ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.489 by root, Sat Dec 29 14:23:20 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31#ifndef EV_EMBED 39
40/* this big block deduces configuration from config.h */
41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
33#endif 46# endif
34 47
35#include <math.h> 48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
82# endif
83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
109# endif
110
111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
118# endif
119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
137
138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
36#include <stdlib.h> 177#include <stdlib.h>
37#include <unistd.h> 178#include <string.h>
38#include <fcntl.h> 179#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 180#include <stddef.h>
41 181
42#include <stdio.h> 182#include <stdio.h>
43 183
44#include <assert.h> 184#include <assert.h>
45#include <errno.h> 185#include <errno.h>
46#include <sys/types.h> 186#include <sys/types.h>
187#include <time.h>
188#include <limits.h>
189
190#include <signal.h>
191
192#ifdef EV_H
193# include EV_H
194#else
195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
207#endif
208
47#ifndef WIN32 209#ifndef _WIN32
210# include <sys/time.h>
48# include <sys/wait.h> 211# include <sys/wait.h>
212# include <unistd.h>
213#else
214# include <io.h>
215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
217# include <windows.h>
218# ifndef EV_SELECT_IS_WINSOCKET
219# define EV_SELECT_IS_WINSOCKET 1
49#endif 220# endif
50#include <sys/time.h> 221# undef EV_AVOID_STDIO
51#include <time.h> 222#endif
52 223
53/**/ 224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
54 271
55#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
56# define EV_USE_MONOTONIC 1 276# define EV_USE_MONOTONIC 0
277# endif
278#endif
279
280#ifndef EV_USE_REALTIME
281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
57#endif 290#endif
58 291
59#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
61#endif 294#endif
62 295
63#ifndef EV_USEV_POLL 296#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 297# ifdef _WIN32
298# define EV_USE_POLL 0
299# else
300# define EV_USE_POLL EV_FEATURE_BACKENDS
301# endif
65#endif 302#endif
66 303
67#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
68# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
69#endif 310#endif
70 311
71#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
73#endif 314#endif
74 315
75#ifndef EV_USE_REALTIME 316#ifndef EV_USE_PORT
76# define EV_USE_REALTIME 1 317# define EV_USE_PORT 0
318#endif
319
320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
324# define EV_USE_INOTIFY 0
77#endif 325# endif
326#endif
78 327
79/**/ 328#ifndef EV_PID_HASHSIZE
329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
339# else
340# define EV_USE_EVENTFD 0
341# endif
342#endif
343
344#ifndef EV_USE_SIGNALFD
345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
346# define EV_USE_SIGNALFD EV_FEATURE_OS
347# else
348# define EV_USE_SIGNALFD 0
349# endif
350#endif
351
352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 401
81#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
84#endif 405#endif
86#ifndef CLOCK_REALTIME 407#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 408# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 409# define EV_USE_REALTIME 0
89#endif 410#endif
90 411
412#if !EV_STAT_ENABLE
413# undef EV_USE_INOTIFY
414# define EV_USE_INOTIFY 0
415#endif
416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
431# endif
432#endif
433
434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
470#endif
471
91/**/ 472/**/
92 473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
480/*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
486
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 489
98#ifndef EV_EMBED 490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
99# include "ev.h" 491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
100#endif 554 #endif
101 555 #ifdef _WIN64
102#if __GNUC__ >= 3 556 #define ECB_PTRSIZE 8
103# define expect(expr,value) __builtin_expect ((expr),(value)) 557 typedef uint64_t uintptr_t;
104# define inline inline 558 typedef int64_t intptr_t;
105#else 559 #else
106# define expect(expr,value) (expr) 560 #define ECB_PTRSIZE 4
107# define inline static 561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
108#endif 563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
109 572
110#define expect_false(expr) expect ((expr) != 0, 0) 573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
111#define expect_true(expr) expect ((expr) != 0, 1) 574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
112 575
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 576/* work around x32 idiocy by defining proper macros */
114#define ABSPRI(w) ((w)->priority - EV_MINPRI) 577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
115 584
116typedef struct ev_watcher *W; 585/* many compilers define _GNUC_ to some versions but then only implement
117typedef struct ev_watcher_list *WL; 586 * what their idiot authors think are the "more important" extensions,
118typedef struct ev_watcher_time *WT; 587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
119 597
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614#define ECB_CPP14 (__cplusplus >= 201402L)
615#define ECB_CPP17 (__cplusplus >= 201703L)
616
617#if ECB_CPP
618 #define ECB_C 0
619 #define ECB_STDC_VERSION 0
620#else
621 #define ECB_C 1
622 #define ECB_STDC_VERSION __STDC_VERSION__
623#endif
624
625#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628
629#if ECB_CPP
630 #define ECB_EXTERN_C extern "C"
631 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632 #define ECB_EXTERN_C_END }
633#else
634 #define ECB_EXTERN_C extern
635 #define ECB_EXTERN_C_BEG
636 #define ECB_EXTERN_C_END
637#endif
121 638
122/*****************************************************************************/ 639/*****************************************************************************/
123 640
641/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643
644#if ECB_NO_THREADS
645 #define ECB_NO_SMP 1
646#endif
647
648#if ECB_NO_SMP
649 #define ECB_MEMORY_FENCE do { } while (0)
650#endif
651
652/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653#if __xlC__ && ECB_CPP
654 #include <builtins.h>
655#endif
656
657#if 1400 <= _MSC_VER
658 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659#endif
660
661#ifndef ECB_MEMORY_FENCE
662 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 #if __i386 || __i386__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 #elif ECB_GCC_AMD64
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 #elif defined __ARM_ARCH_2__ \
674 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678 || defined __ARM_ARCH_5TEJ__
679 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682 || defined __ARM_ARCH_6T2__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 #elif __aarch64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 #elif defined __s390__ || defined __s390x__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 #elif defined __mips__
696 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 #elif defined __alpha__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701 #elif defined __hppa__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704 #elif defined __ia64__
705 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 #elif defined __m68k__
707 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708 #elif defined __m88k__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710 #elif defined __sh__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 #endif
713 #endif
714#endif
715
716#ifndef ECB_MEMORY_FENCE
717 #if ECB_GCC_VERSION(4,7)
718 /* see comment below (stdatomic.h) about the C11 memory model. */
719 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722
723 #elif ECB_CLANG_EXTENSION(c_atomic)
724 /* see comment below (stdatomic.h) about the C11 memory model. */
725 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728
729 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 #elif defined _WIN32
743 #include <WinNT.h>
744 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #include <mbarrier.h>
747 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 #elif __xlC__
751 #define ECB_MEMORY_FENCE __sync ()
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757 /* we assume that these memory fences work on all variables/all memory accesses, */
758 /* not just C11 atomics and atomic accesses */
759 #include <stdatomic.h>
760 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761 /* any fence other than seq_cst, which isn't very efficient for us. */
762 /* Why that is, we don't know - either the C11 memory model is quite useless */
763 /* for most usages, or gcc and clang have a bug */
764 /* I *currently* lean towards the latter, and inefficiently implement */
765 /* all three of ecb's fences as a seq_cst fence */
766 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767 /* for all __atomic_thread_fence's except seq_cst */
768 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769 #endif
770#endif
771
772#ifndef ECB_MEMORY_FENCE
773 #if !ECB_AVOID_PTHREADS
774 /*
775 * if you get undefined symbol references to pthread_mutex_lock,
776 * or failure to find pthread.h, then you should implement
777 * the ECB_MEMORY_FENCE operations for your cpu/compiler
778 * OR provide pthread.h and link against the posix thread library
779 * of your system.
780 */
781 #include <pthread.h>
782 #define ECB_NEEDS_PTHREADS 1
783 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784
785 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787 #endif
788#endif
789
790#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792#endif
793
794#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796#endif
797
798/*****************************************************************************/
799
800#if ECB_CPP
801 #define ecb_inline static inline
802#elif ECB_GCC_VERSION(2,5)
803 #define ecb_inline static __inline__
804#elif ECB_C99
805 #define ecb_inline static inline
806#else
807 #define ecb_inline static
808#endif
809
810#if ECB_GCC_VERSION(3,3)
811 #define ecb_restrict __restrict__
812#elif ECB_C99
813 #define ecb_restrict restrict
814#else
815 #define ecb_restrict
816#endif
817
818typedef int ecb_bool;
819
820#define ECB_CONCAT_(a, b) a ## b
821#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822#define ECB_STRINGIFY_(a) # a
823#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825
826#define ecb_function_ ecb_inline
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829 #define ecb_attribute(attrlist) __attribute__ (attrlist)
830#else
831 #define ecb_attribute(attrlist)
832#endif
833
834#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835 #define ecb_is_constant(expr) __builtin_constant_p (expr)
836#else
837 /* possible C11 impl for integral types
838 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840
841 #define ecb_is_constant(expr) 0
842#endif
843
844#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
845 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
846#else
847 #define ecb_expect(expr,value) (expr)
848#endif
849
850#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852#else
853 #define ecb_prefetch(addr,rw,locality)
854#endif
855
856/* no emulation for ecb_decltype */
857#if ECB_CPP11
858 // older implementations might have problems with decltype(x)::type, work around it
859 template<class T> struct ecb_decltype_t { typedef T type; };
860 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862 #define ecb_decltype(x) __typeof__ (x)
863#endif
864
865#if _MSC_VER >= 1300
866 #define ecb_deprecated __declspec (deprecated)
867#else
868 #define ecb_deprecated ecb_attribute ((__deprecated__))
869#endif
870
871#if _MSC_VER >= 1500
872 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873#elif ECB_GCC_VERSION(4,5)
874 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875#else
876 #define ecb_deprecated_message(msg) ecb_deprecated
877#endif
878
879#if _MSC_VER >= 1400
880 #define ecb_noinline __declspec (noinline)
881#else
882 #define ecb_noinline ecb_attribute ((__noinline__))
883#endif
884
885#define ecb_unused ecb_attribute ((__unused__))
886#define ecb_const ecb_attribute ((__const__))
887#define ecb_pure ecb_attribute ((__pure__))
888
889#if ECB_C11 || __IBMC_NORETURN
890 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 #define ecb_noreturn _Noreturn
892#elif ECB_CPP11
893 #define ecb_noreturn [[noreturn]]
894#elif _MSC_VER >= 1200
895 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896 #define ecb_noreturn __declspec (noreturn)
897#else
898 #define ecb_noreturn ecb_attribute ((__noreturn__))
899#endif
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_artificial ecb_attribute ((__artificial__))
903 #define ecb_hot ecb_attribute ((__hot__))
904 #define ecb_cold ecb_attribute ((__cold__))
905#else
906 #define ecb_artificial
907 #define ecb_hot
908 #define ecb_cold
909#endif
910
911/* put around conditional expressions if you are very sure that the */
912/* expression is mostly true or mostly false. note that these return */
913/* booleans, not the expression. */
914#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
915#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916/* for compatibility to the rest of the world */
917#define ecb_likely(expr) ecb_expect_true (expr)
918#define ecb_unlikely(expr) ecb_expect_false (expr)
919
920/* count trailing zero bits and count # of one bits */
921#if ECB_GCC_VERSION(3,4) \
922 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924 && ECB_CLANG_BUILTIN(__builtin_popcount))
925 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928 #define ecb_ctz32(x) __builtin_ctz (x)
929 #define ecb_ctz64(x) __builtin_ctzll (x)
930 #define ecb_popcount32(x) __builtin_popcount (x)
931 /* no popcountll */
932#else
933 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934 ecb_function_ ecb_const int
935 ecb_ctz32 (uint32_t x)
936 {
937#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938 unsigned long r;
939 _BitScanForward (&r, x);
940 return (int)r;
941#else
942 int r = 0;
943
944 x &= ~x + 1; /* this isolates the lowest bit */
945
946#if ECB_branchless_on_i386
947 r += !!(x & 0xaaaaaaaa) << 0;
948 r += !!(x & 0xcccccccc) << 1;
949 r += !!(x & 0xf0f0f0f0) << 2;
950 r += !!(x & 0xff00ff00) << 3;
951 r += !!(x & 0xffff0000) << 4;
952#else
953 if (x & 0xaaaaaaaa) r += 1;
954 if (x & 0xcccccccc) r += 2;
955 if (x & 0xf0f0f0f0) r += 4;
956 if (x & 0xff00ff00) r += 8;
957 if (x & 0xffff0000) r += 16;
958#endif
959
960 return r;
961#endif
962 }
963
964 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965 ecb_function_ ecb_const int
966 ecb_ctz64 (uint64_t x)
967 {
968#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969 unsigned long r;
970 _BitScanForward64 (&r, x);
971 return (int)r;
972#else
973 int shift = x & 0xffffffff ? 0 : 32;
974 return ecb_ctz32 (x >> shift) + shift;
975#endif
976 }
977
978 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979 ecb_function_ ecb_const int
980 ecb_popcount32 (uint32_t x)
981 {
982 x -= (x >> 1) & 0x55555555;
983 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984 x = ((x >> 4) + x) & 0x0f0f0f0f;
985 x *= 0x01010101;
986
987 return x >> 24;
988 }
989
990 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanReverse (&r, x);
996 return (int)r;
997#else
998 int r = 0;
999
1000 if (x >> 16) { x >>= 16; r += 16; }
1001 if (x >> 8) { x >>= 8; r += 8; }
1002 if (x >> 4) { x >>= 4; r += 4; }
1003 if (x >> 2) { x >>= 2; r += 2; }
1004 if (x >> 1) { r += 1; }
1005
1006 return r;
1007#endif
1008 }
1009
1010 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 {
1013#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014 unsigned long r;
1015 _BitScanReverse64 (&r, x);
1016 return (int)r;
1017#else
1018 int r = 0;
1019
1020 if (x >> 32) { x >>= 32; r += 32; }
1021
1022 return r + ecb_ld32 (x);
1023#endif
1024 }
1025#endif
1026
1027ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031
1032ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034{
1035 return ( (x * 0x0802U & 0x22110U)
1036 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037}
1038
1039ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041{
1042 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045 x = ( x >> 8 ) | ( x << 8);
1046
1047 return x;
1048}
1049
1050ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052{
1053 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057 x = ( x >> 16 ) | ( x << 16);
1058
1059 return x;
1060}
1061
1062/* popcount64 is only available on 64 bit cpus as gcc builtin */
1063/* so for this version we are lazy */
1064ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065ecb_function_ ecb_const int
1066ecb_popcount64 (uint64_t x)
1067{
1068 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069}
1070
1071ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079
1080ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088
1089#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091 #define ecb_bswap16(x) __builtin_bswap16 (x)
1092 #else
1093 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 #endif
1095 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096 #define ecb_bswap64(x) __builtin_bswap64 (x)
1097#elif _MSC_VER
1098 #include <stdlib.h>
1099 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102#else
1103 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104 ecb_function_ ecb_const uint16_t
1105 ecb_bswap16 (uint16_t x)
1106 {
1107 return ecb_rotl16 (x, 8);
1108 }
1109
1110 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111 ecb_function_ ecb_const uint32_t
1112 ecb_bswap32 (uint32_t x)
1113 {
1114 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115 }
1116
1117 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118 ecb_function_ ecb_const uint64_t
1119 ecb_bswap64 (uint64_t x)
1120 {
1121 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122 }
1123#endif
1124
1125#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 #define ecb_unreachable() __builtin_unreachable ()
1127#else
1128 /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131#endif
1132
1133/* try to tell the compiler that some condition is definitely true */
1134#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135
1136ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137ecb_inline ecb_const uint32_t
1138ecb_byteorder_helper (void)
1139{
1140 /* the union code still generates code under pressure in gcc, */
1141 /* but less than using pointers, and always seems to */
1142 /* successfully return a constant. */
1143 /* the reason why we have this horrible preprocessor mess */
1144 /* is to avoid it in all cases, at least on common architectures */
1145 /* or when using a recent enough gcc version (>= 4.6) */
1146#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148 #define ECB_LITTLE_ENDIAN 1
1149 return 0x44332211;
1150#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152 #define ECB_BIG_ENDIAN 1
1153 return 0x11223344;
1154#else
1155 union
1156 {
1157 uint8_t c[4];
1158 uint32_t u;
1159 } u = { 0x11, 0x22, 0x33, 0x44 };
1160 return u.u;
1161#endif
1162}
1163
1164ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168
1169#if ECB_GCC_VERSION(3,0) || ECB_C99
1170 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171#else
1172 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173#endif
1174
1175#if ECB_CPP
1176 template<typename T>
1177 static inline T ecb_div_rd (T val, T div)
1178 {
1179 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180 }
1181 template<typename T>
1182 static inline T ecb_div_ru (T val, T div)
1183 {
1184 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185 }
1186#else
1187 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189#endif
1190
1191#if ecb_cplusplus_does_not_suck
1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 template<typename T, int N>
1194 static inline int ecb_array_length (const T (&arr)[N])
1195 {
1196 return N;
1197 }
1198#else
1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200#endif
1201
1202ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203ecb_function_ ecb_const uint32_t
1204ecb_binary16_to_binary32 (uint32_t x)
1205{
1206 unsigned int s = (x & 0x8000) << (31 - 15);
1207 int e = (x >> 10) & 0x001f;
1208 unsigned int m = x & 0x03ff;
1209
1210 if (ecb_expect_false (e == 31))
1211 /* infinity or NaN */
1212 e = 255 - (127 - 15);
1213 else if (ecb_expect_false (!e))
1214 {
1215 if (ecb_expect_true (!m))
1216 /* zero, handled by code below by forcing e to 0 */
1217 e = 0 - (127 - 15);
1218 else
1219 {
1220 /* subnormal, renormalise */
1221 unsigned int s = 10 - ecb_ld32 (m);
1222
1223 m = (m << s) & 0x3ff; /* mask implicit bit */
1224 e -= s - 1;
1225 }
1226 }
1227
1228 /* e and m now are normalised, or zero, (or inf or nan) */
1229 e += 127 - 15;
1230
1231 return s | (e << 23) | (m << (23 - 10));
1232}
1233
1234ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235ecb_function_ ecb_const uint16_t
1236ecb_binary32_to_binary16 (uint32_t x)
1237{
1238 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240 unsigned int m = x & 0x007fffff;
1241
1242 x &= 0x7fffffff;
1243
1244 /* if it's within range of binary16 normals, use fast path */
1245 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246 {
1247 /* mantissa round-to-even */
1248 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249
1250 /* handle overflow */
1251 if (ecb_expect_false (m >= 0x00800000))
1252 {
1253 m >>= 1;
1254 e += 1;
1255 }
1256
1257 return s | (e << 10) | (m >> (23 - 10));
1258 }
1259
1260 /* handle large numbers and infinity */
1261 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262 return s | 0x7c00;
1263
1264 /* handle zero, subnormals and small numbers */
1265 if (ecb_expect_true (x < 0x38800000))
1266 {
1267 /* zero */
1268 if (ecb_expect_true (!x))
1269 return s;
1270
1271 /* handle subnormals */
1272
1273 /* too small, will be zero */
1274 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275 return s;
1276
1277 m |= 0x00800000; /* make implicit bit explicit */
1278
1279 /* very tricky - we need to round to the nearest e (+10) bit value */
1280 {
1281 unsigned int bits = 14 - e;
1282 unsigned int half = (1 << (bits - 1)) - 1;
1283 unsigned int even = (m >> bits) & 1;
1284
1285 /* if this overflows, we will end up with a normalised number */
1286 m = (m + half + even) >> bits;
1287 }
1288
1289 return s | m;
1290 }
1291
1292 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293 m >>= 13;
1294
1295 return s | 0x7c00 | m | !m;
1296}
1297
1298/*******************************************************************************/
1299/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300
1301/* basically, everything uses "ieee pure-endian" floating point numbers */
1302/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303#if 0 \
1304 || __i386 || __i386__ \
1305 || ECB_GCC_AMD64 \
1306 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307 || defined __s390__ || defined __s390x__ \
1308 || defined __mips__ \
1309 || defined __alpha__ \
1310 || defined __hppa__ \
1311 || defined __ia64__ \
1312 || defined __m68k__ \
1313 || defined __m88k__ \
1314 || defined __sh__ \
1315 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 || defined __aarch64__
1318 #define ECB_STDFP 1
1319 #include <string.h> /* for memcpy */
1320#else
1321 #define ECB_STDFP 0
1322#endif
1323
1324#ifndef ECB_NO_LIBM
1325
1326 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327
1328 /* only the oldest of old doesn't have this one. solaris. */
1329 #ifdef INFINITY
1330 #define ECB_INFINITY INFINITY
1331 #else
1332 #define ECB_INFINITY HUGE_VAL
1333 #endif
1334
1335 #ifdef NAN
1336 #define ECB_NAN NAN
1337 #else
1338 #define ECB_NAN ECB_INFINITY
1339 #endif
1340
1341 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 #else
1345 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 #endif
1348
1349 /* convert a float to ieee single/binary32 */
1350 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351 ecb_function_ ecb_const uint32_t
1352 ecb_float_to_binary32 (float x)
1353 {
1354 uint32_t r;
1355
1356 #if ECB_STDFP
1357 memcpy (&r, &x, 4);
1358 #else
1359 /* slow emulation, works for anything but -0 */
1360 uint32_t m;
1361 int e;
1362
1363 if (x == 0e0f ) return 0x00000000U;
1364 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366 if (x != x ) return 0x7fbfffffU;
1367
1368 m = ecb_frexpf (x, &e) * 0x1000000U;
1369
1370 r = m & 0x80000000U;
1371
1372 if (r)
1373 m = -m;
1374
1375 if (e <= -126)
1376 {
1377 m &= 0xffffffU;
1378 m >>= (-125 - e);
1379 e = -126;
1380 }
1381
1382 r |= (e + 126) << 23;
1383 r |= m & 0x7fffffU;
1384 #endif
1385
1386 return r;
1387 }
1388
1389 /* converts an ieee single/binary32 to a float */
1390 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391 ecb_function_ ecb_const float
1392 ecb_binary32_to_float (uint32_t x)
1393 {
1394 float r;
1395
1396 #if ECB_STDFP
1397 memcpy (&r, &x, 4);
1398 #else
1399 /* emulation, only works for normals and subnormals and +0 */
1400 int neg = x >> 31;
1401 int e = (x >> 23) & 0xffU;
1402
1403 x &= 0x7fffffU;
1404
1405 if (e)
1406 x |= 0x800000U;
1407 else
1408 e = 1;
1409
1410 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412
1413 r = neg ? -r : r;
1414 #endif
1415
1416 return r;
1417 }
1418
1419 /* convert a double to ieee double/binary64 */
1420 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421 ecb_function_ ecb_const uint64_t
1422 ecb_double_to_binary64 (double x)
1423 {
1424 uint64_t r;
1425
1426 #if ECB_STDFP
1427 memcpy (&r, &x, 8);
1428 #else
1429 /* slow emulation, works for anything but -0 */
1430 uint64_t m;
1431 int e;
1432
1433 if (x == 0e0 ) return 0x0000000000000000U;
1434 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436 if (x != x ) return 0X7ff7ffffffffffffU;
1437
1438 m = frexp (x, &e) * 0x20000000000000U;
1439
1440 r = m & 0x8000000000000000;;
1441
1442 if (r)
1443 m = -m;
1444
1445 if (e <= -1022)
1446 {
1447 m &= 0x1fffffffffffffU;
1448 m >>= (-1021 - e);
1449 e = -1022;
1450 }
1451
1452 r |= ((uint64_t)(e + 1022)) << 52;
1453 r |= m & 0xfffffffffffffU;
1454 #endif
1455
1456 return r;
1457 }
1458
1459 /* converts an ieee double/binary64 to a double */
1460 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461 ecb_function_ ecb_const double
1462 ecb_binary64_to_double (uint64_t x)
1463 {
1464 double r;
1465
1466 #if ECB_STDFP
1467 memcpy (&r, &x, 8);
1468 #else
1469 /* emulation, only works for normals and subnormals and +0 */
1470 int neg = x >> 63;
1471 int e = (x >> 52) & 0x7ffU;
1472
1473 x &= 0xfffffffffffffU;
1474
1475 if (e)
1476 x |= 0x10000000000000U;
1477 else
1478 e = 1;
1479
1480 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482
1483 r = neg ? -r : r;
1484 #endif
1485
1486 return r;
1487 }
1488
1489 /* convert a float to ieee half/binary16 */
1490 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491 ecb_function_ ecb_const uint16_t
1492 ecb_float_to_binary16 (float x)
1493 {
1494 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495 }
1496
1497 /* convert an ieee half/binary16 to float */
1498 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499 ecb_function_ ecb_const float
1500 ecb_binary16_to_float (uint16_t x)
1501 {
1502 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503 }
1504
1505#endif
1506
1507#endif
1508
1509/* ECB.H END */
1510
1511#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512/* if your architecture doesn't need memory fences, e.g. because it is
1513 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 * libev, in which cases the memory fences become nops.
1516 * alternatively, you can remove this #error and link against libpthread,
1517 * which will then provide the memory fences.
1518 */
1519# error "memory fences not defined for your architecture, please report"
1520#endif
1521
1522#ifndef ECB_MEMORY_FENCE
1523# define ECB_MEMORY_FENCE do { } while (0)
1524# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526#endif
1527
1528#define expect_false(cond) ecb_expect_false (cond)
1529#define expect_true(cond) ecb_expect_true (cond)
1530#define noinline ecb_noinline
1531
1532#define inline_size ecb_inline
1533
1534#if EV_FEATURE_CODE
1535# define inline_speed ecb_inline
1536#else
1537# define inline_speed noinline static
1538#endif
1539
1540#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541
1542#if EV_MINPRI == EV_MAXPRI
1543# define ABSPRI(w) (((W)w), 0)
1544#else
1545# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546#endif
1547
1548#define EMPTY /* required for microsofts broken pseudo-c compiler */
1549#define EMPTY2(a,b) /* used to suppress some warnings */
1550
1551typedef ev_watcher *W;
1552typedef ev_watcher_list *WL;
1553typedef ev_watcher_time *WT;
1554
1555#define ev_active(w) ((W)(w))->active
1556#define ev_at(w) ((WT)(w))->at
1557
1558#if EV_USE_REALTIME
1559/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560/* giving it a reasonably high chance of working on typical architectures */
1561static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562#endif
1563
1564#if EV_USE_MONOTONIC
1565static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566#endif
1567
1568#ifndef EV_FD_TO_WIN32_HANDLE
1569# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570#endif
1571#ifndef EV_WIN32_HANDLE_TO_FD
1572# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573#endif
1574#ifndef EV_WIN32_CLOSE_FD
1575# define EV_WIN32_CLOSE_FD(fd) close (fd)
1576#endif
1577
1578#ifdef _WIN32
1579# include "ev_win32.c"
1580#endif
1581
1582/*****************************************************************************/
1583
1584/* define a suitable floor function (only used by periodics atm) */
1585
1586#if EV_USE_FLOOR
1587# include <math.h>
1588# define ev_floor(v) floor (v)
1589#else
1590
1591#include <float.h>
1592
1593/* a floor() replacement function, should be independent of ev_tstamp type */
1594noinline
1595static ev_tstamp
1596ev_floor (ev_tstamp v)
1597{
1598 /* the choice of shift factor is not terribly important */
1599#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601#else
1602 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603#endif
1604
1605 /* argument too large for an unsigned long? */
1606 if (expect_false (v >= shift))
1607 {
1608 ev_tstamp f;
1609
1610 if (v == v - 1.)
1611 return v; /* very large number */
1612
1613 f = shift * ev_floor (v * (1. / shift));
1614 return f + ev_floor (v - f);
1615 }
1616
1617 /* special treatment for negative args? */
1618 if (expect_false (v < 0.))
1619 {
1620 ev_tstamp f = -ev_floor (-v);
1621
1622 return f - (f == v ? 0 : 1);
1623 }
1624
1625 /* fits into an unsigned long */
1626 return (unsigned long)v;
1627}
1628
1629#endif
1630
1631/*****************************************************************************/
1632
1633#ifdef __linux
1634# include <sys/utsname.h>
1635#endif
1636
1637noinline ecb_cold
1638static unsigned int
1639ev_linux_version (void)
1640{
1641#ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669#else
1670 return 0;
1671#endif
1672}
1673
1674/*****************************************************************************/
1675
1676#if EV_AVOID_STDIO
1677noinline ecb_cold
1678static void
1679ev_printerr (const char *msg)
1680{
1681 write (STDERR_FILENO, msg, strlen (msg));
1682}
1683#endif
1684
1685static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
1686
1687ecb_cold
1688void
1689ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
1690{
1691 syserr_cb = cb;
1692}
1693
1694noinline ecb_cold
1695static void
1696ev_syserr (const char *msg)
1697{
1698 if (!msg)
1699 msg = "(libev) system error";
1700
1701 if (syserr_cb)
1702 syserr_cb (msg);
1703 else
1704 {
1705#if EV_AVOID_STDIO
1706 ev_printerr (msg);
1707 ev_printerr (": ");
1708 ev_printerr (strerror (errno));
1709 ev_printerr ("\n");
1710#else
1711 perror (msg);
1712#endif
1713 abort ();
1714 }
1715}
1716
1717static void *
1718ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1719{
1720 /* some systems, notably openbsd and darwin, fail to properly
1721 * implement realloc (x, 0) (as required by both ansi c-89 and
1722 * the single unix specification, so work around them here.
1723 * recently, also (at least) fedora and debian started breaking it,
1724 * despite documenting it otherwise.
1725 */
1726
1727 if (size)
1728 return realloc (ptr, size);
1729
1730 free (ptr);
1731 return 0;
1732}
1733
1734static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1735
1736ecb_cold
1737void
1738ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
1739{
1740 alloc = cb;
1741}
1742
1743inline_speed void *
1744ev_realloc (void *ptr, long size)
1745{
1746 ptr = alloc (ptr, size);
1747
1748 if (!ptr && size)
1749 {
1750#if EV_AVOID_STDIO
1751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752#else
1753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754#endif
1755 abort ();
1756 }
1757
1758 return ptr;
1759}
1760
1761#define ev_malloc(size) ev_realloc (0, (size))
1762#define ev_free(ptr) ev_realloc ((ptr), 0)
1763
1764/*****************************************************************************/
1765
1766/* set in reify when reification needed */
1767#define EV_ANFD_REIFY 1
1768
1769/* file descriptor info structure */
124typedef struct 1770typedef struct
125{ 1771{
126 struct ev_watcher_list *head; 1772 WL head;
127 unsigned char events; 1773 unsigned char events; /* the events watched for */
1774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
128 unsigned char reify; 1776 unsigned char unused;
1777#if EV_USE_EPOLL
1778 unsigned int egen; /* generation counter to counter epoll bugs */
1779#endif
1780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1781 SOCKET handle;
1782#endif
1783#if EV_USE_IOCP
1784 OVERLAPPED or, ow;
1785#endif
129} ANFD; 1786} ANFD;
130 1787
1788/* stores the pending event set for a given watcher */
131typedef struct 1789typedef struct
132{ 1790{
133 W w; 1791 W w;
134 int events; 1792 int events; /* the pending event set for the given watcher */
135} ANPENDING; 1793} ANPENDING;
136 1794
1795#if EV_USE_INOTIFY
1796/* hash table entry per inotify-id */
1797typedef struct
1798{
1799 WL head;
1800} ANFS;
1801#endif
1802
1803/* Heap Entry */
1804#if EV_HEAP_CACHE_AT
1805 /* a heap element */
1806 typedef struct {
1807 ev_tstamp at;
1808 WT w;
1809 } ANHE;
1810
1811 #define ANHE_w(he) (he).w /* access watcher, read-write */
1812 #define ANHE_at(he) (he).at /* access cached at, read-only */
1813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1814#else
1815 /* a heap element */
1816 typedef WT ANHE;
1817
1818 #define ANHE_w(he) (he)
1819 #define ANHE_at(he) (he)->at
1820 #define ANHE_at_cache(he)
1821#endif
1822
137#if EV_MULTIPLICITY 1823#if EV_MULTIPLICITY
138 1824
139struct ev_loop 1825 struct ev_loop
140{ 1826 {
1827 ev_tstamp ev_rt_now;
1828 #define ev_rt_now ((loop)->ev_rt_now)
141# define VAR(name,decl) decl; 1829 #define VAR(name,decl) decl;
142# include "ev_vars.h" 1830 #include "ev_vars.h"
143};
144# undef VAR 1831 #undef VAR
1832 };
145# include "ev_wrap.h" 1833 #include "ev_wrap.h"
146 1834
147#else 1835 static struct ev_loop default_loop_struct;
1836 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
148 1837
1838#else
1839
1840 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
149# define VAR(name,decl) static decl; 1841 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 1842 #include "ev_vars.h"
151# undef VAR 1843 #undef VAR
152 1844
1845 static int ev_default_loop_ptr;
1846
153#endif 1847#endif
1848
1849#if EV_FEATURE_API
1850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852# define EV_INVOKE_PENDING invoke_cb (EV_A)
1853#else
1854# define EV_RELEASE_CB (void)0
1855# define EV_ACQUIRE_CB (void)0
1856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857#endif
1858
1859#define EVBREAK_RECURSE 0x80
154 1860
155/*****************************************************************************/ 1861/*****************************************************************************/
156 1862
157inline ev_tstamp 1863#ifndef EV_HAVE_EV_TIME
158ev_time (void) 1864ev_tstamp
1865ev_time (void) EV_NOEXCEPT
159{ 1866{
160#if EV_USE_REALTIME 1867#if EV_USE_REALTIME
1868 if (expect_true (have_realtime))
1869 {
161 struct timespec ts; 1870 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 1871 clock_gettime (CLOCK_REALTIME, &ts);
163 return ts.tv_sec + ts.tv_nsec * 1e-9; 1872 return ts.tv_sec + ts.tv_nsec * 1e-9;
164#else 1873 }
1874#endif
1875
165 struct timeval tv; 1876 struct timeval tv;
166 gettimeofday (&tv, 0); 1877 gettimeofday (&tv, 0);
167 return tv.tv_sec + tv.tv_usec * 1e-6; 1878 return tv.tv_sec + tv.tv_usec * 1e-6;
168#endif
169} 1879}
1880#endif
170 1881
171inline ev_tstamp 1882inline_size ev_tstamp
172get_clock (void) 1883get_clock (void)
173{ 1884{
174#if EV_USE_MONOTONIC 1885#if EV_USE_MONOTONIC
175 if (expect_true (have_monotonic)) 1886 if (expect_true (have_monotonic))
176 { 1887 {
181#endif 1892#endif
182 1893
183 return ev_time (); 1894 return ev_time ();
184} 1895}
185 1896
1897#if EV_MULTIPLICITY
186ev_tstamp 1898ev_tstamp
187ev_now (EV_P) 1899ev_now (EV_P) EV_NOEXCEPT
188{ 1900{
189 return rt_now; 1901 return ev_rt_now;
190} 1902}
1903#endif
191 1904
192#define array_roundsize(base,n) ((n) | 4 & ~3) 1905void
193 1906ev_sleep (ev_tstamp delay) EV_NOEXCEPT
194#define array_needsize(base,cur,cnt,init) \ 1907{
195 if (expect_false ((cnt) > cur)) \ 1908 if (delay > 0.)
196 { \
197 int newcnt = cur; \
198 do \
199 { \
200 newcnt = array_roundsize (base, newcnt << 1); \
201 } \
202 while ((cnt) > newcnt); \
203 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \
206 cur = newcnt; \
207 } 1909 {
1910#if EV_USE_NANOSLEEP
1911 struct timespec ts;
1912
1913 EV_TS_SET (ts, delay);
1914 nanosleep (&ts, 0);
1915#elif defined _WIN32
1916 /* maybe this should round up, as ms is very low resolution */
1917 /* compared to select (µs) or nanosleep (ns) */
1918 Sleep ((unsigned long)(delay * 1e3));
1919#else
1920 struct timeval tv;
1921
1922 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1923 /* something not guaranteed by newer posix versions, but guaranteed */
1924 /* by older ones */
1925 EV_TV_SET (tv, delay);
1926 select (0, 0, 0, 0, &tv);
1927#endif
1928 }
1929}
208 1930
209/*****************************************************************************/ 1931/*****************************************************************************/
210 1932
1933#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1934
1935/* find a suitable new size for the given array, */
1936/* hopefully by rounding to a nice-to-malloc size */
1937inline_size int
1938array_nextsize (int elem, int cur, int cnt)
1939{
1940 int ncur = cur + 1;
1941
1942 do
1943 ncur <<= 1;
1944 while (cnt > ncur);
1945
1946 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1947 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1948 {
1949 ncur *= elem;
1950 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1951 ncur = ncur - sizeof (void *) * 4;
1952 ncur /= elem;
1953 }
1954
1955 return ncur;
1956}
1957
1958noinline ecb_cold
1959static void *
1960array_realloc (int elem, void *base, int *cur, int cnt)
1961{
1962 *cur = array_nextsize (elem, *cur, cnt);
1963 return ev_realloc (base, elem * *cur);
1964}
1965
1966#define array_init_zero(base,count) \
1967 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1968
1969#define array_needsize(type,base,cur,cnt,init) \
1970 if (expect_false ((cnt) > (cur))) \
1971 { \
1972 ecb_unused int ocur_ = (cur); \
1973 (base) = (type *)array_realloc \
1974 (sizeof (type), (base), &(cur), (cnt)); \
1975 init ((base) + (ocur_), (cur) - ocur_); \
1976 }
1977
1978#if 0
1979#define array_slim(type,stem) \
1980 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1981 { \
1982 stem ## max = array_roundsize (stem ## cnt >> 1); \
1983 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1984 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1985 }
1986#endif
1987
1988#define array_free(stem, idx) \
1989 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1990
1991/*****************************************************************************/
1992
1993/* dummy callback for pending events */
1994noinline
211static void 1995static void
212anfds_init (ANFD *base, int count) 1996pendingcb (EV_P_ ev_prepare *w, int revents)
213{ 1997{
214 while (count--) 1998}
215 {
216 base->head = 0;
217 base->events = EV_NONE;
218 base->reify = 0;
219 1999
220 ++base; 2000noinline
2001void
2002ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
2003{
2004 W w_ = (W)w;
2005 int pri = ABSPRI (w_);
2006
2007 if (expect_false (w_->pending))
2008 pendings [pri][w_->pending - 1].events |= revents;
2009 else
221 } 2010 {
222} 2011 w_->pending = ++pendingcnt [pri];
223 2012 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
224static void 2013 pendings [pri][w_->pending - 1].w = w_;
225event (EV_P_ W w, int events)
226{
227 if (w->pending)
228 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 2014 pendings [pri][w_->pending - 1].events = revents;
230 return;
231 } 2015 }
232 2016
233 w->pending = ++pendingcnt [ABSPRI (w)]; 2017 pendingpri = NUMPRI - 1;
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
235 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 2018}
238 2019
239static void 2020inline_speed void
2021feed_reverse (EV_P_ W w)
2022{
2023 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024 rfeeds [rfeedcnt++] = w;
2025}
2026
2027inline_size void
2028feed_reverse_done (EV_P_ int revents)
2029{
2030 do
2031 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032 while (rfeedcnt);
2033}
2034
2035inline_speed void
240queue_events (EV_P_ W *events, int eventcnt, int type) 2036queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 2037{
242 int i; 2038 int i;
243 2039
244 for (i = 0; i < eventcnt; ++i) 2040 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 2041 ev_feed_event (EV_A_ events [i], type);
246} 2042}
247 2043
248static void 2044/*****************************************************************************/
2045
2046inline_speed void
249fd_event (EV_P_ int fd, int events) 2047fd_event_nocheck (EV_P_ int fd, int revents)
250{ 2048{
251 ANFD *anfd = anfds + fd; 2049 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 2050 ev_io *w;
253 2051
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 2052 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
255 { 2053 {
256 int ev = w->events & events; 2054 int ev = w->events & revents;
257 2055
258 if (ev) 2056 if (ev)
259 event (EV_A_ (W)w, ev); 2057 ev_feed_event (EV_A_ (W)w, ev);
260 } 2058 }
261} 2059}
262 2060
263/*****************************************************************************/ 2061/* do not submit kernel events for fds that have reify set */
2062/* because that means they changed while we were polling for new events */
2063inline_speed void
2064fd_event (EV_P_ int fd, int revents)
2065{
2066 ANFD *anfd = anfds + fd;
264 2067
265static void 2068 if (expect_true (!anfd->reify))
2069 fd_event_nocheck (EV_A_ fd, revents);
2070}
2071
2072void
2073ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
2074{
2075 if (fd >= 0 && fd < anfdmax)
2076 fd_event_nocheck (EV_A_ fd, revents);
2077}
2078
2079/* make sure the external fd watch events are in-sync */
2080/* with the kernel/libev internal state */
2081inline_size void
266fd_reify (EV_P) 2082fd_reify (EV_P)
267{ 2083{
268 int i; 2084 int i;
269 2085
2086#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
270 for (i = 0; i < fdchangecnt; ++i) 2087 for (i = 0; i < fdchangecnt; ++i)
271 { 2088 {
272 int fd = fdchanges [i]; 2089 int fd = fdchanges [i];
273 ANFD *anfd = anfds + fd; 2090 ANFD *anfd = anfds + fd;
274 struct ev_io *w;
275 2091
276 int events = 0; 2092 if (anfd->reify & EV__IOFDSET && anfd->head)
277
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events;
280
281 anfd->reify = 0;
282
283 if (anfd->events != events)
284 { 2093 {
2094 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095
2096 if (handle != anfd->handle)
2097 {
2098 unsigned long arg;
2099
2100 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101
2102 /* handle changed, but fd didn't - we need to do it in two steps */
285 method_modify (EV_A_ fd, anfd->events, events); 2103 backend_modify (EV_A_ fd, anfd->events, 0);
286 anfd->events = events; 2104 anfd->events = 0;
2105 anfd->handle = handle;
2106 }
287 } 2107 }
288 } 2108 }
2109#endif
2110
2111 for (i = 0; i < fdchangecnt; ++i)
2112 {
2113 int fd = fdchanges [i];
2114 ANFD *anfd = anfds + fd;
2115 ev_io *w;
2116
2117 unsigned char o_events = anfd->events;
2118 unsigned char o_reify = anfd->reify;
2119
2120 anfd->reify = 0;
2121
2122 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
2123 {
2124 anfd->events = 0;
2125
2126 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2127 anfd->events |= (unsigned char)w->events;
2128
2129 if (o_events != anfd->events)
2130 o_reify = EV__IOFDSET; /* actually |= */
2131 }
2132
2133 if (o_reify & EV__IOFDSET)
2134 backend_modify (EV_A_ fd, o_events, anfd->events);
2135 }
289 2136
290 fdchangecnt = 0; 2137 fdchangecnt = 0;
291} 2138}
292 2139
293static void 2140/* something about the given fd changed */
2141inline_size
2142void
294fd_change (EV_P_ int fd) 2143fd_change (EV_P_ int fd, int flags)
295{ 2144{
296 if (anfds [fd].reify || fdchangecnt < 0) 2145 unsigned char reify = anfds [fd].reify;
297 return;
298
299 anfds [fd].reify = 1; 2146 anfds [fd].reify |= flags;
300 2147
2148 if (expect_true (!reify))
2149 {
301 ++fdchangecnt; 2150 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 2151 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
303 fdchanges [fdchangecnt - 1] = fd; 2152 fdchanges [fdchangecnt - 1] = fd;
2153 }
304} 2154}
305 2155
306static void 2156/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157inline_speed ecb_cold void
307fd_kill (EV_P_ int fd) 2158fd_kill (EV_P_ int fd)
308{ 2159{
309 struct ev_io *w; 2160 ev_io *w;
310 2161
311 while ((w = (struct ev_io *)anfds [fd].head)) 2162 while ((w = (ev_io *)anfds [fd].head))
312 { 2163 {
313 ev_io_stop (EV_A_ w); 2164 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2165 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 2166 }
2167}
2168
2169/* check whether the given fd is actually valid, for error recovery */
2170inline_size ecb_cold int
2171fd_valid (int fd)
2172{
2173#ifdef _WIN32
2174 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2175#else
2176 return fcntl (fd, F_GETFD) != -1;
2177#endif
316} 2178}
317 2179
318/* called on EBADF to verify fds */ 2180/* called on EBADF to verify fds */
2181noinline ecb_cold
319static void 2182static void
320fd_ebadf (EV_P) 2183fd_ebadf (EV_P)
321{ 2184{
322 int fd; 2185 int fd;
323 2186
324 for (fd = 0; fd < anfdmax; ++fd) 2187 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 2188 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 2189 if (!fd_valid (fd) && errno == EBADF)
327 fd_kill (EV_A_ fd); 2190 fd_kill (EV_A_ fd);
328} 2191}
329 2192
330/* called on ENOMEM in select/poll to kill some fds and retry */ 2193/* called on ENOMEM in select/poll to kill some fds and retry */
2194noinline ecb_cold
331static void 2195static void
332fd_enomem (EV_P) 2196fd_enomem (EV_P)
333{ 2197{
334 int fd = anfdmax; 2198 int fd;
335 2199
336 while (fd--) 2200 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 2201 if (anfds [fd].events)
338 { 2202 {
339 close (fd);
340 fd_kill (EV_A_ fd); 2203 fd_kill (EV_A_ fd);
341 return; 2204 break;
342 } 2205 }
343} 2206}
344 2207
345/* susually called after fork if method needs to re-arm all fds from scratch */ 2208/* usually called after fork if backend needs to re-arm all fds from scratch */
2209noinline
346static void 2210static void
347fd_rearm_all (EV_P) 2211fd_rearm_all (EV_P)
348{ 2212{
349 int fd; 2213 int fd;
350 2214
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 2216 if (anfds [fd].events)
354 { 2217 {
355 anfds [fd].events = 0; 2218 anfds [fd].events = 0;
356 fd_change (fd); 2219 anfds [fd].emask = 0;
2220 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
357 } 2221 }
358} 2222}
359 2223
2224/* used to prepare libev internal fd's */
2225/* this is not fork-safe */
2226inline_speed void
2227fd_intern (int fd)
2228{
2229#ifdef _WIN32
2230 unsigned long arg = 1;
2231 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232#else
2233 fcntl (fd, F_SETFD, FD_CLOEXEC);
2234 fcntl (fd, F_SETFL, O_NONBLOCK);
2235#endif
2236}
2237
360/*****************************************************************************/ 2238/*****************************************************************************/
361 2239
2240/*
2241 * the heap functions want a real array index. array index 0 is guaranteed to not
2242 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2243 * the branching factor of the d-tree.
2244 */
2245
2246/*
2247 * at the moment we allow libev the luxury of two heaps,
2248 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2249 * which is more cache-efficient.
2250 * the difference is about 5% with 50000+ watchers.
2251 */
2252#if EV_USE_4HEAP
2253
2254#define DHEAP 4
2255#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2256#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2257#define UPHEAP_DONE(p,k) ((p) == (k))
2258
2259/* away from the root */
2260inline_speed void
2261downheap (ANHE *heap, int N, int k)
2262{
2263 ANHE he = heap [k];
2264 ANHE *E = heap + N + HEAP0;
2265
2266 for (;;)
2267 {
2268 ev_tstamp minat;
2269 ANHE *minpos;
2270 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2271
2272 /* find minimum child */
2273 if (expect_true (pos + DHEAP - 1 < E))
2274 {
2275 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2276 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else if (pos < E)
2281 {
2282 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2283 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2284 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2285 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2286 }
2287 else
2288 break;
2289
2290 if (ANHE_at (he) <= minat)
2291 break;
2292
2293 heap [k] = *minpos;
2294 ev_active (ANHE_w (*minpos)) = k;
2295
2296 k = minpos - heap;
2297 }
2298
2299 heap [k] = he;
2300 ev_active (ANHE_w (he)) = k;
2301}
2302
2303#else /* 4HEAP */
2304
2305#define HEAP0 1
2306#define HPARENT(k) ((k) >> 1)
2307#define UPHEAP_DONE(p,k) (!(p))
2308
2309/* away from the root */
2310inline_speed void
2311downheap (ANHE *heap, int N, int k)
2312{
2313 ANHE he = heap [k];
2314
2315 for (;;)
2316 {
2317 int c = k << 1;
2318
2319 if (c >= N + HEAP0)
2320 break;
2321
2322 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2323 ? 1 : 0;
2324
2325 if (ANHE_at (he) <= ANHE_at (heap [c]))
2326 break;
2327
2328 heap [k] = heap [c];
2329 ev_active (ANHE_w (heap [k])) = k;
2330
2331 k = c;
2332 }
2333
2334 heap [k] = he;
2335 ev_active (ANHE_w (he)) = k;
2336}
2337#endif
2338
2339/* towards the root */
2340inline_speed void
2341upheap (ANHE *heap, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int p = HPARENT (k);
2348
2349 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2350 break;
2351
2352 heap [k] = heap [p];
2353 ev_active (ANHE_w (heap [k])) = k;
2354 k = p;
2355 }
2356
2357 heap [k] = he;
2358 ev_active (ANHE_w (he)) = k;
2359}
2360
2361/* move an element suitably so it is in a correct place */
2362inline_size void
2363adjustheap (ANHE *heap, int N, int k)
2364{
2365 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2366 upheap (heap, k);
2367 else
2368 downheap (heap, N, k);
2369}
2370
2371/* rebuild the heap: this function is used only once and executed rarely */
2372inline_size void
2373reheap (ANHE *heap, int N)
2374{
2375 int i;
2376
2377 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2378 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2379 for (i = 0; i < N; ++i)
2380 upheap (heap, i + HEAP0);
2381}
2382
2383/*****************************************************************************/
2384
2385/* associate signal watchers to a signal signal */
2386typedef struct
2387{
2388 EV_ATOMIC_T pending;
2389#if EV_MULTIPLICITY
2390 EV_P;
2391#endif
2392 WL head;
2393} ANSIG;
2394
2395static ANSIG signals [EV_NSIG - 1];
2396
2397/*****************************************************************************/
2398
2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2400
2401noinline ecb_cold
362static void 2402static void
363upheap (WT *heap, int k) 2403evpipe_init (EV_P)
364{ 2404{
365 WT w = heap [k]; 2405 if (!ev_is_active (&pipe_w))
366
367 while (k && heap [k >> 1]->at > w->at)
368 {
369 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1;
371 k >>= 1;
372 } 2406 {
2407 int fds [2];
373 2408
374 heap [k] = w; 2409# if EV_USE_EVENTFD
375 heap [k]->active = k + 1; 2410 fds [0] = -1;
2411 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412 if (fds [1] < 0 && errno == EINVAL)
2413 fds [1] = eventfd (0, 0);
376 2414
377} 2415 if (fds [1] < 0)
2416# endif
2417 {
2418 while (pipe (fds))
2419 ev_syserr ("(libev) error creating signal/async pipe");
378 2420
2421 fd_intern (fds [0]);
2422 }
2423
2424 evpipe [0] = fds [0];
2425
2426 if (evpipe [1] < 0)
2427 evpipe [1] = fds [1]; /* first call, set write fd */
2428 else
2429 {
2430 /* on subsequent calls, do not change evpipe [1] */
2431 /* so that evpipe_write can always rely on its value. */
2432 /* this branch does not do anything sensible on windows, */
2433 /* so must not be executed on windows */
2434
2435 dup2 (fds [1], evpipe [1]);
2436 close (fds [1]);
2437 }
2438
2439 fd_intern (evpipe [1]);
2440
2441 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 ev_io_start (EV_A_ &pipe_w);
2443 ev_unref (EV_A); /* watcher should not keep loop alive */
2444 }
2445}
2446
2447inline_speed void
2448evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449{
2450 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451
2452 if (expect_true (*flag))
2453 return;
2454
2455 *flag = 1;
2456 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457
2458 pipe_write_skipped = 1;
2459
2460 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461
2462 if (pipe_write_wanted)
2463 {
2464 int old_errno;
2465
2466 pipe_write_skipped = 0;
2467 ECB_MEMORY_FENCE_RELEASE;
2468
2469 old_errno = errno; /* save errno because write will clobber it */
2470
2471#if EV_USE_EVENTFD
2472 if (evpipe [0] < 0)
2473 {
2474 uint64_t counter = 1;
2475 write (evpipe [1], &counter, sizeof (uint64_t));
2476 }
2477 else
2478#endif
2479 {
2480#ifdef _WIN32
2481 WSABUF buf;
2482 DWORD sent;
2483 buf.buf = (char *)&buf;
2484 buf.len = 1;
2485 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486#else
2487 write (evpipe [1], &(evpipe [1]), 1);
2488#endif
2489 }
2490
2491 errno = old_errno;
2492 }
2493}
2494
2495/* called whenever the libev signal pipe */
2496/* got some events (signal, async) */
379static void 2497static void
380downheap (WT *heap, int N, int k) 2498pipecb (EV_P_ ev_io *iow, int revents)
381{ 2499{
382 WT w = heap [k]; 2500 int i;
383 2501
384 while (k < (N >> 1)) 2502 if (revents & EV_READ)
2503 {
2504#if EV_USE_EVENTFD
2505 if (evpipe [0] < 0)
2506 {
2507 uint64_t counter;
2508 read (evpipe [1], &counter, sizeof (uint64_t));
2509 }
2510 else
2511#endif
2512 {
2513 char dummy[4];
2514#ifdef _WIN32
2515 WSABUF buf;
2516 DWORD recvd;
2517 DWORD flags = 0;
2518 buf.buf = dummy;
2519 buf.len = sizeof (dummy);
2520 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521#else
2522 read (evpipe [0], &dummy, sizeof (dummy));
2523#endif
2524 }
385 { 2525 }
386 int j = k << 1;
387 2526
388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2527 pipe_write_skipped = 0;
389 ++j;
390 2528
391 if (w->at <= heap [j]->at) 2529 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530
2531#if EV_SIGNAL_ENABLE
2532 if (sig_pending)
2533 {
2534 sig_pending = 0;
2535
2536 ECB_MEMORY_FENCE;
2537
2538 for (i = EV_NSIG - 1; i--; )
2539 if (expect_false (signals [i].pending))
2540 ev_feed_signal_event (EV_A_ i + 1);
2541 }
2542#endif
2543
2544#if EV_ASYNC_ENABLE
2545 if (async_pending)
2546 {
2547 async_pending = 0;
2548
2549 ECB_MEMORY_FENCE;
2550
2551 for (i = asynccnt; i--; )
2552 if (asyncs [i]->sent)
2553 {
2554 asyncs [i]->sent = 0;
2555 ECB_MEMORY_FENCE_RELEASE;
2556 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2557 }
2558 }
2559#endif
2560}
2561
2562/*****************************************************************************/
2563
2564void
2565ev_feed_signal (int signum) EV_NOEXCEPT
2566{
2567#if EV_MULTIPLICITY
2568 EV_P;
2569 ECB_MEMORY_FENCE_ACQUIRE;
2570 EV_A = signals [signum - 1].loop;
2571
2572 if (!EV_A)
2573 return;
2574#endif
2575
2576 signals [signum - 1].pending = 1;
2577 evpipe_write (EV_A_ &sig_pending);
2578}
2579
2580static void
2581ev_sighandler (int signum)
2582{
2583#ifdef _WIN32
2584 signal (signum, ev_sighandler);
2585#endif
2586
2587 ev_feed_signal (signum);
2588}
2589
2590noinline
2591void
2592ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
2593{
2594 WL w;
2595
2596 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 return;
2598
2599 --signum;
2600
2601#if EV_MULTIPLICITY
2602 /* it is permissible to try to feed a signal to the wrong loop */
2603 /* or, likely more useful, feeding a signal nobody is waiting for */
2604
2605 if (expect_false (signals [signum].loop != EV_A))
2606 return;
2607#endif
2608
2609 signals [signum].pending = 0;
2610 ECB_MEMORY_FENCE_RELEASE;
2611
2612 for (w = signals [signum].head; w; w = w->next)
2613 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2614}
2615
2616#if EV_USE_SIGNALFD
2617static void
2618sigfdcb (EV_P_ ev_io *iow, int revents)
2619{
2620 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2621
2622 for (;;)
2623 {
2624 ssize_t res = read (sigfd, si, sizeof (si));
2625
2626 /* not ISO-C, as res might be -1, but works with SuS */
2627 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2628 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2629
2630 if (res < (ssize_t)sizeof (si))
392 break; 2631 break;
393
394 heap [k] = heap [j];
395 heap [k]->active = k + 1;
396 k = j;
397 } 2632 }
398
399 heap [k] = w;
400 heap [k]->active = k + 1;
401} 2633}
2634#endif
2635
2636#endif
402 2637
403/*****************************************************************************/ 2638/*****************************************************************************/
404 2639
405typedef struct 2640#if EV_CHILD_ENABLE
406{ 2641static WL childs [EV_PID_HASHSIZE];
407 struct ev_watcher_list *head;
408 sig_atomic_t volatile gotsig;
409} ANSIG;
410 2642
411static ANSIG *signals; 2643static ev_signal childev;
412static int signalmax;
413 2644
414static int sigpipe [2]; 2645#ifndef WIFCONTINUED
415static sig_atomic_t volatile gotsig; 2646# define WIFCONTINUED(status) 0
2647#endif
416 2648
417static void 2649/* handle a single child status event */
418signals_init (ANSIG *base, int count) 2650inline_speed void
2651child_reap (EV_P_ int chain, int pid, int status)
419{ 2652{
420 while (count--) 2653 ev_child *w;
421 { 2654 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
422 base->head = 0;
423 base->gotsig = 0;
424 2655
425 ++base; 2656 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
426 } 2657 {
427} 2658 if ((w->pid == pid || !w->pid)
428 2659 && (!traced || (w->flags & 1)))
429static void
430sighandler (int signum)
431{
432 signals [signum - 1].gotsig = 1;
433
434 if (!gotsig)
435 {
436 int old_errno = errno;
437 gotsig = 1;
438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
440 }
441}
442
443static void
444sigcb (EV_P_ struct ev_io *iow, int revents)
445{
446 struct ev_watcher_list *w;
447 int signum;
448
449 read (sigpipe [0], &revents, 1);
450 gotsig = 0;
451
452 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig)
454 { 2660 {
455 signals [signum].gotsig = 0; 2661 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
456 2662 w->rpid = pid;
457 for (w = signals [signum].head; w; w = w->next) 2663 w->rstatus = status;
458 event (EV_A_ (W)w, EV_SIGNAL); 2664 ev_feed_event (EV_A_ (W)w, EV_CHILD);
459 } 2665 }
2666 }
460} 2667}
461
462static void
463siginit (EV_P)
464{
465#ifndef WIN32
466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
468
469 /* rather than sort out wether we really need nb, set it */
470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
473
474 ev_io_set (&sigev, sigpipe [0], EV_READ);
475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
477}
478
479/*****************************************************************************/
480
481#ifndef WIN32
482 2668
483#ifndef WCONTINUED 2669#ifndef WCONTINUED
484# define WCONTINUED 0 2670# define WCONTINUED 0
485#endif 2671#endif
486 2672
2673/* called on sigchld etc., calls waitpid */
487static void 2674static void
488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
489{
490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 2675childcb (EV_P_ ev_signal *sw, int revents)
504{ 2676{
505 int pid, status; 2677 int pid, status;
506 2678
2679 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2680 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 2681 if (!WCONTINUED
2682 || errno != EINVAL
2683 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2684 return;
2685
509 /* make sure we are called again until all childs have been reaped */ 2686 /* make sure we are called again until all children have been reaped */
2687 /* we need to do it this way so that the callback gets called before we continue */
510 event (EV_A_ (W)sw, EV_SIGNAL); 2688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 2689
512 child_reap (EV_A_ sw, pid, pid, status); 2690 child_reap (EV_A_ pid, pid, status);
2691 if ((EV_PID_HASHSIZE) > 1)
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2692 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
514 }
515} 2693}
516 2694
517#endif 2695#endif
518 2696
519/*****************************************************************************/ 2697/*****************************************************************************/
520 2698
2699#if EV_USE_IOCP
2700# include "ev_iocp.c"
2701#endif
2702#if EV_USE_PORT
2703# include "ev_port.c"
2704#endif
521#if EV_USE_KQUEUE 2705#if EV_USE_KQUEUE
522# include "ev_kqueue.c" 2706# include "ev_kqueue.c"
523#endif 2707#endif
524#if EV_USE_EPOLL 2708#if EV_USE_EPOLL
525# include "ev_epoll.c" 2709# include "ev_epoll.c"
526#endif 2710#endif
527#if EV_USEV_POLL 2711#if EV_USE_POLL
528# include "ev_poll.c" 2712# include "ev_poll.c"
529#endif 2713#endif
530#if EV_USE_SELECT 2714#if EV_USE_SELECT
531# include "ev_select.c" 2715# include "ev_select.c"
532#endif 2716#endif
533 2717
534int 2718ecb_cold int
535ev_version_major (void) 2719ev_version_major (void) EV_NOEXCEPT
536{ 2720{
537 return EV_VERSION_MAJOR; 2721 return EV_VERSION_MAJOR;
538} 2722}
539 2723
540int 2724ecb_cold int
541ev_version_minor (void) 2725ev_version_minor (void) EV_NOEXCEPT
542{ 2726{
543 return EV_VERSION_MINOR; 2727 return EV_VERSION_MINOR;
544} 2728}
545 2729
546/* return true if we are running with elevated privileges and should ignore env variables */ 2730/* return true if we are running with elevated privileges and should ignore env variables */
547static int 2731inline_size ecb_cold int
548enable_secure (void) 2732enable_secure (void)
549{ 2733{
550#ifdef WIN32 2734#ifdef _WIN32
551 return 0; 2735 return 0;
552#else 2736#else
553 return getuid () != geteuid () 2737 return getuid () != geteuid ()
554 || getgid () != getegid (); 2738 || getgid () != getegid ();
555#endif 2739#endif
556} 2740}
557 2741
2742ecb_cold
2743unsigned int
2744ev_supported_backends (void) EV_NOEXCEPT
2745{
2746 unsigned int flags = 0;
2747
2748 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2749 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2750 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2751 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2752 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2753
2754 return flags;
2755}
2756
2757ecb_cold
2758unsigned int
2759ev_recommended_backends (void) EV_NOEXCEPT
2760{
2761 unsigned int flags = ev_supported_backends ();
2762
2763#ifndef __NetBSD__
2764 /* kqueue is borked on everything but netbsd apparently */
2765 /* it usually doesn't work correctly on anything but sockets and pipes */
2766 flags &= ~EVBACKEND_KQUEUE;
2767#endif
2768#ifdef __APPLE__
2769 /* only select works correctly on that "unix-certified" platform */
2770 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772#endif
2773#ifdef __FreeBSD__
2774 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2775#endif
2776
2777 return flags;
2778}
2779
2780ecb_cold
2781unsigned int
2782ev_embeddable_backends (void) EV_NOEXCEPT
2783{
2784 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2785
2786 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2787 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2788 flags &= ~EVBACKEND_EPOLL;
2789
2790 return flags;
2791}
2792
2793unsigned int
2794ev_backend (EV_P) EV_NOEXCEPT
2795{
2796 return backend;
2797}
2798
2799#if EV_FEATURE_API
2800unsigned int
2801ev_iteration (EV_P) EV_NOEXCEPT
2802{
2803 return loop_count;
2804}
2805
2806unsigned int
2807ev_depth (EV_P) EV_NOEXCEPT
2808{
2809 return loop_depth;
2810}
2811
2812void
2813ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2814{
2815 io_blocktime = interval;
2816}
2817
2818void
2819ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2820{
2821 timeout_blocktime = interval;
2822}
2823
2824void
2825ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826{
2827 userdata = data;
2828}
2829
2830void *
2831ev_userdata (EV_P) EV_NOEXCEPT
2832{
2833 return userdata;
2834}
2835
2836void
2837ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838{
2839 invoke_cb = invoke_pending_cb;
2840}
2841
2842void
2843ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844{
2845 release_cb = release;
2846 acquire_cb = acquire;
2847}
2848#endif
2849
2850/* initialise a loop structure, must be zero-initialised */
2851noinline ecb_cold
2852static void
2853loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
2854{
2855 if (!backend)
2856 {
2857 origflags = flags;
2858
2859#if EV_USE_REALTIME
2860 if (!have_realtime)
2861 {
2862 struct timespec ts;
2863
2864 if (!clock_gettime (CLOCK_REALTIME, &ts))
2865 have_realtime = 1;
2866 }
2867#endif
2868
2869#if EV_USE_MONOTONIC
2870 if (!have_monotonic)
2871 {
2872 struct timespec ts;
2873
2874 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2875 have_monotonic = 1;
2876 }
2877#endif
2878
2879 /* pid check not overridable via env */
2880#ifndef _WIN32
2881 if (flags & EVFLAG_FORKCHECK)
2882 curpid = getpid ();
2883#endif
2884
2885 if (!(flags & EVFLAG_NOENV)
2886 && !enable_secure ()
2887 && getenv ("LIBEV_FLAGS"))
2888 flags = atoi (getenv ("LIBEV_FLAGS"));
2889
2890 ev_rt_now = ev_time ();
2891 mn_now = get_clock ();
2892 now_floor = mn_now;
2893 rtmn_diff = ev_rt_now - mn_now;
2894#if EV_FEATURE_API
2895 invoke_cb = ev_invoke_pending;
2896#endif
2897
2898 io_blocktime = 0.;
2899 timeout_blocktime = 0.;
2900 backend = 0;
2901 backend_fd = -1;
2902 sig_pending = 0;
2903#if EV_ASYNC_ENABLE
2904 async_pending = 0;
2905#endif
2906 pipe_write_skipped = 0;
2907 pipe_write_wanted = 0;
2908 evpipe [0] = -1;
2909 evpipe [1] = -1;
2910#if EV_USE_INOTIFY
2911 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912#endif
2913#if EV_USE_SIGNALFD
2914 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915#endif
2916
2917 if (!(flags & EVBACKEND_MASK))
2918 flags |= ev_recommended_backends ();
2919
2920#if EV_USE_IOCP
2921 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2922#endif
2923#if EV_USE_PORT
2924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2925#endif
2926#if EV_USE_KQUEUE
2927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2928#endif
2929#if EV_USE_EPOLL
2930 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2931#endif
2932#if EV_USE_POLL
2933 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2934#endif
2935#if EV_USE_SELECT
2936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2937#endif
2938
2939 ev_prepare_init (&pending_w, pendingcb);
2940
2941#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2942 ev_init (&pipe_w, pipecb);
2943 ev_set_priority (&pipe_w, EV_MAXPRI);
2944#endif
2945 }
2946}
2947
2948/* free up a loop structure */
2949ecb_cold
2950void
2951ev_loop_destroy (EV_P)
2952{
2953 int i;
2954
2955#if EV_MULTIPLICITY
2956 /* mimic free (0) */
2957 if (!EV_A)
2958 return;
2959#endif
2960
2961#if EV_CLEANUP_ENABLE
2962 /* queue cleanup watchers (and execute them) */
2963 if (expect_false (cleanupcnt))
2964 {
2965 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966 EV_INVOKE_PENDING;
2967 }
2968#endif
2969
2970#if EV_CHILD_ENABLE
2971 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 {
2973 ev_ref (EV_A); /* child watcher */
2974 ev_signal_stop (EV_A_ &childev);
2975 }
2976#endif
2977
2978 if (ev_is_active (&pipe_w))
2979 {
2980 /*ev_ref (EV_A);*/
2981 /*ev_io_stop (EV_A_ &pipe_w);*/
2982
2983 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 }
2986
2987#if EV_USE_SIGNALFD
2988 if (ev_is_active (&sigfd_w))
2989 close (sigfd);
2990#endif
2991
2992#if EV_USE_INOTIFY
2993 if (fs_fd >= 0)
2994 close (fs_fd);
2995#endif
2996
2997 if (backend_fd >= 0)
2998 close (backend_fd);
2999
3000#if EV_USE_IOCP
3001 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002#endif
3003#if EV_USE_PORT
3004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
3005#endif
3006#if EV_USE_KQUEUE
3007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
3008#endif
3009#if EV_USE_EPOLL
3010 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
3011#endif
3012#if EV_USE_POLL
3013 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
3014#endif
3015#if EV_USE_SELECT
3016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
3017#endif
3018
3019 for (i = NUMPRI; i--; )
3020 {
3021 array_free (pending, [i]);
3022#if EV_IDLE_ENABLE
3023 array_free (idle, [i]);
3024#endif
3025 }
3026
3027 ev_free (anfds); anfds = 0; anfdmax = 0;
3028
3029 /* have to use the microsoft-never-gets-it-right macro */
3030 array_free (rfeed, EMPTY);
3031 array_free (fdchange, EMPTY);
3032 array_free (timer, EMPTY);
3033#if EV_PERIODIC_ENABLE
3034 array_free (periodic, EMPTY);
3035#endif
3036#if EV_FORK_ENABLE
3037 array_free (fork, EMPTY);
3038#endif
3039#if EV_CLEANUP_ENABLE
3040 array_free (cleanup, EMPTY);
3041#endif
3042 array_free (prepare, EMPTY);
3043 array_free (check, EMPTY);
3044#if EV_ASYNC_ENABLE
3045 array_free (async, EMPTY);
3046#endif
3047
3048 backend = 0;
3049
3050#if EV_MULTIPLICITY
3051 if (ev_is_default_loop (EV_A))
3052#endif
3053 ev_default_loop_ptr = 0;
3054#if EV_MULTIPLICITY
3055 else
3056 ev_free (EV_A);
3057#endif
3058}
3059
3060#if EV_USE_INOTIFY
3061inline_size void infy_fork (EV_P);
3062#endif
3063
3064inline_size void
3065loop_fork (EV_P)
3066{
3067#if EV_USE_PORT
3068 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
3069#endif
3070#if EV_USE_KQUEUE
3071 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
3072#endif
3073#if EV_USE_EPOLL
3074 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
3075#endif
3076#if EV_USE_INOTIFY
3077 infy_fork (EV_A);
3078#endif
3079
3080#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 if (ev_is_active (&pipe_w) && postfork != 2)
3082 {
3083 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
3084
3085 ev_ref (EV_A);
3086 ev_io_stop (EV_A_ &pipe_w);
3087
3088 if (evpipe [0] >= 0)
3089 EV_WIN32_CLOSE_FD (evpipe [0]);
3090
3091 evpipe_init (EV_A);
3092 /* iterate over everything, in case we missed something before */
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3094 }
3095#endif
3096
3097 postfork = 0;
3098}
3099
3100#if EV_MULTIPLICITY
3101
3102ecb_cold
3103struct ev_loop *
3104ev_loop_new (unsigned int flags) EV_NOEXCEPT
3105{
3106 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
3107
3108 memset (EV_A, 0, sizeof (struct ev_loop));
3109 loop_init (EV_A_ flags);
3110
3111 if (ev_backend (EV_A))
3112 return EV_A;
3113
3114 ev_free (EV_A);
3115 return 0;
3116}
3117
3118#endif /* multiplicity */
3119
3120#if EV_VERIFY
3121noinline ecb_cold
3122static void
3123verify_watcher (EV_P_ W w)
3124{
3125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
3126
3127 if (w->pending)
3128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129}
3130
3131noinline ecb_cold
3132static void
3133verify_heap (EV_P_ ANHE *heap, int N)
3134{
3135 int i;
3136
3137 for (i = HEAP0; i < N + HEAP0; ++i)
3138 {
3139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142
3143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144 }
3145}
3146
3147noinline ecb_cold
3148static void
3149array_verify (EV_P_ W *ws, int cnt)
3150{
3151 while (cnt--)
3152 {
3153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 verify_watcher (EV_A_ ws [cnt]);
3155 }
3156}
3157#endif
3158
3159#if EV_FEATURE_API
3160void ecb_cold
3161ev_verify (EV_P) EV_NOEXCEPT
3162{
3163#if EV_VERIFY
3164 int i;
3165 WL w, w2;
3166
3167 assert (activecnt >= -1);
3168
3169 assert (fdchangemax >= fdchangecnt);
3170 for (i = 0; i < fdchangecnt; ++i)
3171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172
3173 assert (anfdmax >= 0);
3174 for (i = 0; i < anfdmax; ++i)
3175 {
3176 int j = 0;
3177
3178 for (w = w2 = anfds [i].head; w; w = w->next)
3179 {
3180 verify_watcher (EV_A_ (W)w);
3181
3182 if (j++ & 1)
3183 {
3184 assert (("libev: io watcher list contains a loop", w != w2));
3185 w2 = w2->next;
3186 }
3187
3188 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190 }
3191 }
3192
3193 assert (timermax >= timercnt);
3194 verify_heap (EV_A_ timers, timercnt);
3195
3196#if EV_PERIODIC_ENABLE
3197 assert (periodicmax >= periodiccnt);
3198 verify_heap (EV_A_ periodics, periodiccnt);
3199#endif
3200
3201 for (i = NUMPRI; i--; )
3202 {
3203 assert (pendingmax [i] >= pendingcnt [i]);
3204#if EV_IDLE_ENABLE
3205 assert (idleall >= 0);
3206 assert (idlemax [i] >= idlecnt [i]);
3207 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3208#endif
3209 }
3210
3211#if EV_FORK_ENABLE
3212 assert (forkmax >= forkcnt);
3213 array_verify (EV_A_ (W *)forks, forkcnt);
3214#endif
3215
3216#if EV_CLEANUP_ENABLE
3217 assert (cleanupmax >= cleanupcnt);
3218 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219#endif
3220
3221#if EV_ASYNC_ENABLE
3222 assert (asyncmax >= asynccnt);
3223 array_verify (EV_A_ (W *)asyncs, asynccnt);
3224#endif
3225
3226#if EV_PREPARE_ENABLE
3227 assert (preparemax >= preparecnt);
3228 array_verify (EV_A_ (W *)prepares, preparecnt);
3229#endif
3230
3231#if EV_CHECK_ENABLE
3232 assert (checkmax >= checkcnt);
3233 array_verify (EV_A_ (W *)checks, checkcnt);
3234#endif
3235
3236# if 0
3237#if EV_CHILD_ENABLE
3238 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240#endif
3241# endif
3242#endif
3243}
3244#endif
3245
3246#if EV_MULTIPLICITY
3247ecb_cold
3248struct ev_loop *
3249#else
558int 3250int
559ev_method (EV_P) 3251#endif
3252ev_default_loop (unsigned int flags) EV_NOEXCEPT
560{ 3253{
561 return method; 3254 if (!ev_default_loop_ptr)
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
567 if (!method)
568 {
569#if EV_USE_MONOTONIC
570 { 3255 {
571 struct timespec ts;
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1;
574 }
575#endif
576
577 rt_now = ev_time ();
578 mn_now = get_clock ();
579 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now;
581
582 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
592#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif
598#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif
601 }
602}
603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY 3256#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct; 3257 EV_P = ev_default_loop_ptr = &default_loop_struct;
685#else 3258#else
686 default_loop = 1; 3259 ev_default_loop_ptr = 1;
687#endif 3260#endif
688 3261
689 loop_init (EV_A_ methods); 3262 loop_init (EV_A_ flags);
690 3263
691 if (ev_method (EV_A)) 3264 if (ev_backend (EV_A))
692 { 3265 {
693 ev_watcher_init (&sigev, sigcb); 3266#if EV_CHILD_ENABLE
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A);
696
697#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 3267 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 3268 ev_set_priority (&childev, EV_MAXPRI);
700 ev_signal_start (EV_A_ &childev); 3269 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3270 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif 3271#endif
703 } 3272 }
704 else 3273 else
705 default_loop = 0; 3274 ev_default_loop_ptr = 0;
706 } 3275 }
707 3276
708 return default_loop; 3277 return ev_default_loop_ptr;
709} 3278}
710 3279
711void 3280void
712ev_default_destroy (void) 3281ev_loop_fork (EV_P) EV_NOEXCEPT
713{ 3282{
714#if EV_MULTIPLICITY 3283 postfork = 1;
715 struct ev_loop *loop = default_loop;
716#endif
717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
736 close (sigpipe [0]);
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 3284}
743 3285
744/*****************************************************************************/ 3286/*****************************************************************************/
745 3287
3288void
3289ev_invoke (EV_P_ void *w, int revents)
3290{
3291 EV_CB_INVOKE ((W)w, revents);
3292}
3293
3294unsigned int
3295ev_pending_count (EV_P) EV_NOEXCEPT
3296{
3297 int pri;
3298 unsigned int count = 0;
3299
3300 for (pri = NUMPRI; pri--; )
3301 count += pendingcnt [pri];
3302
3303 return count;
3304}
3305
3306noinline
3307void
3308ev_invoke_pending (EV_P)
3309{
3310 pendingpri = NUMPRI;
3311
3312 do
3313 {
3314 --pendingpri;
3315
3316 /* pendingpri possibly gets modified in the inner loop */
3317 while (pendingcnt [pendingpri])
3318 {
3319 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3320
3321 p->w->pending = 0;
3322 EV_CB_INVOKE (p->w, p->events);
3323 EV_FREQUENT_CHECK;
3324 }
3325 }
3326 while (pendingpri);
3327}
3328
3329#if EV_IDLE_ENABLE
3330/* make idle watchers pending. this handles the "call-idle */
3331/* only when higher priorities are idle" logic */
3332inline_size void
3333idle_reify (EV_P)
3334{
3335 if (expect_false (idleall))
3336 {
3337 int pri;
3338
3339 for (pri = NUMPRI; pri--; )
3340 {
3341 if (pendingcnt [pri])
3342 break;
3343
3344 if (idlecnt [pri])
3345 {
3346 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3347 break;
3348 }
3349 }
3350 }
3351}
3352#endif
3353
3354/* make timers pending */
3355inline_size void
3356timers_reify (EV_P)
3357{
3358 EV_FREQUENT_CHECK;
3359
3360 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3361 {
3362 do
3363 {
3364 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365
3366 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367
3368 /* first reschedule or stop timer */
3369 if (w->repeat)
3370 {
3371 ev_at (w) += w->repeat;
3372 if (ev_at (w) < mn_now)
3373 ev_at (w) = mn_now;
3374
3375 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3376
3377 ANHE_at_cache (timers [HEAP0]);
3378 downheap (timers, timercnt, HEAP0);
3379 }
3380 else
3381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382
3383 EV_FREQUENT_CHECK;
3384 feed_reverse (EV_A_ (W)w);
3385 }
3386 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3387
3388 feed_reverse_done (EV_A_ EV_TIMER);
3389 }
3390}
3391
3392#if EV_PERIODIC_ENABLE
3393
3394noinline
746static void 3395static void
747call_pending (EV_P) 3396periodic_recalc (EV_P_ ev_periodic *w)
748{ 3397{
749 int pri; 3398 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
750 3400
751 for (pri = NUMPRI; pri--; ) 3401 /* the above almost always errs on the low side */
752 while (pendingcnt [pri]) 3402 while (at <= ev_rt_now)
753 { 3403 {
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3404 ev_tstamp nat = at + w->interval;
755 3405
756 if (p->w) 3406 /* when resolution fails us, we use ev_rt_now */
757 { 3407 if (expect_false (nat == at))
758 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events);
760 }
761 }
762}
763
764static void
765timers_reify (EV_P)
766{
767 while (timercnt && timers [0]->at <= mn_now)
768 {
769 struct ev_timer *w = timers [0];
770
771 /* first reschedule or stop timer */
772 if (w->repeat)
773 { 3408 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3409 at = ev_rt_now;
775 w->at = mn_now + w->repeat; 3410 break;
776 downheap ((WT *)timers, timercnt, 0);
777 } 3411 }
778 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 3412
781 event (EV_A_ (W)w, EV_TIMEOUT); 3413 at = nat;
782 } 3414 }
783}
784 3415
785static void 3416 ev_at (w) = at;
3417}
3418
3419/* make periodics pending */
3420inline_size void
786periodics_reify (EV_P) 3421periodics_reify (EV_P)
787{ 3422{
3423 EV_FREQUENT_CHECK;
3424
788 while (periodiccnt && periodics [0]->at <= rt_now) 3425 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
789 { 3426 {
790 struct ev_periodic *w = periodics [0]; 3427 do
791
792 /* first reschedule or stop timer */
793 if (w->interval)
794 { 3428 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 3429 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 3430
3431 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3432
3433 /* first reschedule or stop timer */
3434 if (w->reschedule_cb)
3435 {
3436 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3437
3438 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3439
3440 ANHE_at_cache (periodics [HEAP0]);
797 downheap ((WT *)periodics, periodiccnt, 0); 3441 downheap (periodics, periodiccnt, HEAP0);
3442 }
3443 else if (w->interval)
3444 {
3445 periodic_recalc (EV_A_ w);
3446 ANHE_at_cache (periodics [HEAP0]);
3447 downheap (periodics, periodiccnt, HEAP0);
3448 }
3449 else
3450 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451
3452 EV_FREQUENT_CHECK;
3453 feed_reverse (EV_A_ (W)w);
798 } 3454 }
799 else 3455 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 3456
802 event (EV_A_ (W)w, EV_PERIODIC); 3457 feed_reverse_done (EV_A_ EV_PERIODIC);
803 } 3458 }
804} 3459}
805 3460
3461/* simply recalculate all periodics */
3462/* TODO: maybe ensure that at least one event happens when jumping forward? */
3463noinline ecb_cold
806static void 3464static void
807periodics_reschedule (EV_P) 3465periodics_reschedule (EV_P)
808{ 3466{
809 int i; 3467 int i;
810 3468
811 /* adjust periodics after time jump */ 3469 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 3470 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
813 { 3471 {
814 struct ev_periodic *w = periodics [i]; 3472 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
815 3473
3474 if (w->reschedule_cb)
3475 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 3476 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w); 3477 periodic_recalc (EV_A_ w);
824 3478
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 3479 ANHE_at_cache (periodics [i]);
826 }
827 }
828 }
829}
830
831inline int
832time_update_monotonic (EV_P)
833{
834 mn_now = get_clock ();
835
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 3480 }
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 }
841 else
842 {
843 now_floor = mn_now;
844 rt_now = ev_time ();
845 return 1;
846 }
847}
848 3481
3482 reheap (periodics, periodiccnt);
3483}
3484#endif
3485
3486/* adjust all timers by a given offset */
3487noinline ecb_cold
849static void 3488static void
850time_update (EV_P) 3489timers_reschedule (EV_P_ ev_tstamp adjust)
851{ 3490{
852 int i; 3491 int i;
853 3492
3493 for (i = 0; i < timercnt; ++i)
3494 {
3495 ANHE *he = timers + i + HEAP0;
3496 ANHE_w (*he)->at += adjust;
3497 ANHE_at_cache (*he);
3498 }
3499}
3500
3501/* fetch new monotonic and realtime times from the kernel */
3502/* also detect if there was a timejump, and act accordingly */
3503inline_speed void
3504time_update (EV_P_ ev_tstamp max_block)
3505{
854#if EV_USE_MONOTONIC 3506#if EV_USE_MONOTONIC
855 if (expect_true (have_monotonic)) 3507 if (expect_true (have_monotonic))
856 { 3508 {
857 if (time_update_monotonic (EV_A)) 3509 int i;
3510 ev_tstamp odiff = rtmn_diff;
3511
3512 mn_now = get_clock ();
3513
3514 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3515 /* interpolate in the meantime */
3516 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
858 { 3517 {
859 ev_tstamp odiff = rtmn_diff; 3518 ev_rt_now = rtmn_diff + mn_now;
3519 return;
3520 }
860 3521
3522 now_floor = mn_now;
3523 ev_rt_now = ev_time ();
3524
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3525 /* loop a few times, before making important decisions.
3526 * on the choice of "4": one iteration isn't enough,
3527 * in case we get preempted during the calls to
3528 * ev_time and get_clock. a second call is almost guaranteed
3529 * to succeed in that case, though. and looping a few more times
3530 * doesn't hurt either as we only do this on time-jumps or
3531 * in the unlikely event of having been preempted here.
3532 */
3533 for (i = 4; --i; )
862 { 3534 {
3535 ev_tstamp diff;
863 rtmn_diff = rt_now - mn_now; 3536 rtmn_diff = ev_rt_now - mn_now;
864 3537
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3538 diff = odiff - rtmn_diff;
3539
3540 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
866 return; /* all is well */ 3541 return; /* all is well */
867 3542
868 rt_now = ev_time (); 3543 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 3544 mn_now = get_clock ();
870 now_floor = mn_now; 3545 now_floor = mn_now;
871 } 3546 }
872 3547
3548 /* no timer adjustment, as the monotonic clock doesn't jump */
3549 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3550# if EV_PERIODIC_ENABLE
3551 periodics_reschedule (EV_A);
3552# endif
3553 }
3554 else
3555#endif
3556 {
3557 ev_rt_now = ev_time ();
3558
3559 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3560 {
3561 /* adjust timers. this is easy, as the offset is the same for all of them */
3562 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3563#if EV_PERIODIC_ENABLE
873 periodics_reschedule (EV_A); 3564 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 3565#endif
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 3566 }
877 }
878 else
879#endif
880 {
881 rt_now = ev_time ();
882 3567
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 {
885 periodics_reschedule (EV_A);
886
887 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now;
890 }
891
892 mn_now = rt_now; 3568 mn_now = ev_rt_now;
893 } 3569 }
894} 3570}
895 3571
896void 3572int
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
911ev_loop (EV_P_ int flags) 3573ev_run (EV_P_ int flags)
912{ 3574{
913 double block; 3575#if EV_FEATURE_API
914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3576 ++loop_depth;
3577#endif
3578
3579 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580
3581 loop_done = EVBREAK_CANCEL;
3582
3583 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
915 3584
916 do 3585 do
917 { 3586 {
3587#if EV_VERIFY >= 2
3588 ev_verify (EV_A);
3589#endif
3590
3591#ifndef _WIN32
3592 if (expect_false (curpid)) /* penalise the forking check even more */
3593 if (expect_false (getpid () != curpid))
3594 {
3595 curpid = getpid ();
3596 postfork = 1;
3597 }
3598#endif
3599
3600#if EV_FORK_ENABLE
3601 /* we might have forked, so queue fork handlers */
3602 if (expect_false (postfork))
3603 if (forkcnt)
3604 {
3605 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3606 EV_INVOKE_PENDING;
3607 }
3608#endif
3609
3610#if EV_PREPARE_ENABLE
918 /* queue check watchers (and execute them) */ 3611 /* queue prepare watchers (and execute them) */
919 if (expect_false (preparecnt)) 3612 if (expect_false (preparecnt))
920 { 3613 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3614 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 3615 EV_INVOKE_PENDING;
923 } 3616 }
3617#endif
3618
3619 if (expect_false (loop_done))
3620 break;
3621
3622 /* we might have forked, so reify kernel state if necessary */
3623 if (expect_false (postfork))
3624 loop_fork (EV_A);
924 3625
925 /* update fd-related kernel structures */ 3626 /* update fd-related kernel structures */
926 fd_reify (EV_A); 3627 fd_reify (EV_A);
927 3628
928 /* calculate blocking time */ 3629 /* calculate blocking time */
3630 {
3631 ev_tstamp waittime = 0.;
3632 ev_tstamp sleeptime = 0.;
929 3633
930 /* we only need this for !monotonic clockor timers, but as we basically 3634 /* remember old timestamp for io_blocktime calculation */
931 always have timers, we just calculate it always */ 3635 ev_tstamp prev_mn_now = mn_now;
932#if EV_USE_MONOTONIC 3636
933 if (expect_true (have_monotonic)) 3637 /* update time to cancel out callback processing overhead */
934 time_update_monotonic (EV_A); 3638 time_update (EV_A_ 1e100);
935 else 3639
936#endif 3640 /* from now on, we want a pipe-wake-up */
3641 pipe_write_wanted = 1;
3642
3643 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644
3645 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
937 { 3646 {
938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
941
942 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.;
944 else
945 {
946 block = MAX_BLOCKTIME; 3647 waittime = MAX_BLOCKTIME;
947 3648
948 if (timercnt) 3649 if (timercnt)
949 { 3650 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3651 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
951 if (block > to) block = to; 3652 if (waittime > to) waittime = to;
952 } 3653 }
953 3654
3655#if EV_PERIODIC_ENABLE
954 if (periodiccnt) 3656 if (periodiccnt)
955 { 3657 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3658 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
957 if (block > to) block = to; 3659 if (waittime > to) waittime = to;
958 } 3660 }
3661#endif
959 3662
960 if (block < 0.) block = 0.; 3663 /* don't let timeouts decrease the waittime below timeout_blocktime */
3664 if (expect_false (waittime < timeout_blocktime))
3665 waittime = timeout_blocktime;
3666
3667 /* at this point, we NEED to wait, so we have to ensure */
3668 /* to pass a minimum nonzero value to the backend */
3669 if (expect_false (waittime < backend_mintime))
3670 waittime = backend_mintime;
3671
3672 /* extra check because io_blocktime is commonly 0 */
3673 if (expect_false (io_blocktime))
3674 {
3675 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676
3677 if (sleeptime > waittime - backend_mintime)
3678 sleeptime = waittime - backend_mintime;
3679
3680 if (expect_true (sleeptime > 0.))
3681 {
3682 ev_sleep (sleeptime);
3683 waittime -= sleeptime;
3684 }
3685 }
961 } 3686 }
962 3687
963 method_poll (EV_A_ block); 3688#if EV_FEATURE_API
3689 ++loop_count;
3690#endif
3691 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3692 backend_poll (EV_A_ waittime);
3693 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
964 3694
3695 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696
3697 ECB_MEMORY_FENCE_ACQUIRE;
3698 if (pipe_write_skipped)
3699 {
3700 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702 }
3703
3704
965 /* update rt_now, do magic */ 3705 /* update ev_rt_now, do magic */
966 time_update (EV_A); 3706 time_update (EV_A_ waittime + sleeptime);
3707 }
967 3708
968 /* queue pending timers and reschedule them */ 3709 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 3710 timers_reify (EV_A); /* relative timers called last */
3711#if EV_PERIODIC_ENABLE
970 periodics_reify (EV_A); /* absolute timers called first */ 3712 periodics_reify (EV_A); /* absolute timers called first */
3713#endif
971 3714
3715#if EV_IDLE_ENABLE
972 /* queue idle watchers unless io or timers are pending */ 3716 /* queue idle watchers unless other events are pending */
973 if (!pendingcnt) 3717 idle_reify (EV_A);
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3718#endif
975 3719
3720#if EV_CHECK_ENABLE
976 /* queue check watchers, to be executed first */ 3721 /* queue check watchers, to be executed first */
977 if (checkcnt) 3722 if (expect_false (checkcnt))
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3723 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724#endif
979 3725
980 call_pending (EV_A); 3726 EV_INVOKE_PENDING;
981 } 3727 }
982 while (activecnt && !loop_done); 3728 while (expect_true (
3729 activecnt
3730 && !loop_done
3731 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3732 ));
983 3733
984 if (loop_done != 2) 3734 if (loop_done == EVBREAK_ONE)
985 loop_done = 0; 3735 loop_done = EVBREAK_CANCEL;
986}
987 3736
3737#if EV_FEATURE_API
3738 --loop_depth;
3739#endif
3740
3741 return activecnt;
3742}
3743
988void 3744void
989ev_unloop (EV_P_ int how) 3745ev_break (EV_P_ int how) EV_NOEXCEPT
990{ 3746{
991 loop_done = how; 3747 loop_done = how;
992} 3748}
993 3749
3750void
3751ev_ref (EV_P) EV_NOEXCEPT
3752{
3753 ++activecnt;
3754}
3755
3756void
3757ev_unref (EV_P) EV_NOEXCEPT
3758{
3759 --activecnt;
3760}
3761
3762void
3763ev_now_update (EV_P) EV_NOEXCEPT
3764{
3765 time_update (EV_A_ 1e100);
3766}
3767
3768void
3769ev_suspend (EV_P) EV_NOEXCEPT
3770{
3771 ev_now_update (EV_A);
3772}
3773
3774void
3775ev_resume (EV_P) EV_NOEXCEPT
3776{
3777 ev_tstamp mn_prev = mn_now;
3778
3779 ev_now_update (EV_A);
3780 timers_reschedule (EV_A_ mn_now - mn_prev);
3781#if EV_PERIODIC_ENABLE
3782 /* TODO: really do this? */
3783 periodics_reschedule (EV_A);
3784#endif
3785}
3786
994/*****************************************************************************/ 3787/*****************************************************************************/
3788/* singly-linked list management, used when the expected list length is short */
995 3789
996inline void 3790inline_size void
997wlist_add (WL *head, WL elem) 3791wlist_add (WL *head, WL elem)
998{ 3792{
999 elem->next = *head; 3793 elem->next = *head;
1000 *head = elem; 3794 *head = elem;
1001} 3795}
1002 3796
1003inline void 3797inline_size void
1004wlist_del (WL *head, WL elem) 3798wlist_del (WL *head, WL elem)
1005{ 3799{
1006 while (*head) 3800 while (*head)
1007 { 3801 {
1008 if (*head == elem) 3802 if (expect_true (*head == elem))
1009 { 3803 {
1010 *head = elem->next; 3804 *head = elem->next;
1011 return; 3805 break;
1012 } 3806 }
1013 3807
1014 head = &(*head)->next; 3808 head = &(*head)->next;
1015 } 3809 }
1016} 3810}
1017 3811
3812/* internal, faster, version of ev_clear_pending */
1018inline void 3813inline_speed void
1019ev_clear_pending (EV_P_ W w) 3814clear_pending (EV_P_ W w)
1020{ 3815{
1021 if (w->pending) 3816 if (w->pending)
1022 { 3817 {
1023 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3818 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1024 w->pending = 0; 3819 w->pending = 0;
1025 } 3820 }
1026} 3821}
1027 3822
3823int
3824ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
3825{
3826 W w_ = (W)w;
3827 int pending = w_->pending;
3828
3829 if (expect_true (pending))
3830 {
3831 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 p->w = (W)&pending_w;
3833 w_->pending = 0;
3834 return p->events;
3835 }
3836 else
3837 return 0;
3838}
3839
1028inline void 3840inline_size void
3841pri_adjust (EV_P_ W w)
3842{
3843 int pri = ev_priority (w);
3844 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3845 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3846 ev_set_priority (w, pri);
3847}
3848
3849inline_speed void
1029ev_start (EV_P_ W w, int active) 3850ev_start (EV_P_ W w, int active)
1030{ 3851{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3852 pri_adjust (EV_A_ w);
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
1034 w->active = active; 3853 w->active = active;
1035 ev_ref (EV_A); 3854 ev_ref (EV_A);
1036} 3855}
1037 3856
1038inline void 3857inline_size void
1039ev_stop (EV_P_ W w) 3858ev_stop (EV_P_ W w)
1040{ 3859{
1041 ev_unref (EV_A); 3860 ev_unref (EV_A);
1042 w->active = 0; 3861 w->active = 0;
1043} 3862}
1044 3863
1045/*****************************************************************************/ 3864/*****************************************************************************/
1046 3865
3866noinline
1047void 3867void
1048ev_io_start (EV_P_ struct ev_io *w) 3868ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1049{ 3869{
1050 int fd = w->fd; 3870 int fd = w->fd;
1051 3871
1052 if (ev_is_active (w)) 3872 if (expect_false (ev_is_active (w)))
1053 return; 3873 return;
1054 3874
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 3875 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3877
3878 EV_FREQUENT_CHECK;
1056 3879
1057 ev_start (EV_A_ (W)w, 1); 3880 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3881 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3882 wlist_add (&anfds[fd].head, (WL)w);
1060 3883
1061 fd_change (EV_A_ fd); 3884 /* common bug, apparently */
1062} 3885 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1063 3886
3887 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3888 w->events &= ~EV__IOFDSET;
3889
3890 EV_FREQUENT_CHECK;
3891}
3892
3893noinline
1064void 3894void
1065ev_io_stop (EV_P_ struct ev_io *w) 3895ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1066{ 3896{
1067 ev_clear_pending (EV_A_ (W)w); 3897 clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 3898 if (expect_false (!ev_is_active (w)))
1069 return; 3899 return;
1070 3900
3901 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3902
3903 EV_FREQUENT_CHECK;
3904
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3905 wlist_del (&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
1073 3907
1074 fd_change (EV_A_ w->fd); 3908 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1075}
1076 3909
3910 EV_FREQUENT_CHECK;
3911}
3912
3913noinline
1077void 3914void
1078ev_timer_start (EV_P_ struct ev_timer *w) 3915ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1079{ 3916{
1080 if (ev_is_active (w)) 3917 if (expect_false (ev_is_active (w)))
1081 return; 3918 return;
1082 3919
1083 w->at += mn_now; 3920 ev_at (w) += mn_now;
1084 3921
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3922 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 3923
3924 EV_FREQUENT_CHECK;
3925
3926 ++timercnt;
1087 ev_start (EV_A_ (W)w, ++timercnt); 3927 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1088 array_needsize (timers, timermax, timercnt, ); 3928 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1089 timers [timercnt - 1] = w; 3929 ANHE_w (timers [ev_active (w)]) = (WT)w;
1090 upheap ((WT *)timers, timercnt - 1); 3930 ANHE_at_cache (timers [ev_active (w)]);
1091} 3931 upheap (timers, ev_active (w));
1092 3932
3933 EV_FREQUENT_CHECK;
3934
3935 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3936}
3937
3938noinline
1093void 3939void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 3940ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1095{ 3941{
1096 ev_clear_pending (EV_A_ (W)w); 3942 clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 3943 if (expect_false (!ev_is_active (w)))
1098 return; 3944 return;
1099 3945
1100 if (w->active < timercnt--) 3946 EV_FREQUENT_CHECK;
3947
3948 {
3949 int active = ev_active (w);
3950
3951 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3952
3953 --timercnt;
3954
3955 if (expect_true (active < timercnt + HEAP0))
1101 { 3956 {
1102 timers [w->active - 1] = timers [timercnt]; 3957 timers [active] = timers [timercnt + HEAP0];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 3958 adjustheap (timers, timercnt, active);
1104 } 3959 }
3960 }
1105 3961
1106 w->at = w->repeat; 3962 ev_at (w) -= mn_now;
1107 3963
1108 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
1109}
1110 3965
3966 EV_FREQUENT_CHECK;
3967}
3968
3969noinline
1111void 3970void
1112ev_timer_again (EV_P_ struct ev_timer *w) 3971ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1113{ 3972{
3973 EV_FREQUENT_CHECK;
3974
3975 clear_pending (EV_A_ (W)w);
3976
1114 if (ev_is_active (w)) 3977 if (ev_is_active (w))
1115 { 3978 {
1116 if (w->repeat) 3979 if (w->repeat)
1117 { 3980 {
1118 w->at = mn_now + w->repeat; 3981 ev_at (w) = mn_now + w->repeat;
3982 ANHE_at_cache (timers [ev_active (w)]);
1119 downheap ((WT *)timers, timercnt, w->active - 1); 3983 adjustheap (timers, timercnt, ev_active (w));
1120 } 3984 }
1121 else 3985 else
1122 ev_timer_stop (EV_A_ w); 3986 ev_timer_stop (EV_A_ w);
1123 } 3987 }
1124 else if (w->repeat) 3988 else if (w->repeat)
3989 {
3990 ev_at (w) = w->repeat;
1125 ev_timer_start (EV_A_ w); 3991 ev_timer_start (EV_A_ w);
1126} 3992 }
1127 3993
3994 EV_FREQUENT_CHECK;
3995}
3996
3997ev_tstamp
3998ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999{
4000 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
4001}
4002
4003#if EV_PERIODIC_ENABLE
4004noinline
1128void 4005void
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 4006ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1130{ 4007{
1131 if (ev_is_active (w)) 4008 if (expect_false (ev_is_active (w)))
1132 return; 4009 return;
1133 4010
4011 if (w->reschedule_cb)
4012 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
4013 else if (w->interval)
4014 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4015 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
4016 periodic_recalc (EV_A_ w);
4017 }
4018 else
4019 ev_at (w) = w->offset;
1135 4020
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 4021 EV_FREQUENT_CHECK;
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1139 4022
4023 ++periodiccnt;
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 4024 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 4025 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1142 periodics [periodiccnt - 1] = w; 4026 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 4027 ANHE_at_cache (periodics [ev_active (w)]);
1144} 4028 upheap (periodics, ev_active (w));
1145 4029
4030 EV_FREQUENT_CHECK;
4031
4032 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
4033}
4034
4035noinline
1146void 4036void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 4037ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1148{ 4038{
1149 ev_clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 4040 if (expect_false (!ev_is_active (w)))
1151 return; 4041 return;
1152 4042
1153 if (w->active < periodiccnt--) 4043 EV_FREQUENT_CHECK;
4044
4045 {
4046 int active = ev_active (w);
4047
4048 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4049
4050 --periodiccnt;
4051
4052 if (expect_true (active < periodiccnt + HEAP0))
1154 { 4053 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 4054 periodics [active] = periodics [periodiccnt + HEAP0];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 4055 adjustheap (periodics, periodiccnt, active);
1157 } 4056 }
4057 }
1158 4058
1159 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
1160}
1161 4060
1162void 4061 EV_FREQUENT_CHECK;
1163ev_idle_start (EV_P_ struct ev_idle *w)
1164{
1165 if (ev_is_active (w))
1166 return;
1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171} 4062}
1172 4063
4064noinline
1173void 4065void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 4066ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1175{ 4067{
1176 ev_clear_pending (EV_A_ (W)w); 4068 /* TODO: use adjustheap and recalculation */
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 4069 ev_periodic_stop (EV_A_ w);
4070 ev_periodic_start (EV_A_ w);
1182} 4071}
1183 4072#endif
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227 4073
1228#ifndef SA_RESTART 4074#ifndef SA_RESTART
1229# define SA_RESTART 0 4075# define SA_RESTART 0
1230#endif 4076#endif
1231 4077
4078#if EV_SIGNAL_ENABLE
4079
4080noinline
1232void 4081void
1233ev_signal_start (EV_P_ struct ev_signal *w) 4082ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1234{ 4083{
4084 if (expect_false (ev_is_active (w)))
4085 return;
4086
4087 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4088
1235#if EV_MULTIPLICITY 4089#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 4090 assert (("libev: a signal must not be attached to two different loops",
4091 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4092
4093 signals [w->signum - 1].loop = EV_A;
4094 ECB_MEMORY_FENCE_RELEASE;
4095#endif
4096
4097 EV_FREQUENT_CHECK;
4098
4099#if EV_USE_SIGNALFD
4100 if (sigfd == -2)
4101 {
4102 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4103 if (sigfd < 0 && errno == EINVAL)
4104 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4105
4106 if (sigfd >= 0)
4107 {
4108 fd_intern (sigfd); /* doing it twice will not hurt */
4109
4110 sigemptyset (&sigfd_set);
4111
4112 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113 ev_set_priority (&sigfd_w, EV_MAXPRI);
4114 ev_io_start (EV_A_ &sigfd_w);
4115 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116 }
4117 }
4118
4119 if (sigfd >= 0)
4120 {
4121 /* TODO: check .head */
4122 sigaddset (&sigfd_set, w->signum);
4123 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124
4125 signalfd (sigfd, &sigfd_set, 0);
4126 }
4127#endif
4128
4129 ev_start (EV_A_ (W)w, 1);
4130 wlist_add (&signals [w->signum - 1].head, (WL)w);
4131
4132 if (!((WL)w)->next)
4133# if EV_USE_SIGNALFD
4134 if (sigfd < 0) /*TODO*/
1237#endif 4135# endif
1238 if (ev_is_active (w)) 4136 {
4137# ifdef _WIN32
4138 evpipe_init (EV_A);
4139
4140 signal (w->signum, ev_sighandler);
4141# else
4142 struct sigaction sa;
4143
4144 evpipe_init (EV_A);
4145
4146 sa.sa_handler = ev_sighandler;
4147 sigfillset (&sa.sa_mask);
4148 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
4149 sigaction (w->signum, &sa, 0);
4150
4151 if (origflags & EVFLAG_NOSIGMASK)
4152 {
4153 sigemptyset (&sa.sa_mask);
4154 sigaddset (&sa.sa_mask, w->signum);
4155 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156 }
4157#endif
4158 }
4159
4160 EV_FREQUENT_CHECK;
4161}
4162
4163noinline
4164void
4165ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
4166{
4167 clear_pending (EV_A_ (W)w);
4168 if (expect_false (!ev_is_active (w)))
1239 return; 4169 return;
1240 4170
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4171 EV_FREQUENT_CHECK;
4172
4173 wlist_del (&signals [w->signum - 1].head, (WL)w);
4174 ev_stop (EV_A_ (W)w);
4175
4176 if (!signals [w->signum - 1].head)
4177 {
4178#if EV_MULTIPLICITY
4179 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180#endif
4181#if EV_USE_SIGNALFD
4182 if (sigfd >= 0)
4183 {
4184 sigset_t ss;
4185
4186 sigemptyset (&ss);
4187 sigaddset (&ss, w->signum);
4188 sigdelset (&sigfd_set, w->signum);
4189
4190 signalfd (sigfd, &sigfd_set, 0);
4191 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 }
4193 else
4194#endif
4195 signal (w->signum, SIG_DFL);
4196 }
4197
4198 EV_FREQUENT_CHECK;
4199}
4200
4201#endif
4202
4203#if EV_CHILD_ENABLE
4204
4205void
4206ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207{
4208#if EV_MULTIPLICITY
4209 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4210#endif
4211 if (expect_false (ev_is_active (w)))
4212 return;
4213
4214 EV_FREQUENT_CHECK;
1242 4215
1243 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 4217 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 4218
1247 if (!w->next) 4219 EV_FREQUENT_CHECK;
1248 {
1249 struct sigaction sa;
1250 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0);
1254 }
1255} 4220}
1256 4221
1257void 4222void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 4223ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1259{ 4224{
1260 ev_clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
1261 if (!ev_is_active (w)) 4226 if (expect_false (!ev_is_active (w)))
1262 return; 4227 return;
1263 4228
1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4229 EV_FREQUENT_CHECK;
4230
4231 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1265 ev_stop (EV_A_ (W)w); 4232 ev_stop (EV_A_ (W)w);
1266 4233
1267 if (!signals [w->signum - 1].head) 4234 EV_FREQUENT_CHECK;
1268 signal (w->signum, SIG_DFL);
1269} 4235}
1270 4236
1271void 4237#endif
1272ev_child_start (EV_P_ struct ev_child *w) 4238
1273{ 4239#if EV_STAT_ENABLE
1274#if EV_MULTIPLICITY 4240
1275 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4241# ifdef _WIN32
4242# undef lstat
4243# define lstat(a,b) _stati64 (a,b)
1276#endif 4244# endif
1277 if (ev_is_active (w)) 4245
4246#define DEF_STAT_INTERVAL 5.0074891
4247#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4248#define MIN_STAT_INTERVAL 0.1074891
4249
4250noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4251
4252#if EV_USE_INOTIFY
4253
4254/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256
4257noinline
4258static void
4259infy_add (EV_P_ ev_stat *w)
4260{
4261 w->wd = inotify_add_watch (fs_fd, w->path,
4262 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264 | IN_DONT_FOLLOW | IN_MASK_ADD);
4265
4266 if (w->wd >= 0)
4267 {
4268 struct statfs sfs;
4269
4270 /* now local changes will be tracked by inotify, but remote changes won't */
4271 /* unless the filesystem is known to be local, we therefore still poll */
4272 /* also do poll on <2.6.25, but with normal frequency */
4273
4274 if (!fs_2625)
4275 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276 else if (!statfs (w->path, &sfs)
4277 && (sfs.f_type == 0x1373 /* devfs */
4278 || sfs.f_type == 0x4006 /* fat */
4279 || sfs.f_type == 0x4d44 /* msdos */
4280 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 || sfs.f_type == 0x72b6 /* jffs2 */
4282 || sfs.f_type == 0x858458f6 /* ramfs */
4283 || sfs.f_type == 0x5346544e /* ntfs */
4284 || sfs.f_type == 0x3153464a /* jfs */
4285 || sfs.f_type == 0x9123683e /* btrfs */
4286 || sfs.f_type == 0x52654973 /* reiser3 */
4287 || sfs.f_type == 0x01021994 /* tmpfs */
4288 || sfs.f_type == 0x58465342 /* xfs */))
4289 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290 else
4291 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4292 }
4293 else
4294 {
4295 /* can't use inotify, continue to stat */
4296 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4297
4298 /* if path is not there, monitor some parent directory for speedup hints */
4299 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4300 /* but an efficiency issue only */
4301 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4302 {
4303 char path [4096];
4304 strcpy (path, w->path);
4305
4306 do
4307 {
4308 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4309 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4310
4311 char *pend = strrchr (path, '/');
4312
4313 if (!pend || pend == path)
4314 break;
4315
4316 *pend = 0;
4317 w->wd = inotify_add_watch (fs_fd, path, mask);
4318 }
4319 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4320 }
4321 }
4322
4323 if (w->wd >= 0)
4324 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4325
4326 /* now re-arm timer, if required */
4327 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328 ev_timer_again (EV_A_ &w->timer);
4329 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330}
4331
4332noinline
4333static void
4334infy_del (EV_P_ ev_stat *w)
4335{
4336 int slot;
4337 int wd = w->wd;
4338
4339 if (wd < 0)
1278 return; 4340 return;
1279 4341
4342 w->wd = -2;
4343 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4344 wlist_del (&fs_hash [slot].head, (WL)w);
4345
4346 /* remove this watcher, if others are watching it, they will rearm */
4347 inotify_rm_watch (fs_fd, wd);
4348}
4349
4350noinline
4351static void
4352infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4353{
4354 if (slot < 0)
4355 /* overflow, need to check for all hash slots */
4356 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4357 infy_wd (EV_A_ slot, wd, ev);
4358 else
4359 {
4360 WL w_;
4361
4362 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4363 {
4364 ev_stat *w = (ev_stat *)w_;
4365 w_ = w_->next; /* lets us remove this watcher and all before it */
4366
4367 if (w->wd == wd || wd == -1)
4368 {
4369 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4370 {
4371 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4372 w->wd = -1;
4373 infy_add (EV_A_ w); /* re-add, no matter what */
4374 }
4375
4376 stat_timer_cb (EV_A_ &w->timer, 0);
4377 }
4378 }
4379 }
4380}
4381
4382static void
4383infy_cb (EV_P_ ev_io *w, int revents)
4384{
4385 char buf [EV_INOTIFY_BUFSIZE];
4386 int ofs;
4387 int len = read (fs_fd, buf, sizeof (buf));
4388
4389 for (ofs = 0; ofs < len; )
4390 {
4391 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4392 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393 ofs += sizeof (struct inotify_event) + ev->len;
4394 }
4395}
4396
4397inline_size ecb_cold
4398void
4399ev_check_2625 (EV_P)
4400{
4401 /* kernels < 2.6.25 are borked
4402 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403 */
4404 if (ev_linux_version () < 0x020619)
4405 return;
4406
4407 fs_2625 = 1;
4408}
4409
4410inline_size int
4411infy_newfd (void)
4412{
4413#if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415 if (fd >= 0)
4416 return fd;
4417#endif
4418 return inotify_init ();
4419}
4420
4421inline_size void
4422infy_init (EV_P)
4423{
4424 if (fs_fd != -2)
4425 return;
4426
4427 fs_fd = -1;
4428
4429 ev_check_2625 (EV_A);
4430
4431 fs_fd = infy_newfd ();
4432
4433 if (fs_fd >= 0)
4434 {
4435 fd_intern (fs_fd);
4436 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4437 ev_set_priority (&fs_w, EV_MAXPRI);
4438 ev_io_start (EV_A_ &fs_w);
4439 ev_unref (EV_A);
4440 }
4441}
4442
4443inline_size void
4444infy_fork (EV_P)
4445{
4446 int slot;
4447
4448 if (fs_fd < 0)
4449 return;
4450
4451 ev_ref (EV_A);
4452 ev_io_stop (EV_A_ &fs_w);
4453 close (fs_fd);
4454 fs_fd = infy_newfd ();
4455
4456 if (fs_fd >= 0)
4457 {
4458 fd_intern (fs_fd);
4459 ev_io_set (&fs_w, fs_fd, EV_READ);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463
4464 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4465 {
4466 WL w_ = fs_hash [slot].head;
4467 fs_hash [slot].head = 0;
4468
4469 while (w_)
4470 {
4471 ev_stat *w = (ev_stat *)w_;
4472 w_ = w_->next; /* lets us add this watcher */
4473
4474 w->wd = -1;
4475
4476 if (fs_fd >= 0)
4477 infy_add (EV_A_ w); /* re-add, no matter what */
4478 else
4479 {
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4482 ev_timer_again (EV_A_ &w->timer);
4483 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484 }
4485 }
4486 }
4487}
4488
4489#endif
4490
4491#ifdef _WIN32
4492# define EV_LSTAT(p,b) _stati64 (p, b)
4493#else
4494# define EV_LSTAT(p,b) lstat (p, b)
4495#endif
4496
4497void
4498ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
4499{
4500 if (lstat (w->path, &w->attr) < 0)
4501 w->attr.st_nlink = 0;
4502 else if (!w->attr.st_nlink)
4503 w->attr.st_nlink = 1;
4504}
4505
4506noinline
4507static void
4508stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4509{
4510 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4511
4512 ev_statdata prev = w->attr;
4513 ev_stat_stat (EV_A_ w);
4514
4515 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4516 if (
4517 prev.st_dev != w->attr.st_dev
4518 || prev.st_ino != w->attr.st_ino
4519 || prev.st_mode != w->attr.st_mode
4520 || prev.st_nlink != w->attr.st_nlink
4521 || prev.st_uid != w->attr.st_uid
4522 || prev.st_gid != w->attr.st_gid
4523 || prev.st_rdev != w->attr.st_rdev
4524 || prev.st_size != w->attr.st_size
4525 || prev.st_atime != w->attr.st_atime
4526 || prev.st_mtime != w->attr.st_mtime
4527 || prev.st_ctime != w->attr.st_ctime
4528 ) {
4529 /* we only update w->prev on actual differences */
4530 /* in case we test more often than invoke the callback, */
4531 /* to ensure that prev is always different to attr */
4532 w->prev = prev;
4533
4534 #if EV_USE_INOTIFY
4535 if (fs_fd >= 0)
4536 {
4537 infy_del (EV_A_ w);
4538 infy_add (EV_A_ w);
4539 ev_stat_stat (EV_A_ w); /* avoid race... */
4540 }
4541 #endif
4542
4543 ev_feed_event (EV_A_ w, EV_STAT);
4544 }
4545}
4546
4547void
4548ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
4549{
4550 if (expect_false (ev_is_active (w)))
4551 return;
4552
4553 ev_stat_stat (EV_A_ w);
4554
4555 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4556 w->interval = MIN_STAT_INTERVAL;
4557
4558 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4559 ev_set_priority (&w->timer, ev_priority (w));
4560
4561#if EV_USE_INOTIFY
4562 infy_init (EV_A);
4563
4564 if (fs_fd >= 0)
4565 infy_add (EV_A_ w);
4566 else
4567#endif
4568 {
4569 ev_timer_again (EV_A_ &w->timer);
4570 ev_unref (EV_A);
4571 }
4572
1280 ev_start (EV_A_ (W)w, 1); 4573 ev_start (EV_A_ (W)w, 1);
1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1282}
1283 4574
4575 EV_FREQUENT_CHECK;
4576}
4577
1284void 4578void
1285ev_child_stop (EV_P_ struct ev_child *w) 4579ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
1286{ 4580{
1287 ev_clear_pending (EV_A_ (W)w); 4581 clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 4582 if (expect_false (!ev_is_active (w)))
1289 return; 4583 return;
1290 4584
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4585 EV_FREQUENT_CHECK;
4586
4587#if EV_USE_INOTIFY
4588 infy_del (EV_A_ w);
4589#endif
4590
4591 if (ev_is_active (&w->timer))
4592 {
4593 ev_ref (EV_A);
4594 ev_timer_stop (EV_A_ &w->timer);
4595 }
4596
1292 ev_stop (EV_A_ (W)w); 4597 ev_stop (EV_A_ (W)w);
4598
4599 EV_FREQUENT_CHECK;
1293} 4600}
4601#endif
4602
4603#if EV_IDLE_ENABLE
4604void
4605ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
4606{
4607 if (expect_false (ev_is_active (w)))
4608 return;
4609
4610 pri_adjust (EV_A_ (W)w);
4611
4612 EV_FREQUENT_CHECK;
4613
4614 {
4615 int active = ++idlecnt [ABSPRI (w)];
4616
4617 ++idleall;
4618 ev_start (EV_A_ (W)w, active);
4619
4620 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4621 idles [ABSPRI (w)][active - 1] = w;
4622 }
4623
4624 EV_FREQUENT_CHECK;
4625}
4626
4627void
4628ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
4629{
4630 clear_pending (EV_A_ (W)w);
4631 if (expect_false (!ev_is_active (w)))
4632 return;
4633
4634 EV_FREQUENT_CHECK;
4635
4636 {
4637 int active = ev_active (w);
4638
4639 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4640 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4641
4642 ev_stop (EV_A_ (W)w);
4643 --idleall;
4644 }
4645
4646 EV_FREQUENT_CHECK;
4647}
4648#endif
4649
4650#if EV_PREPARE_ENABLE
4651void
4652ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
4653{
4654 if (expect_false (ev_is_active (w)))
4655 return;
4656
4657 EV_FREQUENT_CHECK;
4658
4659 ev_start (EV_A_ (W)w, ++preparecnt);
4660 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4661 prepares [preparecnt - 1] = w;
4662
4663 EV_FREQUENT_CHECK;
4664}
4665
4666void
4667ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
4668{
4669 clear_pending (EV_A_ (W)w);
4670 if (expect_false (!ev_is_active (w)))
4671 return;
4672
4673 EV_FREQUENT_CHECK;
4674
4675 {
4676 int active = ev_active (w);
4677
4678 prepares [active - 1] = prepares [--preparecnt];
4679 ev_active (prepares [active - 1]) = active;
4680 }
4681
4682 ev_stop (EV_A_ (W)w);
4683
4684 EV_FREQUENT_CHECK;
4685}
4686#endif
4687
4688#if EV_CHECK_ENABLE
4689void
4690ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
4691{
4692 if (expect_false (ev_is_active (w)))
4693 return;
4694
4695 EV_FREQUENT_CHECK;
4696
4697 ev_start (EV_A_ (W)w, ++checkcnt);
4698 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4699 checks [checkcnt - 1] = w;
4700
4701 EV_FREQUENT_CHECK;
4702}
4703
4704void
4705ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
4706{
4707 clear_pending (EV_A_ (W)w);
4708 if (expect_false (!ev_is_active (w)))
4709 return;
4710
4711 EV_FREQUENT_CHECK;
4712
4713 {
4714 int active = ev_active (w);
4715
4716 checks [active - 1] = checks [--checkcnt];
4717 ev_active (checks [active - 1]) = active;
4718 }
4719
4720 ev_stop (EV_A_ (W)w);
4721
4722 EV_FREQUENT_CHECK;
4723}
4724#endif
4725
4726#if EV_EMBED_ENABLE
4727noinline
4728void
4729ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
4730{
4731 ev_run (w->other, EVRUN_NOWAIT);
4732}
4733
4734static void
4735embed_io_cb (EV_P_ ev_io *io, int revents)
4736{
4737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4738
4739 if (ev_cb (w))
4740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4741 else
4742 ev_run (w->other, EVRUN_NOWAIT);
4743}
4744
4745static void
4746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4747{
4748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4749
4750 {
4751 EV_P = w->other;
4752
4753 while (fdchangecnt)
4754 {
4755 fd_reify (EV_A);
4756 ev_run (EV_A_ EVRUN_NOWAIT);
4757 }
4758 }
4759}
4760
4761static void
4762embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763{
4764 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765
4766 ev_embed_stop (EV_A_ w);
4767
4768 {
4769 EV_P = w->other;
4770
4771 ev_loop_fork (EV_A);
4772 ev_run (EV_A_ EVRUN_NOWAIT);
4773 }
4774
4775 ev_embed_start (EV_A_ w);
4776}
4777
4778#if 0
4779static void
4780embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4781{
4782 ev_idle_stop (EV_A_ idle);
4783}
4784#endif
4785
4786void
4787ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
4788{
4789 if (expect_false (ev_is_active (w)))
4790 return;
4791
4792 {
4793 EV_P = w->other;
4794 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4795 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4796 }
4797
4798 EV_FREQUENT_CHECK;
4799
4800 ev_set_priority (&w->io, ev_priority (w));
4801 ev_io_start (EV_A_ &w->io);
4802
4803 ev_prepare_init (&w->prepare, embed_prepare_cb);
4804 ev_set_priority (&w->prepare, EV_MINPRI);
4805 ev_prepare_start (EV_A_ &w->prepare);
4806
4807 ev_fork_init (&w->fork, embed_fork_cb);
4808 ev_fork_start (EV_A_ &w->fork);
4809
4810 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4811
4812 ev_start (EV_A_ (W)w, 1);
4813
4814 EV_FREQUENT_CHECK;
4815}
4816
4817void
4818ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
4819{
4820 clear_pending (EV_A_ (W)w);
4821 if (expect_false (!ev_is_active (w)))
4822 return;
4823
4824 EV_FREQUENT_CHECK;
4825
4826 ev_io_stop (EV_A_ &w->io);
4827 ev_prepare_stop (EV_A_ &w->prepare);
4828 ev_fork_stop (EV_A_ &w->fork);
4829
4830 ev_stop (EV_A_ (W)w);
4831
4832 EV_FREQUENT_CHECK;
4833}
4834#endif
4835
4836#if EV_FORK_ENABLE
4837void
4838ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
4839{
4840 if (expect_false (ev_is_active (w)))
4841 return;
4842
4843 EV_FREQUENT_CHECK;
4844
4845 ev_start (EV_A_ (W)w, ++forkcnt);
4846 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4847 forks [forkcnt - 1] = w;
4848
4849 EV_FREQUENT_CHECK;
4850}
4851
4852void
4853ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
4854{
4855 clear_pending (EV_A_ (W)w);
4856 if (expect_false (!ev_is_active (w)))
4857 return;
4858
4859 EV_FREQUENT_CHECK;
4860
4861 {
4862 int active = ev_active (w);
4863
4864 forks [active - 1] = forks [--forkcnt];
4865 ev_active (forks [active - 1]) = active;
4866 }
4867
4868 ev_stop (EV_A_ (W)w);
4869
4870 EV_FREQUENT_CHECK;
4871}
4872#endif
4873
4874#if EV_CLEANUP_ENABLE
4875void
4876ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4877{
4878 if (expect_false (ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 ev_start (EV_A_ (W)w, ++cleanupcnt);
4884 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885 cleanups [cleanupcnt - 1] = w;
4886
4887 /* cleanup watchers should never keep a refcount on the loop */
4888 ev_unref (EV_A);
4889 EV_FREQUENT_CHECK;
4890}
4891
4892void
4893ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894{
4895 clear_pending (EV_A_ (W)w);
4896 if (expect_false (!ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900 ev_ref (EV_A);
4901
4902 {
4903 int active = ev_active (w);
4904
4905 cleanups [active - 1] = cleanups [--cleanupcnt];
4906 ev_active (cleanups [active - 1]) = active;
4907 }
4908
4909 ev_stop (EV_A_ (W)w);
4910
4911 EV_FREQUENT_CHECK;
4912}
4913#endif
4914
4915#if EV_ASYNC_ENABLE
4916void
4917ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918{
4919 if (expect_false (ev_is_active (w)))
4920 return;
4921
4922 w->sent = 0;
4923
4924 evpipe_init (EV_A);
4925
4926 EV_FREQUENT_CHECK;
4927
4928 ev_start (EV_A_ (W)w, ++asynccnt);
4929 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4930 asyncs [asynccnt - 1] = w;
4931
4932 EV_FREQUENT_CHECK;
4933}
4934
4935void
4936ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4937{
4938 clear_pending (EV_A_ (W)w);
4939 if (expect_false (!ev_is_active (w)))
4940 return;
4941
4942 EV_FREQUENT_CHECK;
4943
4944 {
4945 int active = ev_active (w);
4946
4947 asyncs [active - 1] = asyncs [--asynccnt];
4948 ev_active (asyncs [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954}
4955
4956void
4957ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4958{
4959 w->sent = 1;
4960 evpipe_write (EV_A_ &async_pending);
4961}
4962#endif
1294 4963
1295/*****************************************************************************/ 4964/*****************************************************************************/
1296 4965
1297struct ev_once 4966struct ev_once
1298{ 4967{
1299 struct ev_io io; 4968 ev_io io;
1300 struct ev_timer to; 4969 ev_timer to;
1301 void (*cb)(int revents, void *arg); 4970 void (*cb)(int revents, void *arg);
1302 void *arg; 4971 void *arg;
1303}; 4972};
1304 4973
1305static void 4974static void
1306once_cb (EV_P_ struct ev_once *once, int revents) 4975once_cb (EV_P_ struct ev_once *once, int revents)
1307{ 4976{
1308 void (*cb)(int revents, void *arg) = once->cb; 4977 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 4978 void *arg = once->arg;
1310 4979
1311 ev_io_stop (EV_A_ &once->io); 4980 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 4981 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 4982 ev_free (once);
1314 4983
1315 cb (revents, arg); 4984 cb (revents, arg);
1316} 4985}
1317 4986
1318static void 4987static void
1319once_cb_io (EV_P_ struct ev_io *w, int revents) 4988once_cb_io (EV_P_ ev_io *w, int revents)
1320{ 4989{
1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4990 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991
4992 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1322} 4993}
1323 4994
1324static void 4995static void
1325once_cb_to (EV_P_ struct ev_timer *w, int revents) 4996once_cb_to (EV_P_ ev_timer *w, int revents)
1326{ 4997{
1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4998 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1328}
1329 4999
5000 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001}
5002
1330void 5003void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
1332{ 5005{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 5006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 5007
1335 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else
1338 {
1339 once->cb = cb; 5008 once->cb = cb;
1340 once->arg = arg; 5009 once->arg = arg;
1341 5010
1342 ev_watcher_init (&once->io, once_cb_io); 5011 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 5012 if (fd >= 0)
5013 {
5014 ev_io_set (&once->io, fd, events);
5015 ev_io_start (EV_A_ &once->io);
5016 }
5017
5018 ev_init (&once->to, once_cb_to);
5019 if (timeout >= 0.)
5020 {
5021 ev_timer_set (&once->to, timeout, 0.);
5022 ev_timer_start (EV_A_ &once->to);
5023 }
5024}
5025
5026/*****************************************************************************/
5027
5028#if EV_WALK_ENABLE
5029ecb_cold
5030void
5031ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5032{
5033 int i, j;
5034 ev_watcher_list *wl, *wn;
5035
5036 if (types & (EV_IO | EV_EMBED))
5037 for (i = 0; i < anfdmax; ++i)
5038 for (wl = anfds [i].head; wl; )
1344 { 5039 {
1345 ev_io_set (&once->io, fd, events); 5040 wn = wl->next;
1346 ev_io_start (EV_A_ &once->io); 5041
5042#if EV_EMBED_ENABLE
5043 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5044 {
5045 if (types & EV_EMBED)
5046 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5047 }
5048 else
5049#endif
5050#if EV_USE_INOTIFY
5051 if (ev_cb ((ev_io *)wl) == infy_cb)
5052 ;
5053 else
5054#endif
5055 if ((ev_io *)wl != &pipe_w)
5056 if (types & EV_IO)
5057 cb (EV_A_ EV_IO, wl);
5058
5059 wl = wn;
1347 } 5060 }
1348 5061
1349 ev_watcher_init (&once->to, once_cb_to); 5062 if (types & (EV_TIMER | EV_STAT))
1350 if (timeout >= 0.) 5063 for (i = timercnt + HEAP0; i-- > HEAP0; )
5064#if EV_STAT_ENABLE
5065 /*TODO: timer is not always active*/
5066 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1351 { 5067 {
1352 ev_timer_set (&once->to, timeout, 0.); 5068 if (types & EV_STAT)
1353 ev_timer_start (EV_A_ &once->to); 5069 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1354 } 5070 }
1355 } 5071 else
1356} 5072#endif
5073 if (types & EV_TIMER)
5074 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1357 5075
5076#if EV_PERIODIC_ENABLE
5077 if (types & EV_PERIODIC)
5078 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5079 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5080#endif
5081
5082#if EV_IDLE_ENABLE
5083 if (types & EV_IDLE)
5084 for (j = NUMPRI; j--; )
5085 for (i = idlecnt [j]; i--; )
5086 cb (EV_A_ EV_IDLE, idles [j][i]);
5087#endif
5088
5089#if EV_FORK_ENABLE
5090 if (types & EV_FORK)
5091 for (i = forkcnt; i--; )
5092 if (ev_cb (forks [i]) != embed_fork_cb)
5093 cb (EV_A_ EV_FORK, forks [i]);
5094#endif
5095
5096#if EV_ASYNC_ENABLE
5097 if (types & EV_ASYNC)
5098 for (i = asynccnt; i--; )
5099 cb (EV_A_ EV_ASYNC, asyncs [i]);
5100#endif
5101
5102#if EV_PREPARE_ENABLE
5103 if (types & EV_PREPARE)
5104 for (i = preparecnt; i--; )
5105# if EV_EMBED_ENABLE
5106 if (ev_cb (prepares [i]) != embed_prepare_cb)
5107# endif
5108 cb (EV_A_ EV_PREPARE, prepares [i]);
5109#endif
5110
5111#if EV_CHECK_ENABLE
5112 if (types & EV_CHECK)
5113 for (i = checkcnt; i--; )
5114 cb (EV_A_ EV_CHECK, checks [i]);
5115#endif
5116
5117#if EV_SIGNAL_ENABLE
5118 if (types & EV_SIGNAL)
5119 for (i = 0; i < EV_NSIG - 1; ++i)
5120 for (wl = signals [i].head; wl; )
5121 {
5122 wn = wl->next;
5123 cb (EV_A_ EV_SIGNAL, wl);
5124 wl = wn;
5125 }
5126#endif
5127
5128#if EV_CHILD_ENABLE
5129 if (types & EV_CHILD)
5130 for (i = (EV_PID_HASHSIZE); i--; )
5131 for (wl = childs [i]; wl; )
5132 {
5133 wn = wl->next;
5134 cb (EV_A_ EV_CHILD, wl);
5135 wl = wn;
5136 }
5137#endif
5138/* EV_STAT 0x00001000 /* stat data changed */
5139/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5140}
5141#endif
5142
5143#if EV_MULTIPLICITY
5144 #include "ev_wrap.h"
5145#endif
5146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines