);
2218#endif
2219
2220#if EV_CHECK_ENABLE
2221 assert (checkmax >= checkcnt);
2222 array_verify (EV_A_ (W *)checks, checkcnt);
2223#endif
2224
2225# if 0
2226#if EV_CHILD_ENABLE
2227 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2228 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2229#endif
2230# endif
2231#endif
2232}
2233#endif
2234
2235#if EV_MULTIPLICITY
2236struct ev_loop * ecb_cold
2237#else
558int 2238int
559ev_method (EV_P) 2239#endif
2240ev_default_loop (unsigned int flags)
560{ 2241{
561 return method; 2242 if (!ev_default_loop_ptr)
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
567 if (!method)
568 {
569#if EV_USE_MONOTONIC
570 { 2243 {
571 struct timespec ts;
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1;
574 }
575#endif
576
577 rt_now = ev_time ();
578 mn_now = get_clock ();
579 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now;
581
582 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
592#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif
598#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif
601 }
602}
603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY 2244#if EV_MULTIPLICITY
637struct ev_loop * 2245 EV_P = ev_default_loop_ptr = &default_loop_struct;
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else 2246#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1; 2247 ev_default_loop_ptr = 1;
687#endif 2248#endif
688 2249
689 loop_init (EV_A_ methods); 2250 loop_init (EV_A_ flags);
690 2251
691 if (ev_method (EV_A)) 2252 if (ev_backend (EV_A))
692 { 2253 {
693 ev_watcher_init (&sigev, sigcb); 2254#if EV_CHILD_ENABLE
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A);
696
697#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 2255 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 2256 ev_set_priority (&childev, EV_MAXPRI);
700 ev_signal_start (EV_A_ &childev); 2257 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2258 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif 2259#endif
703 } 2260 }
704 else 2261 else
705 default_loop = 0; 2262 ev_default_loop_ptr = 0;
706 } 2263 }
707 2264
708 return default_loop; 2265 return ev_default_loop_ptr;
709} 2266}
710 2267
711void 2268void
712ev_default_destroy (void) 2269ev_loop_fork (EV_P)
713{ 2270{
714#if EV_MULTIPLICITY 2271 postfork = 1; /* must be in line with ev_default_fork */
715 struct ev_loop *loop = default_loop;
716#endif
717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728} 2272}
2273
2274/*****************************************************************************/
729 2275
730void 2276void
731ev_default_fork (EV_P) 2277ev_invoke (EV_P_ void *w, int revents)
732{ 2278{
733 loop_fork (EV_A); 2279 EV_CB_INVOKE ((W)w, revents);
734
735 ev_io_stop (EV_A_ &sigev);
736 close (sigpipe [0]);
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 2280}
743 2281
744/*****************************************************************************/ 2282unsigned int
2283ev_pending_count (EV_P)
2284{
2285 int pri;
2286 unsigned int count = 0;
745 2287
746static void 2288 for (pri = NUMPRI; pri--; )
747call_pending (EV_P) 2289 count += pendingcnt [pri];
2290
2291 return count;
2292}
2293
2294void noinline
2295ev_invoke_pending (EV_P)
748{ 2296{
749 int pri; 2297 int pri;
750 2298
751 for (pri = NUMPRI; pri--; ) 2299 for (pri = NUMPRI; pri--; )
752 while (pendingcnt [pri]) 2300 while (pendingcnt [pri])
753 { 2301 {
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2302 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 2303
756 if (p->w)
757 {
758 p->w->pending = 0; 2304 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 2305 EV_CB_INVOKE (p->w, p->events);
760 } 2306 EV_FREQUENT_CHECK;
761 } 2307 }
762} 2308}
763 2309
764static void 2310#if EV_IDLE_ENABLE
2311/* make idle watchers pending. this handles the "call-idle */
2312/* only when higher priorities are idle" logic */
2313inline_size void
765timers_reify (EV_P) 2314idle_reify (EV_P)
766{ 2315{
767 while (timercnt && timers [0]->at <= mn_now) 2316 if (expect_false (idleall))
768 { 2317 {
769 struct ev_timer *w = timers [0]; 2318 int pri;
770 2319
771 /* first reschedule or stop timer */ 2320 for (pri = NUMPRI; pri--; )
772 if (w->repeat)
773 { 2321 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2322 if (pendingcnt [pri])
775 w->at = mn_now + w->repeat; 2323 break;
776 downheap ((WT *)timers, timercnt, 0);
777 }
778 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 2324
781 event (EV_A_ (W)w, EV_TIMEOUT); 2325 if (idlecnt [pri])
782 }
783}
784
785static void
786periodics_reify (EV_P)
787{
788 while (periodiccnt && periodics [0]->at <= rt_now)
789 {
790 struct ev_periodic *w = periodics [0];
791
792 /* first reschedule or stop timer */
793 if (w->interval)
794 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0);
798 }
799 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801
802 event (EV_A_ (W)w, EV_PERIODIC);
803 }
804}
805
806static void
807periodics_reschedule (EV_P)
808{
809 int i;
810
811 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i)
813 {
814 struct ev_periodic *w = periodics [i];
815
816 if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 { 2326 {
822 ev_periodic_stop (EV_A_ w); 2327 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
823 ev_periodic_start (EV_A_ w); 2328 break;
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 } 2329 }
827 } 2330 }
828 } 2331 }
829} 2332}
2333#endif
830 2334
831inline int 2335/* make timers pending */
832time_update_monotonic (EV_P) 2336inline_size void
2337timers_reify (EV_P)
833{ 2338{
834 mn_now = get_clock (); 2339 EV_FREQUENT_CHECK;
835 2340
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2341 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 } 2342 {
841 else 2343 do
2344 {
2345 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2346
2347 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2348
2349 /* first reschedule or stop timer */
2350 if (w->repeat)
2351 {
2352 ev_at (w) += w->repeat;
2353 if (ev_at (w) < mn_now)
2354 ev_at (w) = mn_now;
2355
2356 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2357
2358 ANHE_at_cache (timers [HEAP0]);
2359 downheap (timers, timercnt, HEAP0);
2360 }
2361 else
2362 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2363
2364 EV_FREQUENT_CHECK;
2365 feed_reverse (EV_A_ (W)w);
2366 }
2367 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2368
2369 feed_reverse_done (EV_A_ EV_TIMER);
842 { 2370 }
843 now_floor = mn_now; 2371}
844 rt_now = ev_time (); 2372
845 return 1; 2373#if EV_PERIODIC_ENABLE
2374
2375static void noinline
2376periodic_recalc (EV_P_ ev_periodic *w)
2377{
2378 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2379 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2380
2381 /* the above almost always errs on the low side */
2382 while (at <= ev_rt_now)
846 } 2383 {
847} 2384 ev_tstamp nat = at + w->interval;
848 2385
849static void 2386 /* when resolution fails us, we use ev_rt_now */
850time_update (EV_P) 2387 if (expect_false (nat == at))
2388 {
2389 at = ev_rt_now;
2390 break;
2391 }
2392
2393 at = nat;
2394 }
2395
2396 ev_at (w) = at;
2397}
2398
2399/* make periodics pending */
2400inline_size void
2401periodics_reify (EV_P)
2402{
2403 EV_FREQUENT_CHECK;
2404
2405 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2406 {
2407 int feed_count = 0;
2408
2409 do
2410 {
2411 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2412
2413 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2414
2415 /* first reschedule or stop timer */
2416 if (w->reschedule_cb)
2417 {
2418 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2419
2420 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2421
2422 ANHE_at_cache (periodics [HEAP0]);
2423 downheap (periodics, periodiccnt, HEAP0);
2424 }
2425 else if (w->interval)
2426 {
2427 periodic_recalc (EV_A_ w);
2428 ANHE_at_cache (periodics [HEAP0]);
2429 downheap (periodics, periodiccnt, HEAP0);
2430 }
2431 else
2432 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2433
2434 EV_FREQUENT_CHECK;
2435 feed_reverse (EV_A_ (W)w);
2436 }
2437 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2438
2439 feed_reverse_done (EV_A_ EV_PERIODIC);
2440 }
2441}
2442
2443/* simply recalculate all periodics */
2444/* TODO: maybe ensure that at least one event happens when jumping forward? */
2445static void noinline ecb_cold
2446periodics_reschedule (EV_P)
851{ 2447{
852 int i; 2448 int i;
853 2449
2450 /* adjust periodics after time jump */
2451 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2452 {
2453 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2454
2455 if (w->reschedule_cb)
2456 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2457 else if (w->interval)
2458 periodic_recalc (EV_A_ w);
2459
2460 ANHE_at_cache (periodics [i]);
2461 }
2462
2463 reheap (periodics, periodiccnt);
2464}
2465#endif
2466
2467/* adjust all timers by a given offset */
2468static void noinline ecb_cold
2469timers_reschedule (EV_P_ ev_tstamp adjust)
2470{
2471 int i;
2472
2473 for (i = 0; i < timercnt; ++i)
2474 {
2475 ANHE *he = timers + i + HEAP0;
2476 ANHE_w (*he)->at += adjust;
2477 ANHE_at_cache (*he);
2478 }
2479}
2480
2481/* fetch new monotonic and realtime times from the kernel */
2482/* also detect if there was a timejump, and act accordingly */
2483inline_speed void
2484time_update (EV_P_ ev_tstamp max_block)
2485{
854#if EV_USE_MONOTONIC 2486#if EV_USE_MONOTONIC
855 if (expect_true (have_monotonic)) 2487 if (expect_true (have_monotonic))
856 { 2488 {
857 if (time_update_monotonic (EV_A)) 2489 int i;
2490 ev_tstamp odiff = rtmn_diff;
2491
2492 mn_now = get_clock ();
2493
2494 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2495 /* interpolate in the meantime */
2496 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
858 { 2497 {
859 ev_tstamp odiff = rtmn_diff; 2498 ev_rt_now = rtmn_diff + mn_now;
2499 return;
2500 }
860 2501
2502 now_floor = mn_now;
2503 ev_rt_now = ev_time ();
2504
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2505 /* loop a few times, before making important decisions.
2506 * on the choice of "4": one iteration isn't enough,
2507 * in case we get preempted during the calls to
2508 * ev_time and get_clock. a second call is almost guaranteed
2509 * to succeed in that case, though. and looping a few more times
2510 * doesn't hurt either as we only do this on time-jumps or
2511 * in the unlikely event of having been preempted here.
2512 */
2513 for (i = 4; --i; )
862 { 2514 {
2515 ev_tstamp diff;
863 rtmn_diff = rt_now - mn_now; 2516 rtmn_diff = ev_rt_now - mn_now;
864 2517
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2518 diff = odiff - rtmn_diff;
2519
2520 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
866 return; /* all is well */ 2521 return; /* all is well */
867 2522
868 rt_now = ev_time (); 2523 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 2524 mn_now = get_clock ();
870 now_floor = mn_now; 2525 now_floor = mn_now;
871 } 2526 }
872 2527
2528 /* no timer adjustment, as the monotonic clock doesn't jump */
2529 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2530# if EV_PERIODIC_ENABLE
2531 periodics_reschedule (EV_A);
2532# endif
2533 }
2534 else
2535#endif
2536 {
2537 ev_rt_now = ev_time ();
2538
2539 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2540 {
2541 /* adjust timers. this is easy, as the offset is the same for all of them */
2542 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2543#if EV_PERIODIC_ENABLE
873 periodics_reschedule (EV_A); 2544 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 2545#endif
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 2546 }
877 }
878 else
879#endif
880 {
881 rt_now = ev_time ();
882 2547
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 {
885 periodics_reschedule (EV_A);
886
887 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now;
890 }
891
892 mn_now = rt_now; 2548 mn_now = ev_rt_now;
893 } 2549 }
894} 2550}
895 2551
896void 2552void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
911ev_loop (EV_P_ int flags) 2553ev_run (EV_P_ int flags)
912{ 2554{
913 double block; 2555#if EV_FEATURE_API
914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2556 ++loop_depth;
2557#endif
2558
2559 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2560
2561 loop_done = EVBREAK_CANCEL;
2562
2563 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
915 2564
916 do 2565 do
917 { 2566 {
2567#if EV_VERIFY >= 2
2568 ev_verify (EV_A);
2569#endif
2570
2571#ifndef _WIN32
2572 if (expect_false (curpid)) /* penalise the forking check even more */
2573 if (expect_false (getpid () != curpid))
2574 {
2575 curpid = getpid ();
2576 postfork = 1;
2577 }
2578#endif
2579
2580#if EV_FORK_ENABLE
2581 /* we might have forked, so queue fork handlers */
2582 if (expect_false (postfork))
2583 if (forkcnt)
2584 {
2585 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2586 EV_INVOKE_PENDING;
2587 }
2588#endif
2589
2590#if EV_PREPARE_ENABLE
918 /* queue check watchers (and execute them) */ 2591 /* queue prepare watchers (and execute them) */
919 if (expect_false (preparecnt)) 2592 if (expect_false (preparecnt))
920 { 2593 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2594 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 2595 EV_INVOKE_PENDING;
923 } 2596 }
2597#endif
2598
2599 if (expect_false (loop_done))
2600 break;
2601
2602 /* we might have forked, so reify kernel state if necessary */
2603 if (expect_false (postfork))
2604 loop_fork (EV_A);
924 2605
925 /* update fd-related kernel structures */ 2606 /* update fd-related kernel structures */
926 fd_reify (EV_A); 2607 fd_reify (EV_A);
927 2608
928 /* calculate blocking time */ 2609 /* calculate blocking time */
2610 {
2611 ev_tstamp waittime = 0.;
2612 ev_tstamp sleeptime = 0.;
929 2613
930 /* we only need this for !monotonic clockor timers, but as we basically 2614 /* remember old timestamp for io_blocktime calculation */
931 always have timers, we just calculate it always */ 2615 ev_tstamp prev_mn_now = mn_now;
932#if EV_USE_MONOTONIC 2616
933 if (expect_true (have_monotonic)) 2617 /* update time to cancel out callback processing overhead */
934 time_update_monotonic (EV_A); 2618 time_update (EV_A_ 1e100);
935 else 2619
936#endif 2620 /* from now on, we want a pipe-wake-up */
2621 pipe_write_wanted = 1;
2622
2623 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2624
2625 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
937 { 2626 {
938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
941
942 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.;
944 else
945 {
946 block = MAX_BLOCKTIME; 2627 waittime = MAX_BLOCKTIME;
947 2628
948 if (timercnt) 2629 if (timercnt)
949 { 2630 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2631 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
951 if (block > to) block = to; 2632 if (waittime > to) waittime = to;
952 } 2633 }
953 2634
2635#if EV_PERIODIC_ENABLE
954 if (periodiccnt) 2636 if (periodiccnt)
955 { 2637 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2638 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
957 if (block > to) block = to; 2639 if (waittime > to) waittime = to;
958 } 2640 }
2641#endif
959 2642
960 if (block < 0.) block = 0.; 2643 /* don't let timeouts decrease the waittime below timeout_blocktime */
2644 if (expect_false (waittime < timeout_blocktime))
2645 waittime = timeout_blocktime;
2646
2647 /* at this point, we NEED to wait, so we have to ensure */
2648 /* to pass a minimum nonzero value to the backend */
2649 if (expect_false (waittime < backend_mintime))
2650 waittime = backend_mintime;
2651
2652 /* extra check because io_blocktime is commonly 0 */
2653 if (expect_false (io_blocktime))
2654 {
2655 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2656
2657 if (sleeptime > waittime - backend_mintime)
2658 sleeptime = waittime - backend_mintime;
2659
2660 if (expect_true (sleeptime > 0.))
2661 {
2662 ev_sleep (sleeptime);
2663 waittime -= sleeptime;
2664 }
2665 }
961 } 2666 }
962 2667
963 method_poll (EV_A_ block); 2668#if EV_FEATURE_API
2669 ++loop_count;
2670#endif
2671 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2672 backend_poll (EV_A_ waittime);
2673 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
964 2674
2675 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2676
2677 if (pipe_write_skipped)
2678 {
2679 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2680 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2681 }
2682
2683
965 /* update rt_now, do magic */ 2684 /* update ev_rt_now, do magic */
966 time_update (EV_A); 2685 time_update (EV_A_ waittime + sleeptime);
2686 }
967 2687
968 /* queue pending timers and reschedule them */ 2688 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 2689 timers_reify (EV_A); /* relative timers called last */
2690#if EV_PERIODIC_ENABLE
970 periodics_reify (EV_A); /* absolute timers called first */ 2691 periodics_reify (EV_A); /* absolute timers called first */
2692#endif
971 2693
2694#if EV_IDLE_ENABLE
972 /* queue idle watchers unless io or timers are pending */ 2695 /* queue idle watchers unless other events are pending */
973 if (!pendingcnt) 2696 idle_reify (EV_A);
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2697#endif
975 2698
2699#if EV_CHECK_ENABLE
976 /* queue check watchers, to be executed first */ 2700 /* queue check watchers, to be executed first */
977 if (checkcnt) 2701 if (expect_false (checkcnt))
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2702 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2703#endif
979 2704
980 call_pending (EV_A); 2705 EV_INVOKE_PENDING;
981 } 2706 }
982 while (activecnt && !loop_done); 2707 while (expect_true (
2708 activecnt
2709 && !loop_done
2710 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2711 ));
983 2712
984 if (loop_done != 2) 2713 if (loop_done == EVBREAK_ONE)
985 loop_done = 0; 2714 loop_done = EVBREAK_CANCEL;
2715
2716#if EV_FEATURE_API
2717 --loop_depth;
2718#endif
986} 2719}
987 2720
988void 2721void
989ev_unloop (EV_P_ int how) 2722ev_break (EV_P_ int how)
990{ 2723{
991 loop_done = how; 2724 loop_done = how;
992} 2725}
993 2726
2727void
2728ev_ref (EV_P)
2729{
2730 ++activecnt;
2731}
2732
2733void
2734ev_unref (EV_P)
2735{
2736 --activecnt;
2737}
2738
2739void
2740ev_now_update (EV_P)
2741{
2742 time_update (EV_A_ 1e100);
2743}
2744
2745void
2746ev_suspend (EV_P)
2747{
2748 ev_now_update (EV_A);
2749}
2750
2751void
2752ev_resume (EV_P)
2753{
2754 ev_tstamp mn_prev = mn_now;
2755
2756 ev_now_update (EV_A);
2757 timers_reschedule (EV_A_ mn_now - mn_prev);
2758#if EV_PERIODIC_ENABLE
2759 /* TODO: really do this? */
2760 periodics_reschedule (EV_A);
2761#endif
2762}
2763
994/*****************************************************************************/ 2764/*****************************************************************************/
2765/* singly-linked list management, used when the expected list length is short */
995 2766
996inline void 2767inline_size void
997wlist_add (WL *head, WL elem) 2768wlist_add (WL *head, WL elem)
998{ 2769{
999 elem->next = *head; 2770 elem->next = *head;
1000 *head = elem; 2771 *head = elem;
1001} 2772}
1002 2773
1003inline void 2774inline_size void
1004wlist_del (WL *head, WL elem) 2775wlist_del (WL *head, WL elem)
1005{ 2776{
1006 while (*head) 2777 while (*head)
1007 { 2778 {
1008 if (*head == elem) 2779 if (expect_true (*head == elem))
1009 { 2780 {
1010 *head = elem->next; 2781 *head = elem->next;
1011 return; 2782 break;
1012 } 2783 }
1013 2784
1014 head = &(*head)->next; 2785 head = &(*head)->next;
1015 } 2786 }
1016} 2787}
1017 2788
2789/* internal, faster, version of ev_clear_pending */
1018inline void 2790inline_speed void
1019ev_clear_pending (EV_P_ W w) 2791clear_pending (EV_P_ W w)
1020{ 2792{
1021 if (w->pending) 2793 if (w->pending)
1022 { 2794 {
1023 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2795 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1024 w->pending = 0; 2796 w->pending = 0;
1025 } 2797 }
1026} 2798}
1027 2799
2800int
2801ev_clear_pending (EV_P_ void *w)
2802{
2803 W w_ = (W)w;
2804 int pending = w_->pending;
2805
2806 if (expect_true (pending))
2807 {
2808 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2809 p->w = (W)&pending_w;
2810 w_->pending = 0;
2811 return p->events;
2812 }
2813 else
2814 return 0;
2815}
2816
1028inline void 2817inline_size void
2818pri_adjust (EV_P_ W w)
2819{
2820 int pri = ev_priority (w);
2821 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2822 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2823 ev_set_priority (w, pri);
2824}
2825
2826inline_speed void
1029ev_start (EV_P_ W w, int active) 2827ev_start (EV_P_ W w, int active)
1030{ 2828{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2829 pri_adjust (EV_A_ w);
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
1034 w->active = active; 2830 w->active = active;
1035 ev_ref (EV_A); 2831 ev_ref (EV_A);
1036} 2832}
1037 2833
1038inline void 2834inline_size void
1039ev_stop (EV_P_ W w) 2835ev_stop (EV_P_ W w)
1040{ 2836{
1041 ev_unref (EV_A); 2837 ev_unref (EV_A);
1042 w->active = 0; 2838 w->active = 0;
1043} 2839}
1044 2840
1045/*****************************************************************************/ 2841/*****************************************************************************/
1046 2842
1047void 2843void noinline
1048ev_io_start (EV_P_ struct ev_io *w) 2844ev_io_start (EV_P_ ev_io *w)
1049{ 2845{
1050 int fd = w->fd; 2846 int fd = w->fd;
1051 2847
1052 if (ev_is_active (w)) 2848 if (expect_false (ev_is_active (w)))
1053 return; 2849 return;
1054 2850
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 2851 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2852 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2853
2854 EV_FREQUENT_CHECK;
1056 2855
1057 ev_start (EV_A_ (W)w, 1); 2856 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2857 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2858 wlist_add (&anfds[fd].head, (WL)w);
1060 2859
1061 fd_change (EV_A_ fd); 2860 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1062} 2861 w->events &= ~EV__IOFDSET;
1063 2862
1064void 2863 EV_FREQUENT_CHECK;
2864}
2865
2866void noinline
1065ev_io_stop (EV_P_ struct ev_io *w) 2867ev_io_stop (EV_P_ ev_io *w)
1066{ 2868{
1067 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 2870 if (expect_false (!ev_is_active (w)))
1069 return; 2871 return;
1070 2872
2873 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2874
2875 EV_FREQUENT_CHECK;
2876
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2877 wlist_del (&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 2878 ev_stop (EV_A_ (W)w);
1073 2879
1074 fd_change (EV_A_ w->fd); 2880 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1075}
1076 2881
1077void 2882 EV_FREQUENT_CHECK;
2883}
2884
2885void noinline
1078ev_timer_start (EV_P_ struct ev_timer *w) 2886ev_timer_start (EV_P_ ev_timer *w)
1079{ 2887{
1080 if (ev_is_active (w)) 2888 if (expect_false (ev_is_active (w)))
1081 return; 2889 return;
1082 2890
1083 w->at += mn_now; 2891 ev_at (w) += mn_now;
1084 2892
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2893 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 2894
2895 EV_FREQUENT_CHECK;
2896
2897 ++timercnt;
1087 ev_start (EV_A_ (W)w, ++timercnt); 2898 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1088 array_needsize (timers, timermax, timercnt, ); 2899 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1089 timers [timercnt - 1] = w; 2900 ANHE_w (timers [ev_active (w)]) = (WT)w;
1090 upheap ((WT *)timers, timercnt - 1); 2901 ANHE_at_cache (timers [ev_active (w)]);
1091} 2902 upheap (timers, ev_active (w));
1092 2903
1093void 2904 EV_FREQUENT_CHECK;
2905
2906 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2907}
2908
2909void noinline
1094ev_timer_stop (EV_P_ struct ev_timer *w) 2910ev_timer_stop (EV_P_ ev_timer *w)
1095{ 2911{
1096 ev_clear_pending (EV_A_ (W)w); 2912 clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 2913 if (expect_false (!ev_is_active (w)))
1098 return; 2914 return;
1099 2915
1100 if (w->active < timercnt--) 2916 EV_FREQUENT_CHECK;
2917
2918 {
2919 int active = ev_active (w);
2920
2921 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2922
2923 --timercnt;
2924
2925 if (expect_true (active < timercnt + HEAP0))
1101 { 2926 {
1102 timers [w->active - 1] = timers [timercnt]; 2927 timers [active] = timers [timercnt + HEAP0];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 2928 adjustheap (timers, timercnt, active);
1104 } 2929 }
2930 }
1105 2931
1106 w->at = w->repeat; 2932 ev_at (w) -= mn_now;
1107 2933
1108 ev_stop (EV_A_ (W)w); 2934 ev_stop (EV_A_ (W)w);
1109}
1110 2935
1111void 2936 EV_FREQUENT_CHECK;
2937}
2938
2939void noinline
1112ev_timer_again (EV_P_ struct ev_timer *w) 2940ev_timer_again (EV_P_ ev_timer *w)
1113{ 2941{
2942 EV_FREQUENT_CHECK;
2943
1114 if (ev_is_active (w)) 2944 if (ev_is_active (w))
1115 { 2945 {
1116 if (w->repeat) 2946 if (w->repeat)
1117 { 2947 {
1118 w->at = mn_now + w->repeat; 2948 ev_at (w) = mn_now + w->repeat;
2949 ANHE_at_cache (timers [ev_active (w)]);
1119 downheap ((WT *)timers, timercnt, w->active - 1); 2950 adjustheap (timers, timercnt, ev_active (w));
1120 } 2951 }
1121 else 2952 else
1122 ev_timer_stop (EV_A_ w); 2953 ev_timer_stop (EV_A_ w);
1123 } 2954 }
1124 else if (w->repeat) 2955 else if (w->repeat)
2956 {
2957 ev_at (w) = w->repeat;
1125 ev_timer_start (EV_A_ w); 2958 ev_timer_start (EV_A_ w);
1126} 2959 }
1127 2960
1128void 2961 EV_FREQUENT_CHECK;
2962}
2963
2964ev_tstamp
2965ev_timer_remaining (EV_P_ ev_timer *w)
2966{
2967 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2968}
2969
2970#if EV_PERIODIC_ENABLE
2971void noinline
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 2972ev_periodic_start (EV_P_ ev_periodic *w)
1130{ 2973{
1131 if (ev_is_active (w)) 2974 if (expect_false (ev_is_active (w)))
1132 return; 2975 return;
1133 2976
2977 if (w->reschedule_cb)
2978 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2979 else if (w->interval)
2980 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2981 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2982 periodic_recalc (EV_A_ w);
2983 }
2984 else
2985 ev_at (w) = w->offset;
1135 2986
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 2987 EV_FREQUENT_CHECK;
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1139 2988
2989 ++periodiccnt;
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 2990 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 2991 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1142 periodics [periodiccnt - 1] = w; 2992 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 2993 ANHE_at_cache (periodics [ev_active (w)]);
1144} 2994 upheap (periodics, ev_active (w));
1145 2995
1146void 2996 EV_FREQUENT_CHECK;
2997
2998 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2999}
3000
3001void noinline
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 3002ev_periodic_stop (EV_P_ ev_periodic *w)
1148{ 3003{
1149 ev_clear_pending (EV_A_ (W)w); 3004 clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 3005 if (expect_false (!ev_is_active (w)))
1151 return; 3006 return;
1152 3007
1153 if (w->active < periodiccnt--) 3008 EV_FREQUENT_CHECK;
3009
3010 {
3011 int active = ev_active (w);
3012
3013 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3014
3015 --periodiccnt;
3016
3017 if (expect_true (active < periodiccnt + HEAP0))
1154 { 3018 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 3019 periodics [active] = periodics [periodiccnt + HEAP0];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3020 adjustheap (periodics, periodiccnt, active);
1157 } 3021 }
3022 }
1158 3023
1159 ev_stop (EV_A_ (W)w); 3024 ev_stop (EV_A_ (W)w);
1160}
1161 3025
1162void 3026 EV_FREQUENT_CHECK;
1163ev_idle_start (EV_P_ struct ev_idle *w)
1164{
1165 if (ev_is_active (w))
1166 return;
1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171} 3027}
1172 3028
1173void 3029void noinline
1174ev_idle_stop (EV_P_ struct ev_idle *w) 3030ev_periodic_again (EV_P_ ev_periodic *w)
1175{ 3031{
1176 ev_clear_pending (EV_A_ (W)w); 3032 /* TODO: use adjustheap and recalculation */
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 3033 ev_periodic_stop (EV_A_ w);
3034 ev_periodic_start (EV_A_ w);
1182} 3035}
1183 3036#endif
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227 3037
1228#ifndef SA_RESTART 3038#ifndef SA_RESTART
1229# define SA_RESTART 0 3039# define SA_RESTART 0
1230#endif 3040#endif
1231 3041
3042#if EV_SIGNAL_ENABLE
3043
3044void noinline
3045ev_signal_start (EV_P_ ev_signal *w)
3046{
3047 if (expect_false (ev_is_active (w)))
3048 return;
3049
3050 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3051
3052#if EV_MULTIPLICITY
3053 assert (("libev: a signal must not be attached to two different loops",
3054 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3055
3056 signals [w->signum - 1].loop = EV_A;
3057#endif
3058
3059 EV_FREQUENT_CHECK;
3060
3061#if EV_USE_SIGNALFD
3062 if (sigfd == -2)
3063 {
3064 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3065 if (sigfd < 0 && errno == EINVAL)
3066 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3067
3068 if (sigfd >= 0)
3069 {
3070 fd_intern (sigfd); /* doing it twice will not hurt */
3071
3072 sigemptyset (&sigfd_set);
3073
3074 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3075 ev_set_priority (&sigfd_w, EV_MAXPRI);
3076 ev_io_start (EV_A_ &sigfd_w);
3077 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3078 }
3079 }
3080
3081 if (sigfd >= 0)
3082 {
3083 /* TODO: check .head */
3084 sigaddset (&sigfd_set, w->signum);
3085 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3086
3087 signalfd (sigfd, &sigfd_set, 0);
3088 }
3089#endif
3090
3091 ev_start (EV_A_ (W)w, 1);
3092 wlist_add (&signals [w->signum - 1].head, (WL)w);
3093
3094 if (!((WL)w)->next)
3095# if EV_USE_SIGNALFD
3096 if (sigfd < 0) /*TODO*/
3097# endif
3098 {
3099# ifdef _WIN32
3100 evpipe_init (EV_A);
3101
3102 signal (w->signum, ev_sighandler);
3103# else
3104 struct sigaction sa;
3105
3106 evpipe_init (EV_A);
3107
3108 sa.sa_handler = ev_sighandler;
3109 sigfillset (&sa.sa_mask);
3110 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3111 sigaction (w->signum, &sa, 0);
3112
3113 if (origflags & EVFLAG_NOSIGMASK)
3114 {
3115 sigemptyset (&sa.sa_mask);
3116 sigaddset (&sa.sa_mask, w->signum);
3117 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3118 }
3119#endif
3120 }
3121
3122 EV_FREQUENT_CHECK;
3123}
3124
3125void noinline
3126ev_signal_stop (EV_P_ ev_signal *w)
3127{
3128 clear_pending (EV_A_ (W)w);
3129 if (expect_false (!ev_is_active (w)))
3130 return;
3131
3132 EV_FREQUENT_CHECK;
3133
3134 wlist_del (&signals [w->signum - 1].head, (WL)w);
3135 ev_stop (EV_A_ (W)w);
3136
3137 if (!signals [w->signum - 1].head)
3138 {
3139#if EV_MULTIPLICITY
3140 signals [w->signum - 1].loop = 0; /* unattach from signal */
3141#endif
3142#if EV_USE_SIGNALFD
3143 if (sigfd >= 0)
3144 {
3145 sigset_t ss;
3146
3147 sigemptyset (&ss);
3148 sigaddset (&ss, w->signum);
3149 sigdelset (&sigfd_set, w->signum);
3150
3151 signalfd (sigfd, &sigfd_set, 0);
3152 sigprocmask (SIG_UNBLOCK, &ss, 0);
3153 }
3154 else
3155#endif
3156 signal (w->signum, SIG_DFL);
3157 }
3158
3159 EV_FREQUENT_CHECK;
3160}
3161
3162#endif
3163
3164#if EV_CHILD_ENABLE
3165
1232void 3166void
1233ev_signal_start (EV_P_ struct ev_signal *w) 3167ev_child_start (EV_P_ ev_child *w)
1234{ 3168{
1235#if EV_MULTIPLICITY 3169#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3170 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1237#endif 3171#endif
1238 if (ev_is_active (w)) 3172 if (expect_false (ev_is_active (w)))
1239 return; 3173 return;
1240 3174
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3175 EV_FREQUENT_CHECK;
1242 3176
1243 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 3178 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 3179
1247 if (!w->next) 3180 EV_FREQUENT_CHECK;
1248 {
1249 struct sigaction sa;
1250 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0);
1254 }
1255} 3181}
1256 3182
1257void 3183void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 3184ev_child_stop (EV_P_ ev_child *w)
1259{ 3185{
1260 ev_clear_pending (EV_A_ (W)w); 3186 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 3187 if (expect_false (!ev_is_active (w)))
1262 return; 3188 return;
1263 3189
1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3190 EV_FREQUENT_CHECK;
3191
3192 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1265 ev_stop (EV_A_ (W)w); 3193 ev_stop (EV_A_ (W)w);
1266 3194
1267 if (!signals [w->signum - 1].head) 3195 EV_FREQUENT_CHECK;
1268 signal (w->signum, SIG_DFL);
1269} 3196}
3197
3198#endif
3199
3200#if EV_STAT_ENABLE
3201
3202# ifdef _WIN32
3203# undef lstat
3204# define lstat(a,b) _stati64 (a,b)
3205# endif
3206
3207#define DEF_STAT_INTERVAL 5.0074891
3208#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3209#define MIN_STAT_INTERVAL 0.1074891
3210
3211static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3212
3213#if EV_USE_INOTIFY
3214
3215/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3216# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3217
3218static void noinline
3219infy_add (EV_P_ ev_stat *w)
3220{
3221 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3222
3223 if (w->wd >= 0)
3224 {
3225 struct statfs sfs;
3226
3227 /* now local changes will be tracked by inotify, but remote changes won't */
3228 /* unless the filesystem is known to be local, we therefore still poll */
3229 /* also do poll on <2.6.25, but with normal frequency */
3230
3231 if (!fs_2625)
3232 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3233 else if (!statfs (w->path, &sfs)
3234 && (sfs.f_type == 0x1373 /* devfs */
3235 || sfs.f_type == 0xEF53 /* ext2/3 */
3236 || sfs.f_type == 0x3153464a /* jfs */
3237 || sfs.f_type == 0x52654973 /* reiser3 */
3238 || sfs.f_type == 0x01021994 /* tempfs */
3239 || sfs.f_type == 0x58465342 /* xfs */))
3240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3241 else
3242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3243 }
3244 else
3245 {
3246 /* can't use inotify, continue to stat */
3247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3248
3249 /* if path is not there, monitor some parent directory for speedup hints */
3250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3251 /* but an efficiency issue only */
3252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3253 {
3254 char path [4096];
3255 strcpy (path, w->path);
3256
3257 do
3258 {
3259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3261
3262 char *pend = strrchr (path, '/');
3263
3264 if (!pend || pend == path)
3265 break;
3266
3267 *pend = 0;
3268 w->wd = inotify_add_watch (fs_fd, path, mask);
3269 }
3270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3271 }
3272 }
3273
3274 if (w->wd >= 0)
3275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3276
3277 /* now re-arm timer, if required */
3278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3279 ev_timer_again (EV_A_ &w->timer);
3280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3281}
3282
3283static void noinline
3284infy_del (EV_P_ ev_stat *w)
3285{
3286 int slot;
3287 int wd = w->wd;
3288
3289 if (wd < 0)
3290 return;
3291
3292 w->wd = -2;
3293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3294 wlist_del (&fs_hash [slot].head, (WL)w);
3295
3296 /* remove this watcher, if others are watching it, they will rearm */
3297 inotify_rm_watch (fs_fd, wd);
3298}
3299
3300static void noinline
3301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3302{
3303 if (slot < 0)
3304 /* overflow, need to check for all hash slots */
3305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3306 infy_wd (EV_A_ slot, wd, ev);
3307 else
3308 {
3309 WL w_;
3310
3311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3312 {
3313 ev_stat *w = (ev_stat *)w_;
3314 w_ = w_->next; /* lets us remove this watcher and all before it */
3315
3316 if (w->wd == wd || wd == -1)
3317 {
3318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3319 {
3320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3321 w->wd = -1;
3322 infy_add (EV_A_ w); /* re-add, no matter what */
3323 }
3324
3325 stat_timer_cb (EV_A_ &w->timer, 0);
3326 }
3327 }
3328 }
3329}
3330
3331static void
3332infy_cb (EV_P_ ev_io *w, int revents)
3333{
3334 char buf [EV_INOTIFY_BUFSIZE];
3335 int ofs;
3336 int len = read (fs_fd, buf, sizeof (buf));
3337
3338 for (ofs = 0; ofs < len; )
3339 {
3340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3342 ofs += sizeof (struct inotify_event) + ev->len;
3343 }
3344}
3345
3346inline_size void ecb_cold
3347ev_check_2625 (EV_P)
3348{
3349 /* kernels < 2.6.25 are borked
3350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3351 */
3352 if (ev_linux_version () < 0x020619)
3353 return;
3354
3355 fs_2625 = 1;
3356}
3357
3358inline_size int
3359infy_newfd (void)
3360{
3361#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3363 if (fd >= 0)
3364 return fd;
3365#endif
3366 return inotify_init ();
3367}
3368
3369inline_size void
3370infy_init (EV_P)
3371{
3372 if (fs_fd != -2)
3373 return;
3374
3375 fs_fd = -1;
3376
3377 ev_check_2625 (EV_A);
3378
3379 fs_fd = infy_newfd ();
3380
3381 if (fs_fd >= 0)
3382 {
3383 fd_intern (fs_fd);
3384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3385 ev_set_priority (&fs_w, EV_MAXPRI);
3386 ev_io_start (EV_A_ &fs_w);
3387 ev_unref (EV_A);
3388 }
3389}
3390
3391inline_size void
3392infy_fork (EV_P)
3393{
3394 int slot;
3395
3396 if (fs_fd < 0)
3397 return;
3398
3399 ev_ref (EV_A);
3400 ev_io_stop (EV_A_ &fs_w);
3401 close (fs_fd);
3402 fs_fd = infy_newfd ();
3403
3404 if (fs_fd >= 0)
3405 {
3406 fd_intern (fs_fd);
3407 ev_io_set (&fs_w, fs_fd, EV_READ);
3408 ev_io_start (EV_A_ &fs_w);
3409 ev_unref (EV_A);
3410 }
3411
3412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3413 {
3414 WL w_ = fs_hash [slot].head;
3415 fs_hash [slot].head = 0;
3416
3417 while (w_)
3418 {
3419 ev_stat *w = (ev_stat *)w_;
3420 w_ = w_->next; /* lets us add this watcher */
3421
3422 w->wd = -1;
3423
3424 if (fs_fd >= 0)
3425 infy_add (EV_A_ w); /* re-add, no matter what */
3426 else
3427 {
3428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3430 ev_timer_again (EV_A_ &w->timer);
3431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3432 }
3433 }
3434 }
3435}
3436
3437#endif
3438
3439#ifdef _WIN32
3440# define EV_LSTAT(p,b) _stati64 (p, b)
3441#else
3442# define EV_LSTAT(p,b) lstat (p, b)
3443#endif
1270 3444
1271void 3445void
1272ev_child_start (EV_P_ struct ev_child *w) 3446ev_stat_stat (EV_P_ ev_stat *w)
1273{ 3447{
1274#if EV_MULTIPLICITY 3448 if (lstat (w->path, &w->attr) < 0)
1275 assert (("child watchers are only supported in the default loop", loop == default_loop)); 3449 w->attr.st_nlink = 0;
1276#endif 3450 else if (!w->attr.st_nlink)
3451 w->attr.st_nlink = 1;
3452}
3453
3454static void noinline
3455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3456{
3457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3458
3459 ev_statdata prev = w->attr;
3460 ev_stat_stat (EV_A_ w);
3461
3462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3463 if (
3464 prev.st_dev != w->attr.st_dev
3465 || prev.st_ino != w->attr.st_ino
3466 || prev.st_mode != w->attr.st_mode
3467 || prev.st_nlink != w->attr.st_nlink
3468 || prev.st_uid != w->attr.st_uid
3469 || prev.st_gid != w->attr.st_gid
3470 || prev.st_rdev != w->attr.st_rdev
3471 || prev.st_size != w->attr.st_size
3472 || prev.st_atime != w->attr.st_atime
3473 || prev.st_mtime != w->attr.st_mtime
3474 || prev.st_ctime != w->attr.st_ctime
3475 ) {
3476 /* we only update w->prev on actual differences */
3477 /* in case we test more often than invoke the callback, */
3478 /* to ensure that prev is always different to attr */
3479 w->prev = prev;
3480
3481 #if EV_USE_INOTIFY
3482 if (fs_fd >= 0)
3483 {
3484 infy_del (EV_A_ w);
3485 infy_add (EV_A_ w);
3486 ev_stat_stat (EV_A_ w); /* avoid race... */
3487 }
3488 #endif
3489
3490 ev_feed_event (EV_A_ w, EV_STAT);
3491 }
3492}
3493
3494void
3495ev_stat_start (EV_P_ ev_stat *w)
3496{
1277 if (ev_is_active (w)) 3497 if (expect_false (ev_is_active (w)))
1278 return; 3498 return;
1279 3499
3500 ev_stat_stat (EV_A_ w);
3501
3502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3503 w->interval = MIN_STAT_INTERVAL;
3504
3505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3506 ev_set_priority (&w->timer, ev_priority (w));
3507
3508#if EV_USE_INOTIFY
3509 infy_init (EV_A);
3510
3511 if (fs_fd >= 0)
3512 infy_add (EV_A_ w);
3513 else
3514#endif
3515 {
3516 ev_timer_again (EV_A_ &w->timer);
3517 ev_unref (EV_A);
3518 }
3519
1280 ev_start (EV_A_ (W)w, 1); 3520 ev_start (EV_A_ (W)w, 1);
1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3521
3522 EV_FREQUENT_CHECK;
1282} 3523}
1283 3524
1284void 3525void
1285ev_child_stop (EV_P_ struct ev_child *w) 3526ev_stat_stop (EV_P_ ev_stat *w)
1286{ 3527{
1287 ev_clear_pending (EV_A_ (W)w); 3528 clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 3529 if (expect_false (!ev_is_active (w)))
1289 return; 3530 return;
1290 3531
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3532 EV_FREQUENT_CHECK;
3533
3534#if EV_USE_INOTIFY
3535 infy_del (EV_A_ w);
3536#endif
3537
3538 if (ev_is_active (&w->timer))
3539 {
3540 ev_ref (EV_A);
3541 ev_timer_stop (EV_A_ &w->timer);
3542 }
3543
1292 ev_stop (EV_A_ (W)w); 3544 ev_stop (EV_A_ (W)w);
3545
3546 EV_FREQUENT_CHECK;
1293} 3547}
3548#endif
3549
3550#if EV_IDLE_ENABLE
3551void
3552ev_idle_start (EV_P_ ev_idle *w)
3553{
3554 if (expect_false (ev_is_active (w)))
3555 return;
3556
3557 pri_adjust (EV_A_ (W)w);
3558
3559 EV_FREQUENT_CHECK;
3560
3561 {
3562 int active = ++idlecnt [ABSPRI (w)];
3563
3564 ++idleall;
3565 ev_start (EV_A_ (W)w, active);
3566
3567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3568 idles [ABSPRI (w)][active - 1] = w;
3569 }
3570
3571 EV_FREQUENT_CHECK;
3572}
3573
3574void
3575ev_idle_stop (EV_P_ ev_idle *w)
3576{
3577 clear_pending (EV_A_ (W)w);
3578 if (expect_false (!ev_is_active (w)))
3579 return;
3580
3581 EV_FREQUENT_CHECK;
3582
3583 {
3584 int active = ev_active (w);
3585
3586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3588
3589 ev_stop (EV_A_ (W)w);
3590 --idleall;
3591 }
3592
3593 EV_FREQUENT_CHECK;
3594}
3595#endif
3596
3597#if EV_PREPARE_ENABLE
3598void
3599ev_prepare_start (EV_P_ ev_prepare *w)
3600{
3601 if (expect_false (ev_is_active (w)))
3602 return;
3603
3604 EV_FREQUENT_CHECK;
3605
3606 ev_start (EV_A_ (W)w, ++preparecnt);
3607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3608 prepares [preparecnt - 1] = w;
3609
3610 EV_FREQUENT_CHECK;
3611}
3612
3613void
3614ev_prepare_stop (EV_P_ ev_prepare *w)
3615{
3616 clear_pending (EV_A_ (W)w);
3617 if (expect_false (!ev_is_active (w)))
3618 return;
3619
3620 EV_FREQUENT_CHECK;
3621
3622 {
3623 int active = ev_active (w);
3624
3625 prepares [active - 1] = prepares [--preparecnt];
3626 ev_active (prepares [active - 1]) = active;
3627 }
3628
3629 ev_stop (EV_A_ (W)w);
3630
3631 EV_FREQUENT_CHECK;
3632}
3633#endif
3634
3635#if EV_CHECK_ENABLE
3636void
3637ev_check_start (EV_P_ ev_check *w)
3638{
3639 if (expect_false (ev_is_active (w)))
3640 return;
3641
3642 EV_FREQUENT_CHECK;
3643
3644 ev_start (EV_A_ (W)w, ++checkcnt);
3645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3646 checks [checkcnt - 1] = w;
3647
3648 EV_FREQUENT_CHECK;
3649}
3650
3651void
3652ev_check_stop (EV_P_ ev_check *w)
3653{
3654 clear_pending (EV_A_ (W)w);
3655 if (expect_false (!ev_is_active (w)))
3656 return;
3657
3658 EV_FREQUENT_CHECK;
3659
3660 {
3661 int active = ev_active (w);
3662
3663 checks [active - 1] = checks [--checkcnt];
3664 ev_active (checks [active - 1]) = active;
3665 }
3666
3667 ev_stop (EV_A_ (W)w);
3668
3669 EV_FREQUENT_CHECK;
3670}
3671#endif
3672
3673#if EV_EMBED_ENABLE
3674void noinline
3675ev_embed_sweep (EV_P_ ev_embed *w)
3676{
3677 ev_run (w->other, EVRUN_NOWAIT);
3678}
3679
3680static void
3681embed_io_cb (EV_P_ ev_io *io, int revents)
3682{
3683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3684
3685 if (ev_cb (w))
3686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3687 else
3688 ev_run (w->other, EVRUN_NOWAIT);
3689}
3690
3691static void
3692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3693{
3694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3695
3696 {
3697 EV_P = w->other;
3698
3699 while (fdchangecnt)
3700 {
3701 fd_reify (EV_A);
3702 ev_run (EV_A_ EVRUN_NOWAIT);
3703 }
3704 }
3705}
3706
3707static void
3708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3709{
3710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3711
3712 ev_embed_stop (EV_A_ w);
3713
3714 {
3715 EV_P = w->other;
3716
3717 ev_loop_fork (EV_A);
3718 ev_run (EV_A_ EVRUN_NOWAIT);
3719 }
3720
3721 ev_embed_start (EV_A_ w);
3722}
3723
3724#if 0
3725static void
3726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3727{
3728 ev_idle_stop (EV_A_ idle);
3729}
3730#endif
3731
3732void
3733ev_embed_start (EV_P_ ev_embed *w)
3734{
3735 if (expect_false (ev_is_active (w)))
3736 return;
3737
3738 {
3739 EV_P = w->other;
3740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3742 }
3743
3744 EV_FREQUENT_CHECK;
3745
3746 ev_set_priority (&w->io, ev_priority (w));
3747 ev_io_start (EV_A_ &w->io);
3748
3749 ev_prepare_init (&w->prepare, embed_prepare_cb);
3750 ev_set_priority (&w->prepare, EV_MINPRI);
3751 ev_prepare_start (EV_A_ &w->prepare);
3752
3753 ev_fork_init (&w->fork, embed_fork_cb);
3754 ev_fork_start (EV_A_ &w->fork);
3755
3756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3757
3758 ev_start (EV_A_ (W)w, 1);
3759
3760 EV_FREQUENT_CHECK;
3761}
3762
3763void
3764ev_embed_stop (EV_P_ ev_embed *w)
3765{
3766 clear_pending (EV_A_ (W)w);
3767 if (expect_false (!ev_is_active (w)))
3768 return;
3769
3770 EV_FREQUENT_CHECK;
3771
3772 ev_io_stop (EV_A_ &w->io);
3773 ev_prepare_stop (EV_A_ &w->prepare);
3774 ev_fork_stop (EV_A_ &w->fork);
3775
3776 ev_stop (EV_A_ (W)w);
3777
3778 EV_FREQUENT_CHECK;
3779}
3780#endif
3781
3782#if EV_FORK_ENABLE
3783void
3784ev_fork_start (EV_P_ ev_fork *w)
3785{
3786 if (expect_false (ev_is_active (w)))
3787 return;
3788
3789 EV_FREQUENT_CHECK;
3790
3791 ev_start (EV_A_ (W)w, ++forkcnt);
3792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3793 forks [forkcnt - 1] = w;
3794
3795 EV_FREQUENT_CHECK;
3796}
3797
3798void
3799ev_fork_stop (EV_P_ ev_fork *w)
3800{
3801 clear_pending (EV_A_ (W)w);
3802 if (expect_false (!ev_is_active (w)))
3803 return;
3804
3805 EV_FREQUENT_CHECK;
3806
3807 {
3808 int active = ev_active (w);
3809
3810 forks [active - 1] = forks [--forkcnt];
3811 ev_active (forks [active - 1]) = active;
3812 }
3813
3814 ev_stop (EV_A_ (W)w);
3815
3816 EV_FREQUENT_CHECK;
3817}
3818#endif
3819
3820#if EV_CLEANUP_ENABLE
3821void
3822ev_cleanup_start (EV_P_ ev_cleanup *w)
3823{
3824 if (expect_false (ev_is_active (w)))
3825 return;
3826
3827 EV_FREQUENT_CHECK;
3828
3829 ev_start (EV_A_ (W)w, ++cleanupcnt);
3830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3831 cleanups [cleanupcnt - 1] = w;
3832
3833 /* cleanup watchers should never keep a refcount on the loop */
3834 ev_unref (EV_A);
3835 EV_FREQUENT_CHECK;
3836}
3837
3838void
3839ev_cleanup_stop (EV_P_ ev_cleanup *w)
3840{
3841 clear_pending (EV_A_ (W)w);
3842 if (expect_false (!ev_is_active (w)))
3843 return;
3844
3845 EV_FREQUENT_CHECK;
3846 ev_ref (EV_A);
3847
3848 {
3849 int active = ev_active (w);
3850
3851 cleanups [active - 1] = cleanups [--cleanupcnt];
3852 ev_active (cleanups [active - 1]) = active;
3853 }
3854
3855 ev_stop (EV_A_ (W)w);
3856
3857 EV_FREQUENT_CHECK;
3858}
3859#endif
3860
3861#if EV_ASYNC_ENABLE
3862void
3863ev_async_start (EV_P_ ev_async *w)
3864{
3865 if (expect_false (ev_is_active (w)))
3866 return;
3867
3868 w->sent = 0;
3869
3870 evpipe_init (EV_A);
3871
3872 EV_FREQUENT_CHECK;
3873
3874 ev_start (EV_A_ (W)w, ++asynccnt);
3875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3876 asyncs [asynccnt - 1] = w;
3877
3878 EV_FREQUENT_CHECK;
3879}
3880
3881void
3882ev_async_stop (EV_P_ ev_async *w)
3883{
3884 clear_pending (EV_A_ (W)w);
3885 if (expect_false (!ev_is_active (w)))
3886 return;
3887
3888 EV_FREQUENT_CHECK;
3889
3890 {
3891 int active = ev_active (w);
3892
3893 asyncs [active - 1] = asyncs [--asynccnt];
3894 ev_active (asyncs [active - 1]) = active;
3895 }
3896
3897 ev_stop (EV_A_ (W)w);
3898
3899 EV_FREQUENT_CHECK;
3900}
3901
3902void
3903ev_async_send (EV_P_ ev_async *w)
3904{
3905 w->sent = 1;
3906 evpipe_write (EV_A_ &async_pending);
3907}
3908#endif
1294 3909
1295/*****************************************************************************/ 3910/*****************************************************************************/
1296 3911
1297struct ev_once 3912struct ev_once
1298{ 3913{
1299 struct ev_io io; 3914 ev_io io;
1300 struct ev_timer to; 3915 ev_timer to;
1301 void (*cb)(int revents, void *arg); 3916 void (*cb)(int revents, void *arg);
1302 void *arg; 3917 void *arg;
1303}; 3918};
1304 3919
1305static void 3920static void
1306once_cb (EV_P_ struct ev_once *once, int revents) 3921once_cb (EV_P_ struct ev_once *once, int revents)
1307{ 3922{
1308 void (*cb)(int revents, void *arg) = once->cb; 3923 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 3924 void *arg = once->arg;
1310 3925
1311 ev_io_stop (EV_A_ &once->io); 3926 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 3927 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 3928 ev_free (once);
1314 3929
1315 cb (revents, arg); 3930 cb (revents, arg);
1316} 3931}
1317 3932
1318static void 3933static void
1319once_cb_io (EV_P_ struct ev_io *w, int revents) 3934once_cb_io (EV_P_ ev_io *w, int revents)
1320{ 3935{
1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3937
3938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1322} 3939}
1323 3940
1324static void 3941static void
1325once_cb_to (EV_P_ struct ev_timer *w, int revents) 3942once_cb_to (EV_P_ ev_timer *w, int revents)
1326{ 3943{
1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3945
3946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1328} 3947}
1329 3948
1330void 3949void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 3951{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 3952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 3953
1335 if (!once) 3954 if (expect_false (!once))
3955 {
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1337 else 3957 return;
1338 { 3958 }
3959
1339 once->cb = cb; 3960 once->cb = cb;
1340 once->arg = arg; 3961 once->arg = arg;
1341 3962
1342 ev_watcher_init (&once->io, once_cb_io); 3963 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 3964 if (fd >= 0)
3965 {
3966 ev_io_set (&once->io, fd, events);
3967 ev_io_start (EV_A_ &once->io);
3968 }
3969
3970 ev_init (&once->to, once_cb_to);
3971 if (timeout >= 0.)
3972 {
3973 ev_timer_set (&once->to, timeout, 0.);
3974 ev_timer_start (EV_A_ &once->to);
3975 }
3976}
3977
3978/*****************************************************************************/
3979
3980#if EV_WALK_ENABLE
3981void ecb_cold
3982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3983{
3984 int i, j;
3985 ev_watcher_list *wl, *wn;
3986
3987 if (types & (EV_IO | EV_EMBED))
3988 for (i = 0; i < anfdmax; ++i)
3989 for (wl = anfds [i].head; wl; )
1344 { 3990 {
1345 ev_io_set (&once->io, fd, events); 3991 wn = wl->next;
1346 ev_io_start (EV_A_ &once->io); 3992
3993#if EV_EMBED_ENABLE
3994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3995 {
3996 if (types & EV_EMBED)
3997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3998 }
3999 else
4000#endif
4001#if EV_USE_INOTIFY
4002 if (ev_cb ((ev_io *)wl) == infy_cb)
4003 ;
4004 else
4005#endif
4006 if ((ev_io *)wl != &pipe_w)
4007 if (types & EV_IO)
4008 cb (EV_A_ EV_IO, wl);
4009
4010 wl = wn;
1347 } 4011 }
1348 4012
1349 ev_watcher_init (&once->to, once_cb_to); 4013 if (types & (EV_TIMER | EV_STAT))
1350 if (timeout >= 0.) 4014 for (i = timercnt + HEAP0; i-- > HEAP0; )
4015#if EV_STAT_ENABLE
4016 /*TODO: timer is not always active*/
4017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1351 { 4018 {
1352 ev_timer_set (&once->to, timeout, 0.); 4019 if (types & EV_STAT)
1353 ev_timer_start (EV_A_ &once->to); 4020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1354 } 4021 }
1355 } 4022 else
1356} 4023#endif
4024 if (types & EV_TIMER)
4025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1357 4026
4027#if EV_PERIODIC_ENABLE
4028 if (types & EV_PERIODIC)
4029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4031#endif
4032
4033#if EV_IDLE_ENABLE
4034 if (types & EV_IDLE)
4035 for (j = NUMPRI; i--; )
4036 for (i = idlecnt [j]; i--; )
4037 cb (EV_A_ EV_IDLE, idles [j][i]);
4038#endif
4039
4040#if EV_FORK_ENABLE
4041 if (types & EV_FORK)
4042 for (i = forkcnt; i--; )
4043 if (ev_cb (forks [i]) != embed_fork_cb)
4044 cb (EV_A_ EV_FORK, forks [i]);
4045#endif
4046
4047#if EV_ASYNC_ENABLE
4048 if (types & EV_ASYNC)
4049 for (i = asynccnt; i--; )
4050 cb (EV_A_ EV_ASYNC, asyncs [i]);
4051#endif
4052
4053#if EV_PREPARE_ENABLE
4054 if (types & EV_PREPARE)
4055 for (i = preparecnt; i--; )
4056# if EV_EMBED_ENABLE
4057 if (ev_cb (prepares [i]) != embed_prepare_cb)
4058# endif
4059 cb (EV_A_ EV_PREPARE, prepares [i]);
4060#endif
4061
4062#if EV_CHECK_ENABLE
4063 if (types & EV_CHECK)
4064 for (i = checkcnt; i--; )
4065 cb (EV_A_ EV_CHECK, checks [i]);
4066#endif
4067
4068#if EV_SIGNAL_ENABLE
4069 if (types & EV_SIGNAL)
4070 for (i = 0; i < EV_NSIG - 1; ++i)
4071 for (wl = signals [i].head; wl; )
4072 {
4073 wn = wl->next;
4074 cb (EV_A_ EV_SIGNAL, wl);
4075 wl = wn;
4076 }
4077#endif
4078
4079#if EV_CHILD_ENABLE
4080 if (types & EV_CHILD)
4081 for (i = (EV_PID_HASHSIZE); i--; )
4082 for (wl = childs [i]; wl; )
4083 {
4084 wn = wl->next;
4085 cb (EV_A_ EV_CHILD, wl);
4086 wl = wn;
4087 }
4088#endif
4089/* EV_STAT 0x00001000 /* stat data changed */
4090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4091}
4092#endif
4093
4094#if EV_MULTIPLICITY
4095 #include "ev_wrap.h"
4096#endif
4097
4098EV_CPP(})
4099

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines