ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.41 by root, Fri Nov 2 16:54:34 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_EMBED
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
42#include <stdio.h> 42#include <stdio.h>
43 43
44#include <assert.h> 44#include <assert.h>
45#include <errno.h> 45#include <errno.h>
46#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
47#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
48#include <sys/time.h> 50#include <sys/time.h>
49#include <time.h> 51#include <time.h>
50 52
51/**/ 53/**/
52 54
56 58
57#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
59#endif 61#endif
60 62
61#ifndef EV_USE_POLL 63#ifndef EV_USEV_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 65#endif
64 66
65#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
67#endif 73#endif
68 74
69#ifndef EV_USE_REALTIME 75#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 76# define EV_USE_REALTIME 1
71#endif 77#endif
87#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
88#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
89#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
90/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
91 97
98#ifndef EV_EMBED
92#include "ev.h" 99# include "ev.h"
100#endif
93 101
94#if __GNUC__ >= 3 102#if __GNUC__ >= 3
95# define expect(expr,value) __builtin_expect ((expr),(value)) 103# define expect(expr,value) __builtin_expect ((expr),(value))
96# define inline inline 104# define inline inline
97#else 105#else
100#endif 108#endif
101 109
102#define expect_false(expr) expect ((expr) != 0, 0) 110#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 111#define expect_true(expr) expect ((expr) != 0, 1)
104 112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
115
105typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
106typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
107typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
108 119
109static ev_tstamp now_floor, now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
110ev_tstamp ev_now;
111int ev_method;
112
113static int have_monotonic; /* runtime */
114
115static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
116static void (*method_modify)(int fd, int oev, int nev);
117static void (*method_poll)(ev_tstamp timeout);
118 121
119/*****************************************************************************/ 122/*****************************************************************************/
120 123
121ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
122ev_time (void) 158ev_time (void)
123{ 159{
124#if EV_USE_REALTIME 160#if EV_USE_REALTIME
125 struct timespec ts; 161 struct timespec ts;
126 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
130 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
131 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
132#endif 168#endif
133} 169}
134 170
135static ev_tstamp 171inline ev_tstamp
136get_clock (void) 172get_clock (void)
137{ 173{
138#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
139 if (expect_true (have_monotonic)) 175 if (expect_true (have_monotonic))
140 { 176 {
143 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
144 } 180 }
145#endif 181#endif
146 182
147 return ev_time (); 183 return ev_time ();
184}
185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
148} 190}
149 191
150#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
151 193
152#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
164 cur = newcnt; \ 206 cur = newcnt; \
165 } 207 }
166 208
167/*****************************************************************************/ 209/*****************************************************************************/
168 210
169typedef struct
170{
171 struct ev_io *head;
172 unsigned char events;
173 unsigned char reify;
174} ANFD;
175
176static ANFD *anfds;
177static int anfdmax;
178
179static void 211static void
180anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
181{ 213{
182 while (count--) 214 while (count--)
183 { 215 {
187 219
188 ++base; 220 ++base;
189 } 221 }
190} 222}
191 223
192typedef struct
193{
194 W w;
195 int events;
196} ANPENDING;
197
198static ANPENDING *pendings;
199static int pendingmax, pendingcnt;
200
201static void 224static void
202event (W w, int events) 225event (EV_P_ W w, int events)
203{ 226{
204 if (w->pending) 227 if (w->pending)
205 { 228 {
206 pendings [w->pending - 1].events |= events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
207 return; 230 return;
208 } 231 }
209 232
210 w->pending = ++pendingcnt; 233 w->pending = ++pendingcnt [ABSPRI (w)];
211 array_needsize (pendings, pendingmax, pendingcnt, ); 234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
212 pendings [pendingcnt - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
213 pendings [pendingcnt - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
214} 237}
215 238
216static void 239static void
217queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
218{ 241{
219 int i; 242 int i;
220 243
221 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
222 event (events [i], type); 245 event (EV_A_ events [i], type);
223} 246}
224 247
225static void 248static void
226fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
227{ 250{
228 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
229 struct ev_io *w; 252 struct ev_io *w;
230 253
231 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
232 { 255 {
233 int ev = w->events & events; 256 int ev = w->events & events;
234 257
235 if (ev) 258 if (ev)
236 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
237 } 260 }
238} 261}
239 262
240/*****************************************************************************/ 263/*****************************************************************************/
241 264
242static int *fdchanges;
243static int fdchangemax, fdchangecnt;
244
245static void 265static void
246fd_reify (void) 266fd_reify (EV_P)
247{ 267{
248 int i; 268 int i;
249 269
250 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
251 { 271 {
253 ANFD *anfd = anfds + fd; 273 ANFD *anfd = anfds + fd;
254 struct ev_io *w; 274 struct ev_io *w;
255 275
256 int events = 0; 276 int events = 0;
257 277
258 for (w = anfd->head; w; w = w->next) 278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
259 events |= w->events; 279 events |= w->events;
260 280
261 anfd->reify = 0; 281 anfd->reify = 0;
262 282
263 if (anfd->events != events) 283 if (anfd->events != events)
264 { 284 {
265 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
266 anfd->events = events; 286 anfd->events = events;
267 } 287 }
268 } 288 }
269 289
270 fdchangecnt = 0; 290 fdchangecnt = 0;
271} 291}
272 292
273static void 293static void
274fd_change (int fd) 294fd_change (EV_P_ int fd)
275{ 295{
276 if (anfds [fd].reify || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
277 return; 297 return;
278 298
279 anfds [fd].reify = 1; 299 anfds [fd].reify = 1;
282 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
283 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
284} 304}
285 305
286static void 306static void
287fd_kill (int fd) 307fd_kill (EV_P_ int fd)
288{ 308{
289 struct ev_io *w; 309 struct ev_io *w;
290 310
291 printf ("killing fd %d\n", fd);//D
292 while ((w = anfds [fd].head)) 311 while ((w = (struct ev_io *)anfds [fd].head))
293 { 312 {
294 ev_io_stop (w); 313 ev_io_stop (EV_A_ w);
295 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
296 } 315 }
297} 316}
298 317
299/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
300static void 319static void
301fd_ebadf (void) 320fd_ebadf (EV_P)
302{ 321{
303 int fd; 322 int fd;
304 323
305 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
306 if (anfds [fd].events) 325 if (anfds [fd].events)
307 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
308 fd_kill (fd); 327 fd_kill (EV_A_ fd);
309} 328}
310 329
311/* called on ENOMEM in select/poll to kill some fds and retry */ 330/* called on ENOMEM in select/poll to kill some fds and retry */
312static void 331static void
313fd_enomem (void) 332fd_enomem (EV_P)
314{ 333{
315 int fd = anfdmax; 334 int fd = anfdmax;
316 335
317 while (fd--) 336 while (fd--)
318 if (anfds [fd].events) 337 if (anfds [fd].events)
319 { 338 {
320 close (fd); 339 close (fd);
321 fd_kill (fd); 340 fd_kill (EV_A_ fd);
322 return; 341 return;
323 } 342 }
324} 343}
325 344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
358}
359
326/*****************************************************************************/ 360/*****************************************************************************/
327 361
328static struct ev_timer **timers;
329static int timermax, timercnt;
330
331static struct ev_periodic **periodics;
332static int periodicmax, periodiccnt;
333
334static void 362static void
335upheap (WT *timers, int k) 363upheap (WT *heap, int k)
336{ 364{
337 WT w = timers [k]; 365 WT w = heap [k];
338 366
339 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
340 { 368 {
341 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
342 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
343 k >>= 1; 371 k >>= 1;
344 } 372 }
345 373
346 timers [k] = w; 374 heap [k] = w;
347 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
348 376
349} 377}
350 378
351static void 379static void
352downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
353{ 381{
354 WT w = timers [k]; 382 WT w = heap [k];
355 383
356 while (k < (N >> 1)) 384 while (k < (N >> 1))
357 { 385 {
358 int j = k << 1; 386 int j = k << 1;
359 387
360 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
361 ++j; 389 ++j;
362 390
363 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
364 break; 392 break;
365 393
366 timers [k] = timers [j]; 394 heap [k] = heap [j];
367 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
368 k = j; 396 k = j;
369 } 397 }
370 398
371 timers [k] = w; 399 heap [k] = w;
372 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
373} 401}
374 402
375/*****************************************************************************/ 403/*****************************************************************************/
376 404
377typedef struct 405typedef struct
378{ 406{
379 struct ev_signal *head; 407 struct ev_watcher_list *head;
380 sig_atomic_t volatile gotsig; 408 sig_atomic_t volatile gotsig;
381} ANSIG; 409} ANSIG;
382 410
383static ANSIG *signals; 411static ANSIG *signals;
384static int signalmax; 412static int signalmax;
385 413
386static int sigpipe [2]; 414static int sigpipe [2];
387static sig_atomic_t volatile gotsig; 415static sig_atomic_t volatile gotsig;
388static struct ev_io sigev;
389 416
390static void 417static void
391signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
392{ 419{
393 while (count--) 420 while (count--)
404{ 431{
405 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
406 433
407 if (!gotsig) 434 if (!gotsig)
408 { 435 {
436 int old_errno = errno;
409 gotsig = 1; 437 gotsig = 1;
410 write (sigpipe [1], &signum, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
411 } 440 }
412} 441}
413 442
414static void 443static void
415sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
416{ 445{
417 struct ev_signal *w; 446 struct ev_watcher_list *w;
418 int signum; 447 int signum;
419 448
420 read (sigpipe [0], &revents, 1); 449 read (sigpipe [0], &revents, 1);
421 gotsig = 0; 450 gotsig = 0;
422 451
424 if (signals [signum].gotsig) 453 if (signals [signum].gotsig)
425 { 454 {
426 signals [signum].gotsig = 0; 455 signals [signum].gotsig = 0;
427 456
428 for (w = signals [signum].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
429 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
430 } 459 }
431} 460}
432 461
433static void 462static void
434siginit (void) 463siginit (EV_P)
435{ 464{
465#ifndef WIN32
436 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
437 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
438 468
439 /* rather than sort out wether we really need nb, set it */ 469 /* rather than sort out wether we really need nb, set it */
440 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
441 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
442 473
443 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
444 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
445} 477}
446 478
447/*****************************************************************************/ 479/*****************************************************************************/
448 480
449static struct ev_idle **idles; 481#ifndef WIN32
450static int idlemax, idlecnt;
451
452static struct ev_prepare **prepares;
453static int preparemax, preparecnt;
454
455static struct ev_check **checks;
456static int checkmax, checkcnt;
457
458/*****************************************************************************/
459
460static struct ev_child *childs [PID_HASHSIZE];
461static struct ev_signal childev;
462 482
463#ifndef WCONTINUED 483#ifndef WCONTINUED
464# define WCONTINUED 0 484# define WCONTINUED 0
465#endif 485#endif
466 486
467static void 487static void
468childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
469{ 489{
470 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
471 int pid, status; 505 int pid, status;
472 506
473 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
474 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
475 if (w->pid == pid || !w->pid) 509 /* make sure we are called again until all childs have been reaped */
476 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
477 w->status = status; 511
478 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
479 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
480} 515}
516
517#endif
481 518
482/*****************************************************************************/ 519/*****************************************************************************/
483 520
521#if EV_USE_KQUEUE
522# include "ev_kqueue.c"
523#endif
484#if EV_USE_EPOLL 524#if EV_USE_EPOLL
485# include "ev_epoll.c" 525# include "ev_epoll.c"
486#endif 526#endif
487#if EV_USE_POLL 527#if EV_USEV_POLL
488# include "ev_poll.c" 528# include "ev_poll.c"
489#endif 529#endif
490#if EV_USE_SELECT 530#if EV_USE_SELECT
491# include "ev_select.c" 531# include "ev_select.c"
492#endif 532#endif
501ev_version_minor (void) 541ev_version_minor (void)
502{ 542{
503 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
504} 544}
505 545
506/* return true if we are running with elevated privileges and ignore env variables */ 546/* return true if we are running with elevated privileges and should ignore env variables */
507static int 547static int
508enable_secure () 548enable_secure (void)
509{ 549{
550#ifdef WIN32
551 return 0;
552#else
510 return getuid () != geteuid () 553 return getuid () != geteuid ()
511 || getgid () != getegid (); 554 || getgid () != getegid ();
555#endif
512} 556}
513 557
514int ev_init (int methods) 558int
559ev_method (EV_P)
515{ 560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
516 if (!ev_method) 567 if (!method)
517 { 568 {
518#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
519 { 570 {
520 struct timespec ts; 571 struct timespec ts;
521 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
522 have_monotonic = 1; 573 have_monotonic = 1;
523 } 574 }
524#endif 575#endif
525 576
526 ev_now = ev_time (); 577 rt_now = ev_time ();
527 now = get_clock (); 578 mn_now = get_clock ();
528 now_floor = now; 579 now_floor = mn_now;
529 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
530
531 if (pipe (sigpipe))
532 return 0;
533 581
534 if (methods == EVMETHOD_AUTO) 582 if (methods == EVMETHOD_AUTO)
535 if (!enable_secure () && getenv ("LIBEV_METHODS")) 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
536 methods = atoi (getenv ("LIBEV_METHODS")); 584 methods = atoi (getenv ("LIBEV_METHODS"));
537 else 585 else
538 methods = EVMETHOD_ANY; 586 methods = EVMETHOD_ANY;
539 587
540 ev_method = 0; 588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
541#if EV_USE_EPOLL 592#if EV_USE_EPOLL
542 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
543#endif 594#endif
544#if EV_USE_POLL 595#if EV_USEV_POLL
545 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
546#endif 597#endif
547#if EV_USE_SELECT 598#if EV_USE_SELECT
548 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
549#endif 600#endif
601 }
602}
550 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
551 if (ev_method) 691 if (ev_method (EV_A))
552 { 692 {
553 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
554 siginit (); 695 siginit (EV_A);
555 696
697#ifndef WIN32
556 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
557 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif
558 } 703 }
704 else
705 default_loop = 0;
559 } 706 }
560 707
561 return ev_method; 708 return default_loop;
562} 709}
563 710
564/*****************************************************************************/
565
566void 711void
567ev_fork_prepare (void) 712ev_default_destroy (void)
568{ 713{
569 /* nop */ 714#if EV_MULTIPLICITY
570} 715 struct ev_loop *loop = default_loop;
571
572void
573ev_fork_parent (void)
574{
575 /* nop */
576}
577
578void
579ev_fork_child (void)
580{
581#if EV_USE_EPOLL
582 if (ev_method == EVMETHOD_EPOLL)
583 epoll_postfork_child ();
584#endif 716#endif
585 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
586 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
587 close (sigpipe [0]); 736 close (sigpipe [0]);
588 close (sigpipe [1]); 737 close (sigpipe [1]);
589 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
590 siginit (); 741 siginit (EV_A);
591} 742}
592 743
593/*****************************************************************************/ 744/*****************************************************************************/
594 745
595static void 746static void
596call_pending (void) 747call_pending (EV_P)
597{ 748{
749 int pri;
750
751 for (pri = NUMPRI; pri--; )
598 while (pendingcnt) 752 while (pendingcnt [pri])
599 { 753 {
600 ANPENDING *p = pendings + --pendingcnt; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
601 755
602 if (p->w) 756 if (p->w)
603 { 757 {
604 p->w->pending = 0; 758 p->w->pending = 0;
605 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
606 } 760 }
607 } 761 }
608} 762}
609 763
610static void 764static void
611timers_reify (void) 765timers_reify (EV_P)
612{ 766{
613 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
614 { 768 {
615 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
616 770
617 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
618 if (w->repeat) 772 if (w->repeat)
619 { 773 {
620 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
621 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
622 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
623 } 777 }
624 else 778 else
625 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
626 780
627 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
628 } 782 }
629} 783}
630 784
631static void 785static void
632periodics_reify (void) 786periodics_reify (EV_P)
633{ 787{
634 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
635 { 789 {
636 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
637 791
638 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
639 if (w->interval) 793 if (w->interval)
640 { 794 {
641 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
642 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
643 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
644 } 798 }
645 else 799 else
646 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
647 801
648 event ((W)w, EV_PERIODIC); 802 event (EV_A_ (W)w, EV_PERIODIC);
649 } 803 }
650} 804}
651 805
652static void 806static void
653periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
654{ 808{
655 int i; 809 int i;
656 810
657 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
658 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
659 { 813 {
660 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
661 815
662 if (w->interval) 816 if (w->interval)
663 { 817 {
664 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
665 819
666 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
667 { 821 {
668 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
669 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
670 824
671 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
672 } 826 }
673 } 827 }
674 } 828 }
675} 829}
676 830
677static int 831inline int
678time_update_monotonic (void) 832time_update_monotonic (EV_P)
679{ 833{
680 now = get_clock (); 834 mn_now = get_clock ();
681 835
682 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
683 { 837 {
684 ev_now = now + diff; 838 rt_now = rtmn_diff + mn_now;
685 return 0; 839 return 0;
686 } 840 }
687 else 841 else
688 { 842 {
689 now_floor = now; 843 now_floor = mn_now;
690 ev_now = ev_time (); 844 rt_now = ev_time ();
691 return 1; 845 return 1;
692 } 846 }
693} 847}
694 848
695static void 849static void
696time_update (void) 850time_update (EV_P)
697{ 851{
698 int i; 852 int i;
699 853
700#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
701 if (expect_true (have_monotonic)) 855 if (expect_true (have_monotonic))
702 { 856 {
703 if (time_update_monotonic ()) 857 if (time_update_monotonic (EV_A))
704 { 858 {
705 ev_tstamp odiff = diff; 859 ev_tstamp odiff = rtmn_diff;
706 860
707 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
708 { 862 {
709 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
710 864
711 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
712 return; /* all is well */ 866 return; /* all is well */
713 867
714 ev_now = ev_time (); 868 rt_now = ev_time ();
715 now = get_clock (); 869 mn_now = get_clock ();
716 now_floor = now; 870 now_floor = mn_now;
717 } 871 }
718 872
719 periodics_reschedule (diff - odiff); 873 periodics_reschedule (EV_A);
720 /* no timer adjustment, as the monotonic clock doesn't jump */ 874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
721 } 876 }
722 } 877 }
723 else 878 else
724#endif 879#endif
725 { 880 {
726 ev_now = ev_time (); 881 rt_now = ev_time ();
727 882
728 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
729 { 884 {
730 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
731 886
732 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
733 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
734 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
735 } 890 }
736 891
737 now = ev_now; 892 mn_now = rt_now;
738 } 893 }
739} 894}
740 895
741int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
742 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
743void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
744{ 912{
745 double block; 913 double block;
746 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
747 915
748 do 916 do
749 { 917 {
750 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
751 if (expect_false (preparecnt)) 919 if (expect_false (preparecnt))
752 { 920 {
753 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
754 call_pending (); 922 call_pending (EV_A);
755 } 923 }
756 924
757 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
758 fd_reify (); 926 fd_reify (EV_A);
759 927
760 /* calculate blocking time */ 928 /* calculate blocking time */
761 929
762 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
763 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
764#if EV_USE_MONOTONIC 932#if EV_USE_MONOTONIC
765 if (expect_true (have_monotonic)) 933 if (expect_true (have_monotonic))
766 time_update_monotonic (); 934 time_update_monotonic (EV_A);
767 else 935 else
768#endif 936#endif
769 { 937 {
770 ev_now = ev_time (); 938 rt_now = ev_time ();
771 now = ev_now; 939 mn_now = rt_now;
772 } 940 }
773 941
774 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
775 block = 0.; 943 block = 0.;
776 else 944 else
777 { 945 {
778 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
779 947
780 if (timercnt) 948 if (timercnt)
781 { 949 {
782 ev_tstamp to = timers [0]->at - now + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
783 if (block > to) block = to; 951 if (block > to) block = to;
784 } 952 }
785 953
786 if (periodiccnt) 954 if (periodiccnt)
787 { 955 {
788 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
789 if (block > to) block = to; 957 if (block > to) block = to;
790 } 958 }
791 959
792 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
793 } 961 }
794 962
795 method_poll (block); 963 method_poll (EV_A_ block);
796 964
797 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
798 time_update (); 966 time_update (EV_A);
799 967
800 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
801 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
802 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
803 971
804 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
805 if (!pendingcnt) 973 if (!pendingcnt)
806 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
807 975
808 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
809 if (checkcnt) 977 if (checkcnt)
810 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
811 979
812 call_pending (); 980 call_pending (EV_A);
813 } 981 }
814 while (!ev_loop_done); 982 while (activecnt && !loop_done);
815 983
816 if (ev_loop_done != 2) 984 if (loop_done != 2)
817 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
818} 992}
819 993
820/*****************************************************************************/ 994/*****************************************************************************/
821 995
822static void 996inline void
823wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
824{ 998{
825 elem->next = *head; 999 elem->next = *head;
826 *head = elem; 1000 *head = elem;
827} 1001}
828 1002
829static void 1003inline void
830wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
831{ 1005{
832 while (*head) 1006 while (*head)
833 { 1007 {
834 if (*head == elem) 1008 if (*head == elem)
839 1013
840 head = &(*head)->next; 1014 head = &(*head)->next;
841 } 1015 }
842} 1016}
843 1017
844static void 1018inline void
845ev_clear_pending (W w) 1019ev_clear_pending (EV_P_ W w)
846{ 1020{
847 if (w->pending) 1021 if (w->pending)
848 { 1022 {
849 pendings [w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
850 w->pending = 0; 1024 w->pending = 0;
851 } 1025 }
852} 1026}
853 1027
854static void 1028inline void
855ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
856{ 1030{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
857 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
858} 1036}
859 1037
860static void 1038inline void
861ev_stop (W w) 1039ev_stop (EV_P_ W w)
862{ 1040{
1041 ev_unref (EV_A);
863 w->active = 0; 1042 w->active = 0;
864} 1043}
865 1044
866/*****************************************************************************/ 1045/*****************************************************************************/
867 1046
868void 1047void
869ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
870{ 1049{
871 int fd = w->fd; 1050 int fd = w->fd;
872 1051
873 if (ev_is_active (w)) 1052 if (ev_is_active (w))
874 return; 1053 return;
875 1054
876 assert (("ev_io_start called with negative fd", fd >= 0)); 1055 assert (("ev_io_start called with negative fd", fd >= 0));
877 1056
878 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
879 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
880 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
881 1060
882 fd_change (fd); 1061 fd_change (EV_A_ fd);
883} 1062}
884 1063
885void 1064void
886ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
887{ 1066{
888 ev_clear_pending ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
889 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
890 return; 1069 return;
891 1070
892 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
893 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
894 1073
895 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
896} 1075}
897 1076
898void 1077void
899ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
900{ 1079{
901 if (ev_is_active (w)) 1080 if (ev_is_active (w))
902 return; 1081 return;
903 1082
904 w->at += now; 1083 w->at += mn_now;
905 1084
906 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
907 1086
908 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
909 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
910 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
911 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
912} 1091}
913 1092
914void 1093void
915ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
916{ 1095{
917 ev_clear_pending ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
919 return; 1098 return;
920 1099
921 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
922 { 1101 {
924 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
925 } 1104 }
926 1105
927 w->at = w->repeat; 1106 w->at = w->repeat;
928 1107
929 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
930} 1109}
931 1110
932void 1111void
933ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
934{ 1113{
935 if (ev_is_active (w)) 1114 if (ev_is_active (w))
936 { 1115 {
937 if (w->repeat) 1116 if (w->repeat)
938 { 1117 {
939 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
940 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
941 } 1120 }
942 else 1121 else
943 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
944 } 1123 }
945 else if (w->repeat) 1124 else if (w->repeat)
946 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
947} 1126}
948 1127
949void 1128void
950ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
951{ 1130{
952 if (ev_is_active (w)) 1131 if (ev_is_active (w))
953 return; 1132 return;
954 1133
955 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
956 1135
957 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
958 if (w->interval) 1137 if (w->interval)
959 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
960 1139
961 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
962 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
963 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
964 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
965} 1144}
966 1145
967void 1146void
968ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
969{ 1148{
970 ev_clear_pending ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
971 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
972 return; 1151 return;
973 1152
974 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
975 { 1154 {
976 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
977 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
978 } 1157 }
979 1158
980 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
981} 1160}
982 1161
983void 1162void
984ev_signal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
985{ 1164{
986 if (ev_is_active (w)) 1165 if (ev_is_active (w))
987 return; 1166 return;
988 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
989 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
990 1242
991 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
992 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
993 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
994 1246
995 if (!w->next) 1247 if (!w->next)
996 { 1248 {
997 struct sigaction sa; 1249 struct sigaction sa;
998 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
999 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
1000 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1001 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
1002 } 1254 }
1003} 1255}
1004 1256
1005void 1257void
1006ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
1007{ 1259{
1008 ev_clear_pending ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
1009 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
1010 return; 1262 return;
1011 1263
1012 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
1014 1266
1015 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
1016 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
1017} 1269}
1018 1270
1019void 1271void
1020ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
1021{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
1022 if (ev_is_active (w)) 1277 if (ev_is_active (w))
1023 return; 1278 return;
1024 1279
1025 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
1026 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1027 idles [idlecnt - 1] = w;
1028} 1282}
1029 1283
1030void 1284void
1031ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
1032{ 1286{
1033 ev_clear_pending ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
1034 if (ev_is_active (w)) 1288 if (ev_is_active (w))
1035 return; 1289 return;
1036 1290
1037 idles [w->active - 1] = idles [--idlecnt];
1038 ev_stop ((W)w);
1039}
1040
1041void
1042ev_prepare_start (struct ev_prepare *w)
1043{
1044 if (ev_is_active (w))
1045 return;
1046
1047 ev_start ((W)w, ++preparecnt);
1048 array_needsize (prepares, preparemax, preparecnt, );
1049 prepares [preparecnt - 1] = w;
1050}
1051
1052void
1053ev_prepare_stop (struct ev_prepare *w)
1054{
1055 ev_clear_pending ((W)w);
1056 if (ev_is_active (w))
1057 return;
1058
1059 prepares [w->active - 1] = prepares [--preparecnt];
1060 ev_stop ((W)w);
1061}
1062
1063void
1064ev_check_start (struct ev_check *w)
1065{
1066 if (ev_is_active (w))
1067 return;
1068
1069 ev_start ((W)w, ++checkcnt);
1070 array_needsize (checks, checkmax, checkcnt, );
1071 checks [checkcnt - 1] = w;
1072}
1073
1074void
1075ev_check_stop (struct ev_check *w)
1076{
1077 ev_clear_pending ((W)w);
1078 if (ev_is_active (w))
1079 return;
1080
1081 checks [w->active - 1] = checks [--checkcnt];
1082 ev_stop ((W)w);
1083}
1084
1085void
1086ev_child_start (struct ev_child *w)
1087{
1088 if (ev_is_active (w))
1089 return;
1090
1091 ev_start ((W)w, 1);
1092 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1093}
1094
1095void
1096ev_child_stop (struct ev_child *w)
1097{
1098 ev_clear_pending ((W)w);
1099 if (ev_is_active (w))
1100 return;
1101
1102 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1103 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
1104} 1293}
1105 1294
1106/*****************************************************************************/ 1295/*****************************************************************************/
1107 1296
1108struct ev_once 1297struct ev_once
1112 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
1113 void *arg; 1302 void *arg;
1114}; 1303};
1115 1304
1116static void 1305static void
1117once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
1118{ 1307{
1119 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
1120 void *arg = once->arg; 1309 void *arg = once->arg;
1121 1310
1122 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1123 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1124 free (once); 1313 free (once);
1125 1314
1126 cb (revents, arg); 1315 cb (revents, arg);
1127} 1316}
1128 1317
1129static void 1318static void
1130once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1131{ 1320{
1132 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1133} 1322}
1134 1323
1135static void 1324static void
1136once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1137{ 1326{
1138 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1139} 1328}
1140 1329
1141void 1330void
1142ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1143{ 1332{
1144 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1145 1334
1146 if (!once) 1335 if (!once)
1147 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1152 1341
1153 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1154 if (fd >= 0) 1343 if (fd >= 0)
1155 { 1344 {
1156 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1157 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1158 } 1347 }
1159 1348
1160 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1161 if (timeout >= 0.) 1350 if (timeout >= 0.)
1162 { 1351 {
1163 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1164 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1165 } 1354 }
1166 } 1355 }
1167} 1356}
1168 1357
1169/*****************************************************************************/
1170
1171#if 0
1172
1173struct ev_io wio;
1174
1175static void
1176sin_cb (struct ev_io *w, int revents)
1177{
1178 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1179}
1180
1181static void
1182ocb (struct ev_timer *w, int revents)
1183{
1184 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1185 ev_timer_stop (w);
1186 ev_timer_start (w);
1187}
1188
1189static void
1190scb (struct ev_signal *w, int revents)
1191{
1192 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1193 ev_io_stop (&wio);
1194 ev_io_start (&wio);
1195}
1196
1197static void
1198gcb (struct ev_signal *w, int revents)
1199{
1200 fprintf (stderr, "generic %x\n", revents);
1201
1202}
1203
1204int main (void)
1205{
1206 ev_init (0);
1207
1208 ev_io_init (&wio, sin_cb, 0, EV_READ);
1209 ev_io_start (&wio);
1210
1211 struct ev_timer t[10000];
1212
1213#if 0
1214 int i;
1215 for (i = 0; i < 10000; ++i)
1216 {
1217 struct ev_timer *w = t + i;
1218 ev_watcher_init (w, ocb, i);
1219 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1220 ev_timer_start (w);
1221 if (drand48 () < 0.5)
1222 ev_timer_stop (w);
1223 }
1224#endif
1225
1226 struct ev_timer t1;
1227 ev_timer_init (&t1, ocb, 5, 10);
1228 ev_timer_start (&t1);
1229
1230 struct ev_signal sig;
1231 ev_signal_init (&sig, scb, SIGQUIT);
1232 ev_signal_start (&sig);
1233
1234 struct ev_check cw;
1235 ev_check_init (&cw, gcb);
1236 ev_check_start (&cw);
1237
1238 struct ev_idle iw;
1239 ev_idle_init (&iw, gcb);
1240 ev_idle_start (&iw);
1241
1242 ev_loop (0);
1243
1244 return 0;
1245}
1246
1247#endif
1248
1249
1250
1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines