ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.45 by root, Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_EMBED
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
58 58
59#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
61#endif 61#endif
62 62
63#ifndef EV_USE_POLL 63#ifndef EV_USEV_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 65#endif
66 66
67#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
69#endif 69#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 97
98#ifndef EV_EMBED
98#include "ev.h" 99# include "ev.h"
100#endif
99 101
100#if __GNUC__ >= 3 102#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 103# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 104# define inline inline
103#else 105#else
113 115
114typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
117 119
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 121
128/*****************************************************************************/ 122/*****************************************************************************/
129 123
130ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
131ev_time (void) 158ev_time (void)
132{ 159{
133#if EV_USE_REALTIME 160#if EV_USE_REALTIME
134 struct timespec ts; 161 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 168#endif
142} 169}
143 170
144static ev_tstamp 171inline ev_tstamp
145get_clock (void) 172get_clock (void)
146{ 173{
147#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 175 if (expect_true (have_monotonic))
149 { 176 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 180 }
154#endif 181#endif
155 182
156 return ev_time (); 183 return ev_time ();
184}
185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
157} 190}
158 191
159#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
160 193
161#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 206 cur = newcnt; \
174 } 207 }
175 208
176/*****************************************************************************/ 209/*****************************************************************************/
177 210
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 211static void
189anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
190{ 213{
191 while (count--) 214 while (count--)
192 { 215 {
196 219
197 ++base; 220 ++base;
198 } 221 }
199} 222}
200 223
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 224static void
211event (W w, int events) 225event (EV_P_ W w, int events)
212{ 226{
213 if (w->pending) 227 if (w->pending)
214 { 228 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 230 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 237}
224 238
225static void 239static void
226queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 241{
228 int i; 242 int i;
229 243
230 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 245 event (EV_A_ events [i], type);
232} 246}
233 247
234static void 248static void
235fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
236{ 250{
237 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 252 struct ev_io *w;
239 253
240 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 255 {
242 int ev = w->events & events; 256 int ev = w->events & events;
243 257
244 if (ev) 258 if (ev)
245 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
246 } 260 }
247} 261}
248 262
249/*****************************************************************************/ 263/*****************************************************************************/
250 264
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 265static void
255fd_reify (void) 266fd_reify (EV_P)
256{ 267{
257 int i; 268 int i;
258 269
259 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
260 { 271 {
262 ANFD *anfd = anfds + fd; 273 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 274 struct ev_io *w;
264 275
265 int events = 0; 276 int events = 0;
266 277
267 for (w = anfd->head; w; w = w->next) 278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 279 events |= w->events;
269 280
270 anfd->reify = 0; 281 anfd->reify = 0;
271 282
272 if (anfd->events != events) 283 if (anfd->events != events)
273 { 284 {
274 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 286 anfd->events = events;
276 } 287 }
277 } 288 }
278 289
279 fdchangecnt = 0; 290 fdchangecnt = 0;
280} 291}
281 292
282static void 293static void
283fd_change (int fd) 294fd_change (EV_P_ int fd)
284{ 295{
285 if (anfds [fd].reify || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 297 return;
287 298
288 anfds [fd].reify = 1; 299 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
293} 304}
294 305
295static void 306static void
296fd_kill (int fd) 307fd_kill (EV_P_ int fd)
297{ 308{
298 struct ev_io *w; 309 struct ev_io *w;
299 310
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 311 while ((w = (struct ev_io *)anfds [fd].head))
302 { 312 {
303 ev_io_stop (w); 313 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 315 }
306} 316}
307 317
308/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
309static void 319static void
310fd_ebadf (void) 320fd_ebadf (EV_P)
311{ 321{
312 int fd; 322 int fd;
313 323
314 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 325 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 327 fd_kill (EV_A_ fd);
318} 328}
319 329
320/* called on ENOMEM in select/poll to kill some fds and retry */ 330/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 331static void
322fd_enomem (void) 332fd_enomem (EV_P)
323{ 333{
324 int fd = anfdmax; 334 int fd = anfdmax;
325 335
326 while (fd--) 336 while (fd--)
327 if (anfds [fd].events) 337 if (anfds [fd].events)
328 { 338 {
329 close (fd); 339 close (fd);
330 fd_kill (fd); 340 fd_kill (EV_A_ fd);
331 return; 341 return;
332 } 342 }
333} 343}
334 344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
358}
359
335/*****************************************************************************/ 360/*****************************************************************************/
336 361
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 362static void
344upheap (WT *timers, int k) 363upheap (WT *heap, int k)
345{ 364{
346 WT w = timers [k]; 365 WT w = heap [k];
347 366
348 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
349 { 368 {
350 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
352 k >>= 1; 371 k >>= 1;
353 } 372 }
354 373
355 timers [k] = w; 374 heap [k] = w;
356 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
357 376
358} 377}
359 378
360static void 379static void
361downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
362{ 381{
363 WT w = timers [k]; 382 WT w = heap [k];
364 383
365 while (k < (N >> 1)) 384 while (k < (N >> 1))
366 { 385 {
367 int j = k << 1; 386 int j = k << 1;
368 387
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 389 ++j;
371 390
372 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
373 break; 392 break;
374 393
375 timers [k] = timers [j]; 394 heap [k] = heap [j];
376 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
377 k = j; 396 k = j;
378 } 397 }
379 398
380 timers [k] = w; 399 heap [k] = w;
381 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
382} 401}
383 402
384/*****************************************************************************/ 403/*****************************************************************************/
385 404
386typedef struct 405typedef struct
387{ 406{
388 struct ev_signal *head; 407 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 408 sig_atomic_t volatile gotsig;
390} ANSIG; 409} ANSIG;
391 410
392static ANSIG *signals; 411static ANSIG *signals;
393static int signalmax; 412static int signalmax;
394 413
395static int sigpipe [2]; 414static int sigpipe [2];
396static sig_atomic_t volatile gotsig; 415static sig_atomic_t volatile gotsig;
397static struct ev_io sigev;
398 416
399static void 417static void
400signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
401{ 419{
402 while (count--) 420 while (count--)
413{ 431{
414 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
415 433
416 if (!gotsig) 434 if (!gotsig)
417 { 435 {
436 int old_errno = errno;
418 gotsig = 1; 437 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
420 } 440 }
421} 441}
422 442
423static void 443static void
424sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 445{
426 struct ev_signal *w; 446 struct ev_watcher_list *w;
427 int signum; 447 int signum;
428 448
429 read (sigpipe [0], &revents, 1); 449 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 450 gotsig = 0;
431 451
433 if (signals [signum].gotsig) 453 if (signals [signum].gotsig)
434 { 454 {
435 signals [signum].gotsig = 0; 455 signals [signum].gotsig = 0;
436 456
437 for (w = signals [signum].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
439 } 459 }
440} 460}
441 461
442static void 462static void
443siginit (void) 463siginit (EV_P)
444{ 464{
445#ifndef WIN32 465#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 468
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 472#endif
453 473
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 477}
457 478
458/*****************************************************************************/ 479/*****************************************************************************/
459
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev;
473 480
474#ifndef WIN32 481#ifndef WIN32
475 482
476#ifndef WCONTINUED 483#ifndef WCONTINUED
477# define WCONTINUED 0 484# define WCONTINUED 0
478#endif 485#endif
479 486
480static void 487static void
481childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 489{
483 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
484 int pid, status; 505 int pid, status;
485 506
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
488 if (w->pid == pid || !w->pid) 509 /* make sure we are called again until all childs have been reaped */
489 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
490 w->status = status; 511
491 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
492 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
493} 515}
494 516
495#endif 517#endif
496 518
497/*****************************************************************************/ 519/*****************************************************************************/
500# include "ev_kqueue.c" 522# include "ev_kqueue.c"
501#endif 523#endif
502#if EV_USE_EPOLL 524#if EV_USE_EPOLL
503# include "ev_epoll.c" 525# include "ev_epoll.c"
504#endif 526#endif
505#if EV_USE_POLL 527#if EV_USEV_POLL
506# include "ev_poll.c" 528# include "ev_poll.c"
507#endif 529#endif
508#if EV_USE_SELECT 530#if EV_USE_SELECT
509# include "ev_select.c" 531# include "ev_select.c"
510#endif 532#endif
519ev_version_minor (void) 541ev_version_minor (void)
520{ 542{
521 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
522} 544}
523 545
524/* return true if we are running with elevated privileges and ignore env variables */ 546/* return true if we are running with elevated privileges and should ignore env variables */
525static int 547static int
526enable_secure () 548enable_secure (void)
527{ 549{
550#ifdef WIN32
551 return 0;
552#else
528 return getuid () != geteuid () 553 return getuid () != geteuid ()
529 || getgid () != getegid (); 554 || getgid () != getegid ();
555#endif
530} 556}
531 557
532int ev_init (int methods) 558int
559ev_method (EV_P)
533{ 560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
534 if (!ev_method) 567 if (!method)
535 { 568 {
536#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
537 { 570 {
538 struct timespec ts; 571 struct timespec ts;
539 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
540 have_monotonic = 1; 573 have_monotonic = 1;
541 } 574 }
542#endif 575#endif
543 576
544 ev_now = ev_time (); 577 rt_now = ev_time ();
545 now = get_clock (); 578 mn_now = get_clock ();
546 now_floor = now; 579 now_floor = mn_now;
547 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
548
549 if (pipe (sigpipe))
550 return 0;
551 581
552 if (methods == EVMETHOD_AUTO) 582 if (methods == EVMETHOD_AUTO)
553 if (!enable_secure () && getenv ("LIBEV_METHODS")) 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
554 methods = atoi (getenv ("LIBEV_METHODS")); 584 methods = atoi (getenv ("LIBEV_METHODS"));
555 else 585 else
556 methods = EVMETHOD_ANY; 586 methods = EVMETHOD_ANY;
557 587
558 ev_method = 0; 588 method = 0;
559#if EV_USE_KQUEUE 589#if EV_USE_KQUEUE
560 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
561#endif 591#endif
562#if EV_USE_EPOLL 592#if EV_USE_EPOLL
563 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
564#endif 594#endif
565#if EV_USE_POLL 595#if EV_USEV_POLL
566 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
567#endif 597#endif
568#if EV_USE_SELECT 598#if EV_USE_SELECT
569 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
570#endif 600#endif
601 }
602}
571 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
572 if (ev_method) 691 if (ev_method (EV_A))
573 { 692 {
574 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
575 siginit (); 695 siginit (EV_A);
576 696
577#ifndef WIN32 697#ifndef WIN32
578 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
579 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
580#endif 702#endif
581 } 703 }
704 else
705 default_loop = 0;
582 } 706 }
583 707
584 return ev_method; 708 return default_loop;
585} 709}
586 710
587/*****************************************************************************/
588
589void 711void
590ev_fork_prepare (void) 712ev_default_destroy (void)
591{ 713{
592 /* nop */ 714#if EV_MULTIPLICITY
593} 715 struct ev_loop *loop = default_loop;
594
595void
596ev_fork_parent (void)
597{
598 /* nop */
599}
600
601void
602ev_fork_child (void)
603{
604#if EV_USE_EPOLL
605 if (ev_method == EVMETHOD_EPOLL)
606 epoll_postfork_child ();
607#endif 716#endif
608 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
609 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
610 close (sigpipe [0]); 736 close (sigpipe [0]);
611 close (sigpipe [1]); 737 close (sigpipe [1]);
612 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
613 siginit (); 741 siginit (EV_A);
614} 742}
615 743
616/*****************************************************************************/ 744/*****************************************************************************/
617 745
618static void 746static void
619call_pending (void) 747call_pending (EV_P)
620{ 748{
621 int pri; 749 int pri;
622 750
623 for (pri = NUMPRI; pri--; ) 751 for (pri = NUMPRI; pri--; )
624 while (pendingcnt [pri]) 752 while (pendingcnt [pri])
626 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
627 755
628 if (p->w) 756 if (p->w)
629 { 757 {
630 p->w->pending = 0; 758 p->w->pending = 0;
631 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
632 } 760 }
633 } 761 }
634} 762}
635 763
636static void 764static void
637timers_reify (void) 765timers_reify (EV_P)
638{ 766{
639 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
640 { 768 {
641 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
642 770
643 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
644 if (w->repeat) 772 if (w->repeat)
645 { 773 {
646 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
647 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
648 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
649 } 777 }
650 else 778 else
651 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
652 780
653 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
654 } 782 }
655} 783}
656 784
657static void 785static void
658periodics_reify (void) 786periodics_reify (EV_P)
659{ 787{
660 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
661 { 789 {
662 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
663 791
664 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
665 if (w->interval) 793 if (w->interval)
666 { 794 {
667 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
668 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
669 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
670 } 798 }
671 else 799 else
672 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
673 801
674 event ((W)w, EV_PERIODIC); 802 event (EV_A_ (W)w, EV_PERIODIC);
675 } 803 }
676} 804}
677 805
678static void 806static void
679periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
680{ 808{
681 int i; 809 int i;
682 810
683 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
684 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
685 { 813 {
686 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
687 815
688 if (w->interval) 816 if (w->interval)
689 { 817 {
690 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
691 819
692 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
693 { 821 {
694 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
695 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
696 824
697 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
698 } 826 }
699 } 827 }
700 } 828 }
701} 829}
702 830
703static int 831inline int
704time_update_monotonic (void) 832time_update_monotonic (EV_P)
705{ 833{
706 now = get_clock (); 834 mn_now = get_clock ();
707 835
708 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
709 { 837 {
710 ev_now = now + diff; 838 rt_now = rtmn_diff + mn_now;
711 return 0; 839 return 0;
712 } 840 }
713 else 841 else
714 { 842 {
715 now_floor = now; 843 now_floor = mn_now;
716 ev_now = ev_time (); 844 rt_now = ev_time ();
717 return 1; 845 return 1;
718 } 846 }
719} 847}
720 848
721static void 849static void
722time_update (void) 850time_update (EV_P)
723{ 851{
724 int i; 852 int i;
725 853
726#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
727 if (expect_true (have_monotonic)) 855 if (expect_true (have_monotonic))
728 { 856 {
729 if (time_update_monotonic ()) 857 if (time_update_monotonic (EV_A))
730 { 858 {
731 ev_tstamp odiff = diff; 859 ev_tstamp odiff = rtmn_diff;
732 860
733 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
734 { 862 {
735 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
736 864
737 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
738 return; /* all is well */ 866 return; /* all is well */
739 867
740 ev_now = ev_time (); 868 rt_now = ev_time ();
741 now = get_clock (); 869 mn_now = get_clock ();
742 now_floor = now; 870 now_floor = mn_now;
743 } 871 }
744 872
745 periodics_reschedule (diff - odiff); 873 periodics_reschedule (EV_A);
746 /* no timer adjustment, as the monotonic clock doesn't jump */ 874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
747 } 876 }
748 } 877 }
749 else 878 else
750#endif 879#endif
751 { 880 {
752 ev_now = ev_time (); 881 rt_now = ev_time ();
753 882
754 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
755 { 884 {
756 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
757 886
758 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
759 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
760 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
761 } 890 }
762 891
763 now = ev_now; 892 mn_now = rt_now;
764 } 893 }
765} 894}
766 895
767int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
768 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
769void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
770{ 912{
771 double block; 913 double block;
772 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
773 915
774 do 916 do
775 { 917 {
776 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
777 if (expect_false (preparecnt)) 919 if (expect_false (preparecnt))
778 { 920 {
779 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
780 call_pending (); 922 call_pending (EV_A);
781 } 923 }
782 924
783 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
784 fd_reify (); 926 fd_reify (EV_A);
785 927
786 /* calculate blocking time */ 928 /* calculate blocking time */
787 929
788 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
789 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
790#if EV_USE_MONOTONIC 932#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 933 if (expect_true (have_monotonic))
792 time_update_monotonic (); 934 time_update_monotonic (EV_A);
793 else 935 else
794#endif 936#endif
795 { 937 {
796 ev_now = ev_time (); 938 rt_now = ev_time ();
797 now = ev_now; 939 mn_now = rt_now;
798 } 940 }
799 941
800 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
801 block = 0.; 943 block = 0.;
802 else 944 else
803 { 945 {
804 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
805 947
806 if (timercnt) 948 if (timercnt)
807 { 949 {
808 ev_tstamp to = timers [0]->at - now + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
809 if (block > to) block = to; 951 if (block > to) block = to;
810 } 952 }
811 953
812 if (periodiccnt) 954 if (periodiccnt)
813 { 955 {
814 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
815 if (block > to) block = to; 957 if (block > to) block = to;
816 } 958 }
817 959
818 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
819 } 961 }
820 962
821 method_poll (block); 963 method_poll (EV_A_ block);
822 964
823 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
824 time_update (); 966 time_update (EV_A);
825 967
826 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
827 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
828 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
829 971
830 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
831 if (!pendingcnt) 973 if (!pendingcnt)
832 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
833 975
834 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
835 if (checkcnt) 977 if (checkcnt)
836 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
837 979
838 call_pending (); 980 call_pending (EV_A);
839 } 981 }
840 while (!ev_loop_done); 982 while (activecnt && !loop_done);
841 983
842 if (ev_loop_done != 2) 984 if (loop_done != 2)
843 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
844} 992}
845 993
846/*****************************************************************************/ 994/*****************************************************************************/
847 995
848static void 996inline void
849wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
850{ 998{
851 elem->next = *head; 999 elem->next = *head;
852 *head = elem; 1000 *head = elem;
853} 1001}
854 1002
855static void 1003inline void
856wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
857{ 1005{
858 while (*head) 1006 while (*head)
859 { 1007 {
860 if (*head == elem) 1008 if (*head == elem)
865 1013
866 head = &(*head)->next; 1014 head = &(*head)->next;
867 } 1015 }
868} 1016}
869 1017
870static void 1018inline void
871ev_clear_pending (W w) 1019ev_clear_pending (EV_P_ W w)
872{ 1020{
873 if (w->pending) 1021 if (w->pending)
874 { 1022 {
875 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
876 w->pending = 0; 1024 w->pending = 0;
877 } 1025 }
878} 1026}
879 1027
880static void 1028inline void
881ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
882{ 1030{
883 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
884 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
885 1033
886 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
887} 1036}
888 1037
889static void 1038inline void
890ev_stop (W w) 1039ev_stop (EV_P_ W w)
891{ 1040{
1041 ev_unref (EV_A);
892 w->active = 0; 1042 w->active = 0;
893} 1043}
894 1044
895/*****************************************************************************/ 1045/*****************************************************************************/
896 1046
897void 1047void
898ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
899{ 1049{
900 int fd = w->fd; 1050 int fd = w->fd;
901 1051
902 if (ev_is_active (w)) 1052 if (ev_is_active (w))
903 return; 1053 return;
904 1054
905 assert (("ev_io_start called with negative fd", fd >= 0)); 1055 assert (("ev_io_start called with negative fd", fd >= 0));
906 1056
907 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
908 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
909 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
910 1060
911 fd_change (fd); 1061 fd_change (EV_A_ fd);
912} 1062}
913 1063
914void 1064void
915ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
916{ 1066{
917 ev_clear_pending ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
919 return; 1069 return;
920 1070
921 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
922 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
923 1073
924 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
925} 1075}
926 1076
927void 1077void
928ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
929{ 1079{
930 if (ev_is_active (w)) 1080 if (ev_is_active (w))
931 return; 1081 return;
932 1082
933 w->at += now; 1083 w->at += mn_now;
934 1084
935 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
936 1086
937 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
938 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
939 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
940 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
941} 1091}
942 1092
943void 1093void
944ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
945{ 1095{
946 ev_clear_pending ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
947 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
948 return; 1098 return;
949 1099
950 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
951 { 1101 {
953 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
954 } 1104 }
955 1105
956 w->at = w->repeat; 1106 w->at = w->repeat;
957 1107
958 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
959} 1109}
960 1110
961void 1111void
962ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
963{ 1113{
964 if (ev_is_active (w)) 1114 if (ev_is_active (w))
965 { 1115 {
966 if (w->repeat) 1116 if (w->repeat)
967 { 1117 {
968 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
969 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
970 } 1120 }
971 else 1121 else
972 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
973 } 1123 }
974 else if (w->repeat) 1124 else if (w->repeat)
975 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
976} 1126}
977 1127
978void 1128void
979ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
980{ 1130{
981 if (ev_is_active (w)) 1131 if (ev_is_active (w))
982 return; 1132 return;
983 1133
984 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
985 1135
986 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
987 if (w->interval) 1137 if (w->interval)
988 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
989 1139
990 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
991 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
992 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
993 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
994} 1144}
995 1145
996void 1146void
997ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
998{ 1148{
999 ev_clear_pending ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
1000 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
1001 return; 1151 return;
1002 1152
1003 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
1004 { 1154 {
1005 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
1006 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1007 } 1157 }
1008 1158
1009 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
1010} 1160}
1011 1161
1012void 1162void
1013ev_signal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
1014{ 1164{
1015 if (ev_is_active (w)) 1165 if (ev_is_active (w))
1016 return; 1166 return;
1017 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
1018 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1019 1242
1020 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
1021 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
1022 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1023 1246
1024 if (!w->next) 1247 if (!w->next)
1025 { 1248 {
1026 struct sigaction sa; 1249 struct sigaction sa;
1027 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
1028 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
1029 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1030 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
1031 } 1254 }
1032} 1255}
1033 1256
1034void 1257void
1035ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
1036{ 1259{
1037 ev_clear_pending ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
1038 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
1039 return; 1262 return;
1040 1263
1041 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1042 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
1043 1266
1044 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
1045 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
1046} 1269}
1047 1270
1048void 1271void
1049ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
1050{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
1051 if (ev_is_active (w)) 1277 if (ev_is_active (w))
1052 return; 1278 return;
1053 1279
1054 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
1055 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1056 idles [idlecnt - 1] = w;
1057} 1282}
1058 1283
1059void 1284void
1060ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
1061{ 1286{
1062 ev_clear_pending ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
1063 if (ev_is_active (w)) 1288 if (ev_is_active (w))
1064 return; 1289 return;
1065 1290
1066 idles [w->active - 1] = idles [--idlecnt];
1067 ev_stop ((W)w);
1068}
1069
1070void
1071ev_prepare_start (struct ev_prepare *w)
1072{
1073 if (ev_is_active (w))
1074 return;
1075
1076 ev_start ((W)w, ++preparecnt);
1077 array_needsize (prepares, preparemax, preparecnt, );
1078 prepares [preparecnt - 1] = w;
1079}
1080
1081void
1082ev_prepare_stop (struct ev_prepare *w)
1083{
1084 ev_clear_pending ((W)w);
1085 if (ev_is_active (w))
1086 return;
1087
1088 prepares [w->active - 1] = prepares [--preparecnt];
1089 ev_stop ((W)w);
1090}
1091
1092void
1093ev_check_start (struct ev_check *w)
1094{
1095 if (ev_is_active (w))
1096 return;
1097
1098 ev_start ((W)w, ++checkcnt);
1099 array_needsize (checks, checkmax, checkcnt, );
1100 checks [checkcnt - 1] = w;
1101}
1102
1103void
1104ev_check_stop (struct ev_check *w)
1105{
1106 ev_clear_pending ((W)w);
1107 if (ev_is_active (w))
1108 return;
1109
1110 checks [w->active - 1] = checks [--checkcnt];
1111 ev_stop ((W)w);
1112}
1113
1114void
1115ev_child_start (struct ev_child *w)
1116{
1117 if (ev_is_active (w))
1118 return;
1119
1120 ev_start ((W)w, 1);
1121 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122}
1123
1124void
1125ev_child_stop (struct ev_child *w)
1126{
1127 ev_clear_pending ((W)w);
1128 if (ev_is_active (w))
1129 return;
1130
1131 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1132 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
1133} 1293}
1134 1294
1135/*****************************************************************************/ 1295/*****************************************************************************/
1136 1296
1137struct ev_once 1297struct ev_once
1141 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
1142 void *arg; 1302 void *arg;
1143}; 1303};
1144 1304
1145static void 1305static void
1146once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
1147{ 1307{
1148 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
1149 void *arg = once->arg; 1309 void *arg = once->arg;
1150 1310
1151 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1152 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1153 free (once); 1313 free (once);
1154 1314
1155 cb (revents, arg); 1315 cb (revents, arg);
1156} 1316}
1157 1317
1158static void 1318static void
1159once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1160{ 1320{
1161 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1162} 1322}
1163 1323
1164static void 1324static void
1165once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1166{ 1326{
1167 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1168} 1328}
1169 1329
1170void 1330void
1171ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1172{ 1332{
1173 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1174 1334
1175 if (!once) 1335 if (!once)
1176 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1181 1341
1182 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1183 if (fd >= 0) 1343 if (fd >= 0)
1184 { 1344 {
1185 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1186 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1187 } 1347 }
1188 1348
1189 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1190 if (timeout >= 0.) 1350 if (timeout >= 0.)
1191 { 1351 {
1192 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1193 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1194 } 1354 }
1195 } 1355 }
1196} 1356}
1197 1357
1198/*****************************************************************************/
1199
1200#if 0
1201
1202struct ev_io wio;
1203
1204static void
1205sin_cb (struct ev_io *w, int revents)
1206{
1207 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1208}
1209
1210static void
1211ocb (struct ev_timer *w, int revents)
1212{
1213 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1214 ev_timer_stop (w);
1215 ev_timer_start (w);
1216}
1217
1218static void
1219scb (struct ev_signal *w, int revents)
1220{
1221 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1222 ev_io_stop (&wio);
1223 ev_io_start (&wio);
1224}
1225
1226static void
1227gcb (struct ev_signal *w, int revents)
1228{
1229 fprintf (stderr, "generic %x\n", revents);
1230
1231}
1232
1233int main (void)
1234{
1235 ev_init (0);
1236
1237 ev_io_init (&wio, sin_cb, 0, EV_READ);
1238 ev_io_start (&wio);
1239
1240 struct ev_timer t[10000];
1241
1242#if 0
1243 int i;
1244 for (i = 0; i < 10000; ++i)
1245 {
1246 struct ev_timer *w = t + i;
1247 ev_watcher_init (w, ocb, i);
1248 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1249 ev_timer_start (w);
1250 if (drand48 () < 0.5)
1251 ev_timer_stop (w);
1252 }
1253#endif
1254
1255 struct ev_timer t1;
1256 ev_timer_init (&t1, ocb, 5, 10);
1257 ev_timer_start (&t1);
1258
1259 struct ev_signal sig;
1260 ev_signal_init (&sig, scb, SIGQUIT);
1261 ev_signal_start (&sig);
1262
1263 struct ev_check cw;
1264 ev_check_init (&cw, gcb);
1265 ev_check_start (&cw);
1266
1267 struct ev_idle iw;
1268 ev_idle_init (&iw, gcb);
1269 ev_idle_start (&iw);
1270
1271 ev_loop (0);
1272
1273 return 0;
1274}
1275
1276#endif
1277
1278
1279
1280

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines