ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.50 by root, Sat Nov 3 19:41:55 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_EMBED
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
58 58
59#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
61#endif 61#endif
62 62
63#ifndef EV_USE_POLL 63#ifndef EV_USEV_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 65#endif
66 66
67#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
69#endif 69#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 97
98#ifndef EV_EMBED
98#include "ev.h" 99# include "ev.h"
100#endif
99 101
100#if __GNUC__ >= 3 102#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 103# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 104# define inline inline
103#else 105#else
113 115
114typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
117 119
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 121
128/*****************************************************************************/ 122/*****************************************************************************/
129 123
130ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
131ev_time (void) 158ev_time (void)
132{ 159{
133#if EV_USE_REALTIME 160#if EV_USE_REALTIME
134 struct timespec ts; 161 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 168#endif
142} 169}
143 170
144static ev_tstamp 171inline ev_tstamp
145get_clock (void) 172get_clock (void)
146{ 173{
147#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 175 if (expect_true (have_monotonic))
149 { 176 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 180 }
154#endif 181#endif
155 182
156 return ev_time (); 183 return ev_time ();
184}
185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
157} 190}
158 191
159#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
160 193
161#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 206 cur = newcnt; \
174 } 207 }
175 208
176/*****************************************************************************/ 209/*****************************************************************************/
177 210
178typedef struct
179{
180 struct ev_watcher_list *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 211static void
189anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
190{ 213{
191 while (count--) 214 while (count--)
192 { 215 {
196 219
197 ++base; 220 ++base;
198 } 221 }
199} 222}
200 223
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 224static void
211event (W w, int events) 225event (EV_P_ W w, int events)
212{ 226{
213 if (w->pending) 227 if (w->pending)
214 { 228 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 230 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 237}
224 238
225static void 239static void
226queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 241{
228 int i; 242 int i;
229 243
230 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 245 event (EV_A_ events [i], type);
232} 246}
233 247
234static void 248static void
235fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
236{ 250{
237 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 252 struct ev_io *w;
239 253
240 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 255 {
242 int ev = w->events & events; 256 int ev = w->events & events;
243 257
244 if (ev) 258 if (ev)
245 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
246 } 260 }
247} 261}
248 262
249/*****************************************************************************/ 263/*****************************************************************************/
250 264
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 265static void
255fd_reify (void) 266fd_reify (EV_P)
256{ 267{
257 int i; 268 int i;
258 269
259 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
260 { 271 {
269 280
270 anfd->reify = 0; 281 anfd->reify = 0;
271 282
272 if (anfd->events != events) 283 if (anfd->events != events)
273 { 284 {
274 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 286 anfd->events = events;
276 } 287 }
277 } 288 }
278 289
279 fdchangecnt = 0; 290 fdchangecnt = 0;
280} 291}
281 292
282static void 293static void
283fd_change (int fd) 294fd_change (EV_P_ int fd)
284{ 295{
285 if (anfds [fd].reify || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 297 return;
287 298
288 anfds [fd].reify = 1; 299 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
293} 304}
294 305
295static void 306static void
296fd_kill (int fd) 307fd_kill (EV_P_ int fd)
297{ 308{
298 struct ev_io *w; 309 struct ev_io *w;
299 310
300 while ((w = (struct ev_io *)anfds [fd].head)) 311 while ((w = (struct ev_io *)anfds [fd].head))
301 { 312 {
302 ev_io_stop (w); 313 ev_io_stop (EV_A_ w);
303 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
304 } 315 }
305} 316}
306 317
307/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
308static void 319static void
309fd_ebadf (void) 320fd_ebadf (EV_P)
310{ 321{
311 int fd; 322 int fd;
312 323
313 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
314 if (anfds [fd].events) 325 if (anfds [fd].events)
315 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
316 fd_kill (fd); 327 fd_kill (EV_A_ fd);
317} 328}
318 329
319/* called on ENOMEM in select/poll to kill some fds and retry */ 330/* called on ENOMEM in select/poll to kill some fds and retry */
320static void 331static void
321fd_enomem (void) 332fd_enomem (EV_P)
322{ 333{
323 int fd = anfdmax; 334 int fd = anfdmax;
324 335
325 while (fd--) 336 while (fd--)
326 if (anfds [fd].events) 337 if (anfds [fd].events)
327 { 338 {
328 close (fd); 339 close (fd);
329 fd_kill (fd); 340 fd_kill (EV_A_ fd);
330 return; 341 return;
331 } 342 }
332} 343}
333 344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
358}
359
334/*****************************************************************************/ 360/*****************************************************************************/
335 361
336static struct ev_timer **timers;
337static int timermax, timercnt;
338
339static struct ev_periodic **periodics;
340static int periodicmax, periodiccnt;
341
342static void 362static void
343upheap (WT *timers, int k) 363upheap (WT *heap, int k)
344{ 364{
345 WT w = timers [k]; 365 WT w = heap [k];
346 366
347 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
348 { 368 {
349 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
350 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
351 k >>= 1; 371 k >>= 1;
352 } 372 }
353 373
354 timers [k] = w; 374 heap [k] = w;
355 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
356 376
357} 377}
358 378
359static void 379static void
360downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
361{ 381{
362 WT w = timers [k]; 382 WT w = heap [k];
363 383
364 while (k < (N >> 1)) 384 while (k < (N >> 1))
365 { 385 {
366 int j = k << 1; 386 int j = k << 1;
367 387
368 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
369 ++j; 389 ++j;
370 390
371 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
372 break; 392 break;
373 393
374 timers [k] = timers [j]; 394 heap [k] = heap [j];
375 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
376 k = j; 396 k = j;
377 } 397 }
378 398
379 timers [k] = w; 399 heap [k] = w;
380 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
381} 401}
382 402
383/*****************************************************************************/ 403/*****************************************************************************/
384 404
385typedef struct 405typedef struct
391static ANSIG *signals; 411static ANSIG *signals;
392static int signalmax; 412static int signalmax;
393 413
394static int sigpipe [2]; 414static int sigpipe [2];
395static sig_atomic_t volatile gotsig; 415static sig_atomic_t volatile gotsig;
396static struct ev_io sigev;
397 416
398static void 417static void
399signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
400{ 419{
401 while (count--) 420 while (count--)
420 errno = old_errno; 439 errno = old_errno;
421 } 440 }
422} 441}
423 442
424static void 443static void
425sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
426{ 445{
427 struct ev_watcher_list *w; 446 struct ev_watcher_list *w;
428 int signum; 447 int signum;
429 448
430 read (sigpipe [0], &revents, 1); 449 read (sigpipe [0], &revents, 1);
434 if (signals [signum].gotsig) 453 if (signals [signum].gotsig)
435 { 454 {
436 signals [signum].gotsig = 0; 455 signals [signum].gotsig = 0;
437 456
438 for (w = signals [signum].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
439 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
440 } 459 }
441} 460}
442 461
443static void 462static void
444siginit (void) 463siginit (EV_P)
445{ 464{
446#ifndef WIN32 465#ifndef WIN32
447 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
448 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
449 468
451 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
452 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
453#endif 472#endif
454 473
455 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
456 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
457} 477}
458 478
459/*****************************************************************************/ 479/*****************************************************************************/
460
461static struct ev_idle **idles;
462static int idlemax, idlecnt;
463
464static struct ev_prepare **prepares;
465static int preparemax, preparecnt;
466
467static struct ev_check **checks;
468static int checkmax, checkcnt;
469
470/*****************************************************************************/
471
472static struct ev_child *childs [PID_HASHSIZE];
473static struct ev_signal childev;
474 480
475#ifndef WIN32 481#ifndef WIN32
476 482
477#ifndef WCONTINUED 483#ifndef WCONTINUED
478# define WCONTINUED 0 484# define WCONTINUED 0
479#endif 485#endif
480 486
481static void 487static void
482child_reap (struct ev_signal *sw, int chain, int pid, int status) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
483{ 489{
484 struct ev_child *w; 490 struct ev_child *w;
485 491
486 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
487 if (w->pid == pid || !w->pid) 493 if (w->pid == pid || !w->pid)
488 { 494 {
489 w->priority = sw->priority; /* need to do it *now* */ 495 w->priority = sw->priority; /* need to do it *now* */
490 w->rpid = pid; 496 w->rpid = pid;
491 w->rstatus = status; 497 w->rstatus = status;
492 event ((W)w, EV_CHILD); 498 event (EV_A_ (W)w, EV_CHILD);
493 } 499 }
494} 500}
495 501
496static void 502static void
497childcb (struct ev_signal *sw, int revents) 503childcb (EV_P_ struct ev_signal *sw, int revents)
498{ 504{
499 int pid, status; 505 int pid, status;
500 506
501 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
502 { 508 {
503 /* make sure we are called again until all childs have been reaped */ 509 /* make sure we are called again until all childs have been reaped */
504 event ((W)sw, EV_SIGNAL); 510 event (EV_A_ (W)sw, EV_SIGNAL);
505 511
506 child_reap (sw, pid, pid, status); 512 child_reap (EV_A_ sw, pid, pid, status);
507 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
508 } 514 }
509} 515}
510 516
511#endif 517#endif
512 518
516# include "ev_kqueue.c" 522# include "ev_kqueue.c"
517#endif 523#endif
518#if EV_USE_EPOLL 524#if EV_USE_EPOLL
519# include "ev_epoll.c" 525# include "ev_epoll.c"
520#endif 526#endif
521#if EV_USE_POLL 527#if EV_USEV_POLL
522# include "ev_poll.c" 528# include "ev_poll.c"
523#endif 529#endif
524#if EV_USE_SELECT 530#if EV_USE_SELECT
525# include "ev_select.c" 531# include "ev_select.c"
526#endif 532#endif
537 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
538} 544}
539 545
540/* return true if we are running with elevated privileges and should ignore env variables */ 546/* return true if we are running with elevated privileges and should ignore env variables */
541static int 547static int
542enable_secure () 548enable_secure (void)
543{ 549{
544#ifdef WIN32 550#ifdef WIN32
545 return 0; 551 return 0;
546#else 552#else
547 return getuid () != geteuid () 553 return getuid () != geteuid ()
548 || getgid () != getegid (); 554 || getgid () != getegid ();
549#endif 555#endif
550} 556}
551 557
552int ev_init (int methods) 558int
559ev_method (EV_P)
553{ 560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
554 if (!ev_method) 567 if (!method)
555 { 568 {
556#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
557 { 570 {
558 struct timespec ts; 571 struct timespec ts;
559 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
560 have_monotonic = 1; 573 have_monotonic = 1;
561 } 574 }
562#endif 575#endif
563 576
564 ev_now = ev_time (); 577 rt_now = ev_time ();
565 now = get_clock (); 578 mn_now = get_clock ();
566 now_floor = now; 579 now_floor = mn_now;
567 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
568
569 if (pipe (sigpipe))
570 return 0;
571 581
572 if (methods == EVMETHOD_AUTO) 582 if (methods == EVMETHOD_AUTO)
573 if (!enable_secure () && getenv ("LIBEV_METHODS")) 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
574 methods = atoi (getenv ("LIBEV_METHODS")); 584 methods = atoi (getenv ("LIBEV_METHODS"));
575 else 585 else
576 methods = EVMETHOD_ANY; 586 methods = EVMETHOD_ANY;
577 587
578 ev_method = 0; 588 method = 0;
579#if EV_USE_KQUEUE 589#if EV_USE_KQUEUE
580 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
581#endif 591#endif
582#if EV_USE_EPOLL 592#if EV_USE_EPOLL
583 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
584#endif 594#endif
585#if EV_USE_POLL 595#if EV_USEV_POLL
586 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
587#endif 597#endif
588#if EV_USE_SELECT 598#if EV_USE_SELECT
589 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
590#endif 600#endif
601 }
602}
591 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
592 if (ev_method) 691 if (ev_method (EV_A))
593 { 692 {
594 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
595 ev_set_priority (&sigev, EV_MAXPRI); 694 ev_set_priority (&sigev, EV_MAXPRI);
596 siginit (); 695 siginit (EV_A);
597 696
598#ifndef WIN32 697#ifndef WIN32
599 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
600 ev_set_priority (&childev, EV_MAXPRI); 699 ev_set_priority (&childev, EV_MAXPRI);
601 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
602#endif 702#endif
603 } 703 }
704 else
705 default_loop = 0;
604 } 706 }
605 707
606 return ev_method; 708 return default_loop;
607} 709}
608 710
609/*****************************************************************************/
610
611void 711void
612ev_fork_prepare (void) 712ev_default_destroy (void)
613{ 713{
614 /* nop */ 714#if EV_MULTIPLICITY
615} 715 struct ev_loop *loop = default_loop;
616
617void
618ev_fork_parent (void)
619{
620 /* nop */
621}
622
623void
624ev_fork_child (void)
625{
626#if EV_USE_EPOLL
627 if (ev_method == EVMETHOD_EPOLL)
628 epoll_postfork_child ();
629#endif 716#endif
630 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
631 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
632 close (sigpipe [0]); 736 close (sigpipe [0]);
633 close (sigpipe [1]); 737 close (sigpipe [1]);
634 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
635 siginit (); 741 siginit (EV_A);
636} 742}
637 743
638/*****************************************************************************/ 744/*****************************************************************************/
639 745
640static void 746static void
641call_pending (void) 747call_pending (EV_P)
642{ 748{
643 int pri; 749 int pri;
644 750
645 for (pri = NUMPRI; pri--; ) 751 for (pri = NUMPRI; pri--; )
646 while (pendingcnt [pri]) 752 while (pendingcnt [pri])
648 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
649 755
650 if (p->w) 756 if (p->w)
651 { 757 {
652 p->w->pending = 0; 758 p->w->pending = 0;
653 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
654 } 760 }
655 } 761 }
656} 762}
657 763
658static void 764static void
659timers_reify (void) 765timers_reify (EV_P)
660{ 766{
661 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
662 { 768 {
663 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
664 770
665 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
666 if (w->repeat) 772 if (w->repeat)
667 { 773 {
668 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
669 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
670 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
671 } 777 }
672 else 778 else
673 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
674 780
675 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
676 } 782 }
677} 783}
678 784
679static void 785static void
680periodics_reify (void) 786periodics_reify (EV_P)
681{ 787{
682 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
683 { 789 {
684 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
685 791
686 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
687 if (w->interval) 793 if (w->interval)
688 { 794 {
689 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
690 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
691 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
692 } 798 }
693 else 799 else
694 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
695 801
696 event ((W)w, EV_PERIODIC); 802 event (EV_A_ (W)w, EV_PERIODIC);
697 } 803 }
698} 804}
699 805
700static void 806static void
701periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
702{ 808{
703 int i; 809 int i;
704 810
705 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
706 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
707 { 813 {
708 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
709 815
710 if (w->interval) 816 if (w->interval)
711 { 817 {
712 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
713 819
714 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
715 { 821 {
716 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
717 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
718 824
719 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
720 } 826 }
721 } 827 }
722 } 828 }
723} 829}
724 830
725static int 831inline int
726time_update_monotonic (void) 832time_update_monotonic (EV_P)
727{ 833{
728 now = get_clock (); 834 mn_now = get_clock ();
729 835
730 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
731 { 837 {
732 ev_now = now + diff; 838 rt_now = rtmn_diff + mn_now;
733 return 0; 839 return 0;
734 } 840 }
735 else 841 else
736 { 842 {
737 now_floor = now; 843 now_floor = mn_now;
738 ev_now = ev_time (); 844 rt_now = ev_time ();
739 return 1; 845 return 1;
740 } 846 }
741} 847}
742 848
743static void 849static void
744time_update (void) 850time_update (EV_P)
745{ 851{
746 int i; 852 int i;
747 853
748#if EV_USE_MONOTONIC 854#if EV_USE_MONOTONIC
749 if (expect_true (have_monotonic)) 855 if (expect_true (have_monotonic))
750 { 856 {
751 if (time_update_monotonic ()) 857 if (time_update_monotonic (EV_A))
752 { 858 {
753 ev_tstamp odiff = diff; 859 ev_tstamp odiff = rtmn_diff;
754 860
755 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
756 { 862 {
757 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
758 864
759 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
760 return; /* all is well */ 866 return; /* all is well */
761 867
762 ev_now = ev_time (); 868 rt_now = ev_time ();
763 now = get_clock (); 869 mn_now = get_clock ();
764 now_floor = now; 870 now_floor = mn_now;
765 } 871 }
766 872
767 periodics_reschedule (diff - odiff); 873 periodics_reschedule (EV_A);
768 /* no timer adjustment, as the monotonic clock doesn't jump */ 874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
769 } 876 }
770 } 877 }
771 else 878 else
772#endif 879#endif
773 { 880 {
774 ev_now = ev_time (); 881 rt_now = ev_time ();
775 882
776 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
777 { 884 {
778 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
779 886
780 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
781 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
782 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
783 } 890 }
784 891
785 now = ev_now; 892 mn_now = rt_now;
786 } 893 }
787} 894}
788 895
789int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
790 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
791void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
792{ 912{
793 double block; 913 double block;
794 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
795 915
796 do 916 do
797 { 917 {
798 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
799 if (expect_false (preparecnt)) 919 if (expect_false (preparecnt))
800 { 920 {
801 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
802 call_pending (); 922 call_pending (EV_A);
803 } 923 }
804 924
805 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
806 fd_reify (); 926 fd_reify (EV_A);
807 927
808 /* calculate blocking time */ 928 /* calculate blocking time */
809 929
810 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
811 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
812#if EV_USE_MONOTONIC 932#if EV_USE_MONOTONIC
813 if (expect_true (have_monotonic)) 933 if (expect_true (have_monotonic))
814 time_update_monotonic (); 934 time_update_monotonic (EV_A);
815 else 935 else
816#endif 936#endif
817 { 937 {
818 ev_now = ev_time (); 938 rt_now = ev_time ();
819 now = ev_now; 939 mn_now = rt_now;
820 } 940 }
821 941
822 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
823 block = 0.; 943 block = 0.;
824 else 944 else
825 { 945 {
826 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
827 947
828 if (timercnt) 948 if (timercnt)
829 { 949 {
830 ev_tstamp to = timers [0]->at - now + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
831 if (block > to) block = to; 951 if (block > to) block = to;
832 } 952 }
833 953
834 if (periodiccnt) 954 if (periodiccnt)
835 { 955 {
836 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
837 if (block > to) block = to; 957 if (block > to) block = to;
838 } 958 }
839 959
840 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
841 } 961 }
842 962
843 method_poll (block); 963 method_poll (EV_A_ block);
844 964
845 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
846 time_update (); 966 time_update (EV_A);
847 967
848 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
849 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
850 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
851 971
852 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
853 if (!pendingcnt) 973 if (!pendingcnt)
854 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
855 975
856 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
857 if (checkcnt) 977 if (checkcnt)
858 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
859 979
860 call_pending (); 980 call_pending (EV_A);
861 } 981 }
862 while (!ev_loop_done); 982 while (activecnt && !loop_done);
863 983
864 if (ev_loop_done != 2) 984 if (loop_done != 2)
865 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
866} 992}
867 993
868/*****************************************************************************/ 994/*****************************************************************************/
869 995
870static void 996inline void
871wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
872{ 998{
873 elem->next = *head; 999 elem->next = *head;
874 *head = elem; 1000 *head = elem;
875} 1001}
876 1002
877static void 1003inline void
878wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
879{ 1005{
880 while (*head) 1006 while (*head)
881 { 1007 {
882 if (*head == elem) 1008 if (*head == elem)
887 1013
888 head = &(*head)->next; 1014 head = &(*head)->next;
889 } 1015 }
890} 1016}
891 1017
892static void 1018inline void
893ev_clear_pending (W w) 1019ev_clear_pending (EV_P_ W w)
894{ 1020{
895 if (w->pending) 1021 if (w->pending)
896 { 1022 {
897 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
898 w->pending = 0; 1024 w->pending = 0;
899 } 1025 }
900} 1026}
901 1027
902static void 1028inline void
903ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
904{ 1030{
905 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
906 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
907 1033
908 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
909} 1036}
910 1037
911static void 1038inline void
912ev_stop (W w) 1039ev_stop (EV_P_ W w)
913{ 1040{
1041 ev_unref (EV_A);
914 w->active = 0; 1042 w->active = 0;
915} 1043}
916 1044
917/*****************************************************************************/ 1045/*****************************************************************************/
918 1046
919void 1047void
920ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
921{ 1049{
922 int fd = w->fd; 1050 int fd = w->fd;
923 1051
924 if (ev_is_active (w)) 1052 if (ev_is_active (w))
925 return; 1053 return;
926 1054
927 assert (("ev_io_start called with negative fd", fd >= 0)); 1055 assert (("ev_io_start called with negative fd", fd >= 0));
928 1056
929 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
930 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
931 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
932 1060
933 fd_change (fd); 1061 fd_change (EV_A_ fd);
934} 1062}
935 1063
936void 1064void
937ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
938{ 1066{
939 ev_clear_pending ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
940 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
941 return; 1069 return;
942 1070
943 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
944 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
945 1073
946 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
947} 1075}
948 1076
949void 1077void
950ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
951{ 1079{
952 if (ev_is_active (w)) 1080 if (ev_is_active (w))
953 return; 1081 return;
954 1082
955 w->at += now; 1083 w->at += mn_now;
956 1084
957 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
958 1086
959 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
960 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
961 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
962 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
963} 1091}
964 1092
965void 1093void
966ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
967{ 1095{
968 ev_clear_pending ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
969 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
970 return; 1098 return;
971 1099
972 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
973 { 1101 {
975 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
976 } 1104 }
977 1105
978 w->at = w->repeat; 1106 w->at = w->repeat;
979 1107
980 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
981} 1109}
982 1110
983void 1111void
984ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
985{ 1113{
986 if (ev_is_active (w)) 1114 if (ev_is_active (w))
987 { 1115 {
988 if (w->repeat) 1116 if (w->repeat)
989 { 1117 {
990 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
991 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
992 } 1120 }
993 else 1121 else
994 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
995 } 1123 }
996 else if (w->repeat) 1124 else if (w->repeat)
997 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
998} 1126}
999 1127
1000void 1128void
1001ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
1002{ 1130{
1003 if (ev_is_active (w)) 1131 if (ev_is_active (w))
1004 return; 1132 return;
1005 1133
1006 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1007 1135
1008 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
1009 if (w->interval) 1137 if (w->interval)
1010 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1011 1139
1012 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
1013 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
1014 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
1015 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
1016} 1144}
1017 1145
1018void 1146void
1019ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
1020{ 1148{
1021 ev_clear_pending ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
1022 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
1023 return; 1151 return;
1024 1152
1025 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
1026 { 1154 {
1027 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
1028 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1029 } 1157 }
1030 1158
1031 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
1160}
1161
1162void
1163ev_idle_start (EV_P_ struct ev_idle *w)
1164{
1165 if (ev_is_active (w))
1166 return;
1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1032} 1226}
1033 1227
1034#ifndef SA_RESTART 1228#ifndef SA_RESTART
1035# define SA_RESTART 0 1229# define SA_RESTART 0
1036#endif 1230#endif
1037 1231
1038void 1232void
1039ev_signal_start (struct ev_signal *w) 1233ev_signal_start (EV_P_ struct ev_signal *w)
1040{ 1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1041 if (ev_is_active (w)) 1238 if (ev_is_active (w))
1042 return; 1239 return;
1043 1240
1044 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1045 1242
1046 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
1047 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
1048 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1049 1246
1050 if (!w->next) 1247 if (!w->next)
1051 { 1248 {
1056 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
1057 } 1254 }
1058} 1255}
1059 1256
1060void 1257void
1061ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
1062{ 1259{
1063 ev_clear_pending ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
1064 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
1065 return; 1262 return;
1066 1263
1067 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1068 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
1069 1266
1070 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
1071 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
1072} 1269}
1073 1270
1074void 1271void
1075ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
1076{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
1077 if (ev_is_active (w)) 1277 if (ev_is_active (w))
1078 return; 1278 return;
1079 1279
1080 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
1081 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1082 idles [idlecnt - 1] = w;
1083} 1282}
1084 1283
1085void 1284void
1086ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
1087{ 1286{
1088 ev_clear_pending ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
1089 if (ev_is_active (w)) 1288 if (ev_is_active (w))
1090 return; 1289 return;
1091 1290
1092 idles [w->active - 1] = idles [--idlecnt];
1093 ev_stop ((W)w);
1094}
1095
1096void
1097ev_prepare_start (struct ev_prepare *w)
1098{
1099 if (ev_is_active (w))
1100 return;
1101
1102 ev_start ((W)w, ++preparecnt);
1103 array_needsize (prepares, preparemax, preparecnt, );
1104 prepares [preparecnt - 1] = w;
1105}
1106
1107void
1108ev_prepare_stop (struct ev_prepare *w)
1109{
1110 ev_clear_pending ((W)w);
1111 if (ev_is_active (w))
1112 return;
1113
1114 prepares [w->active - 1] = prepares [--preparecnt];
1115 ev_stop ((W)w);
1116}
1117
1118void
1119ev_check_start (struct ev_check *w)
1120{
1121 if (ev_is_active (w))
1122 return;
1123
1124 ev_start ((W)w, ++checkcnt);
1125 array_needsize (checks, checkmax, checkcnt, );
1126 checks [checkcnt - 1] = w;
1127}
1128
1129void
1130ev_check_stop (struct ev_check *w)
1131{
1132 ev_clear_pending ((W)w);
1133 if (ev_is_active (w))
1134 return;
1135
1136 checks [w->active - 1] = checks [--checkcnt];
1137 ev_stop ((W)w);
1138}
1139
1140void
1141ev_child_start (struct ev_child *w)
1142{
1143 if (ev_is_active (w))
1144 return;
1145
1146 ev_start ((W)w, 1);
1147 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1148}
1149
1150void
1151ev_child_stop (struct ev_child *w)
1152{
1153 ev_clear_pending ((W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1158 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
1159} 1293}
1160 1294
1161/*****************************************************************************/ 1295/*****************************************************************************/
1162 1296
1163struct ev_once 1297struct ev_once
1167 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
1168 void *arg; 1302 void *arg;
1169}; 1303};
1170 1304
1171static void 1305static void
1172once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
1173{ 1307{
1174 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
1175 void *arg = once->arg; 1309 void *arg = once->arg;
1176 1310
1177 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1178 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1179 free (once); 1313 free (once);
1180 1314
1181 cb (revents, arg); 1315 cb (revents, arg);
1182} 1316}
1183 1317
1184static void 1318static void
1185once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1186{ 1320{
1187 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1188} 1322}
1189 1323
1190static void 1324static void
1191once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1192{ 1326{
1193 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1194} 1328}
1195 1329
1196void 1330void
1197ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1198{ 1332{
1199 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1200 1334
1201 if (!once) 1335 if (!once)
1202 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1207 1341
1208 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1209 if (fd >= 0) 1343 if (fd >= 0)
1210 { 1344 {
1211 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1212 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1213 } 1347 }
1214 1348
1215 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1216 if (timeout >= 0.) 1350 if (timeout >= 0.)
1217 { 1351 {
1218 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1219 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1220 } 1354 }
1221 } 1355 }
1222} 1356}
1223 1357
1224/*****************************************************************************/
1225
1226#if 0
1227
1228struct ev_io wio;
1229
1230static void
1231sin_cb (struct ev_io *w, int revents)
1232{
1233 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1234}
1235
1236static void
1237ocb (struct ev_timer *w, int revents)
1238{
1239 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1240 ev_timer_stop (w);
1241 ev_timer_start (w);
1242}
1243
1244static void
1245scb (struct ev_signal *w, int revents)
1246{
1247 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1248 ev_io_stop (&wio);
1249 ev_io_start (&wio);
1250}
1251
1252static void
1253gcb (struct ev_signal *w, int revents)
1254{
1255 fprintf (stderr, "generic %x\n", revents);
1256
1257}
1258
1259int main (void)
1260{
1261 ev_init (0);
1262
1263 ev_io_init (&wio, sin_cb, 0, EV_READ);
1264 ev_io_start (&wio);
1265
1266 struct ev_timer t[10000];
1267
1268#if 0
1269 int i;
1270 for (i = 0; i < 10000; ++i)
1271 {
1272 struct ev_timer *w = t + i;
1273 ev_watcher_init (w, ocb, i);
1274 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1275 ev_timer_start (w);
1276 if (drand48 () < 0.5)
1277 ev_timer_stop (w);
1278 }
1279#endif
1280
1281 struct ev_timer t1;
1282 ev_timer_init (&t1, ocb, 5, 10);
1283 ev_timer_start (&t1);
1284
1285 struct ev_signal sig;
1286 ev_signal_init (&sig, scb, SIGQUIT);
1287 ev_signal_start (&sig);
1288
1289 struct ev_check cw;
1290 ev_check_init (&cw, gcb);
1291 ev_check_start (&cw);
1292
1293 struct ev_idle iw;
1294 ev_idle_init (&iw, gcb);
1295 ev_idle_start (&iw);
1296
1297 ev_loop (0);
1298
1299 return 0;
1300}
1301
1302#endif
1303
1304
1305
1306

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines