ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.73 by root, Tue Nov 6 16:27:10 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED
99# include "ev.h" 131#include "ev.h"
100#endif
101 132
102#if __GNUC__ >= 3 133#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 134# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 135# define inline inline
105#else 136#else
117typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
119 150
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 152
153#include "ev_win32.c"
154
122/*****************************************************************************/ 155/*****************************************************************************/
123 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
124typedef struct 205typedef struct
125{ 206{
126 struct ev_watcher_list *head; 207 WL head;
127 unsigned char events; 208 unsigned char events;
128 unsigned char reify; 209 unsigned char reify;
129} ANFD; 210} ANFD;
130 211
131typedef struct 212typedef struct
189 return rt_now; 270 return rt_now;
190} 271}
191 272
192#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(base,n) ((n) | 4 & ~3)
193 274
194#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
196 { \ 277 { \
197 int newcnt = cur; \ 278 int newcnt = cur; \
198 do \ 279 do \
199 { \ 280 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (base, newcnt << 1); \
201 } \ 282 } \
202 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
203 \ 284 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
205 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 287 cur = newcnt; \
207 } 288 }
289
290#define array_slim(stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 305
209/*****************************************************************************/ 306/*****************************************************************************/
210 307
211static void 308static void
212anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
230 return; 327 return;
231 } 328 }
232 329
233 w->pending = ++pendingcnt [ABSPRI (w)]; 330 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 331 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 334}
238 335
239static void 336static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 376 events |= w->events;
280 377
281 anfd->reify = 0; 378 anfd->reify = 0;
282 379
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 381 anfd->events = events;
287 }
288 } 382 }
289 383
290 fdchangecnt = 0; 384 fdchangecnt = 0;
291} 385}
292 386
293static void 387static void
294fd_change (EV_P_ int fd) 388fd_change (EV_P_ int fd)
295{ 389{
296 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
297 return; 391 return;
298 392
299 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
300 394
301 ++fdchangecnt; 395 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
304} 398}
305 399
306static void 400static void
307fd_kill (EV_P_ int fd) 401fd_kill (EV_P_ int fd)
313 ev_io_stop (EV_A_ w); 407 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 409 }
316} 410}
317 411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
318/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
319static void 423static void
320fd_ebadf (EV_P) 424fd_ebadf (EV_P)
321{ 425{
322 int fd; 426 int fd;
323 427
324 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 429 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 431 fd_kill (EV_A_ fd);
328} 432}
329 433
330/* called on ENOMEM in select/poll to kill some fds and retry */ 434/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 435static void
332fd_enomem (EV_P) 436fd_enomem (EV_P)
333{ 437{
334 int fd = anfdmax; 438 int fd;
335 439
336 while (fd--) 440 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 441 if (anfds [fd].events)
338 { 442 {
339 close (fd);
340 fd_kill (EV_A_ fd); 443 fd_kill (EV_A_ fd);
341 return; 444 return;
342 } 445 }
343} 446}
344 447
345/* susually called after fork if method needs to re-arm all fds from scratch */ 448/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 449static void
347fd_rearm_all (EV_P) 450fd_rearm_all (EV_P)
348{ 451{
349 int fd; 452 int fd;
350 453
351 /* this should be highly optimised to not do anything but set a flag */ 454 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 455 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 456 if (anfds [fd].events)
354 { 457 {
355 anfds [fd].events = 0; 458 anfds [fd].events = 0;
356 fd_change (fd); 459 fd_change (EV_A_ fd);
357 } 460 }
358} 461}
359 462
360/*****************************************************************************/ 463/*****************************************************************************/
361 464
365 WT w = heap [k]; 468 WT w = heap [k];
366 469
367 while (k && heap [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
368 { 471 {
369 heap [k] = heap [k >> 1]; 472 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
371 k >>= 1; 474 k >>= 1;
372 } 475 }
373 476
374 heap [k] = w; 477 heap [k] = w;
375 heap [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
376 479
377} 480}
378 481
379static void 482static void
380downheap (WT *heap, int N, int k) 483downheap (WT *heap, int N, int k)
390 493
391 if (w->at <= heap [j]->at) 494 if (w->at <= heap [j]->at)
392 break; 495 break;
393 496
394 heap [k] = heap [j]; 497 heap [k] = heap [j];
395 heap [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
396 k = j; 499 k = j;
397 } 500 }
398 501
399 heap [k] = w; 502 heap [k] = w;
400 heap [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
401} 504}
402 505
403/*****************************************************************************/ 506/*****************************************************************************/
404 507
405typedef struct 508typedef struct
406{ 509{
407 struct ev_watcher_list *head; 510 WL head;
408 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
409} ANSIG; 512} ANSIG;
410 513
411static ANSIG *signals; 514static ANSIG *signals;
412static int signalmax; 515static int signalmax;
413 516
414static int sigpipe [2]; 517static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
416 520
417static void 521static void
418signals_init (ANSIG *base, int count) 522signals_init (ANSIG *base, int count)
419{ 523{
420 while (count--) 524 while (count--)
427} 531}
428 532
429static void 533static void
430sighandler (int signum) 534sighandler (int signum)
431{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
432 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
433 541
434 if (!gotsig) 542 if (!gotsig)
435 { 543 {
436 int old_errno = errno; 544 int old_errno = errno;
441} 549}
442 550
443static void 551static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 552sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 553{
446 struct ev_watcher_list *w; 554 WL w;
447 int signum; 555 int signum;
448 556
449 read (sigpipe [0], &revents, 1); 557 read (sigpipe [0], &revents, 1);
450 gotsig = 0; 558 gotsig = 0;
451 559
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 584 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 585}
478 586
479/*****************************************************************************/ 587/*****************************************************************************/
480 588
589static struct ev_child *childs [PID_HASHSIZE];
590
481#ifndef WIN32 591#ifndef WIN32
592
593static struct ev_signal childev;
482 594
483#ifndef WCONTINUED 595#ifndef WCONTINUED
484# define WCONTINUED 0 596# define WCONTINUED 0
485#endif 597#endif
486 598
490 struct ev_child *w; 602 struct ev_child *w;
491 603
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 604 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 605 if (w->pid == pid || !w->pid)
494 { 606 {
495 w->priority = sw->priority; /* need to do it *now* */ 607 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 608 w->rpid = pid;
497 w->rstatus = status; 609 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 610 event (EV_A_ (W)w, EV_CHILD);
499 } 611 }
500} 612}
501 613
502static void 614static void
522# include "ev_kqueue.c" 634# include "ev_kqueue.c"
523#endif 635#endif
524#if EV_USE_EPOLL 636#if EV_USE_EPOLL
525# include "ev_epoll.c" 637# include "ev_epoll.c"
526#endif 638#endif
527#if EV_USEV_POLL 639#if EV_USE_POLL
528# include "ev_poll.c" 640# include "ev_poll.c"
529#endif 641#endif
530#if EV_USE_SELECT 642#if EV_USE_SELECT
531# include "ev_select.c" 643# include "ev_select.c"
532#endif 644#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 696 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 697 else
586 methods = EVMETHOD_ANY; 698 methods = EVMETHOD_ANY;
587 699
588 method = 0; 700 method = 0;
701#if EV_USE_WIN32
702 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
703#endif
589#if EV_USE_KQUEUE 704#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 705 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 706#endif
592#if EV_USE_EPOLL 707#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 708 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 709#endif
595#if EV_USEV_POLL 710#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 711 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 712#endif
598#if EV_USE_SELECT 713#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 714 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 715#endif
716
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
601 } 719 }
602} 720}
603 721
604void 722void
605loop_destroy (EV_P) 723loop_destroy (EV_P)
606{ 724{
725 int i;
726
727#if EV_USE_WIN32
728 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
729#endif
607#if EV_USE_KQUEUE 730#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 731 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 732#endif
610#if EV_USE_EPOLL 733#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 734 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 735#endif
613#if EV_USEV_POLL 736#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 737 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 738#endif
616#if EV_USE_SELECT 739#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 740 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 741#endif
619 742
743 for (i = NUMPRI; i--; )
744 array_free (pending, [i]);
745
746 /* have to use the microsoft-never-gets-it-right macro */
747 array_free_microshit (fdchange);
748 array_free_microshit (timer);
749 array_free_microshit (periodic);
750 array_free_microshit (idle);
751 array_free_microshit (prepare);
752 array_free_microshit (check);
753
620 method = 0; 754 method = 0;
621 /*TODO*/
622} 755}
623 756
624void 757static void
625loop_fork (EV_P) 758loop_fork (EV_P)
626{ 759{
627 /*TODO*/
628#if EV_USE_EPOLL 760#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 761 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 762#endif
631#if EV_USE_KQUEUE 763#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 764 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 765#endif
766
767 if (ev_is_active (&sigev))
768 {
769 /* default loop */
770
771 ev_ref (EV_A);
772 ev_io_stop (EV_A_ &sigev);
773 close (sigpipe [0]);
774 close (sigpipe [1]);
775
776 while (pipe (sigpipe))
777 syserr ("(libev) error creating pipe");
778
779 siginit (EV_A);
780 }
781
782 postfork = 0;
634} 783}
635 784
636#if EV_MULTIPLICITY 785#if EV_MULTIPLICITY
637struct ev_loop * 786struct ev_loop *
638ev_loop_new (int methods) 787ev_loop_new (int methods)
639{ 788{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 789 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
790
791 memset (loop, 0, sizeof (struct ev_loop));
641 792
642 loop_init (EV_A_ methods); 793 loop_init (EV_A_ methods);
643 794
644 if (ev_methods (EV_A)) 795 if (ev_method (EV_A))
645 return loop; 796 return loop;
646 797
647 return 0; 798 return 0;
648} 799}
649 800
650void 801void
651ev_loop_destroy (EV_P) 802ev_loop_destroy (EV_P)
652{ 803{
653 loop_destroy (EV_A); 804 loop_destroy (EV_A);
654 free (loop); 805 ev_free (loop);
655} 806}
656 807
657void 808void
658ev_loop_fork (EV_P) 809ev_loop_fork (EV_P)
659{ 810{
660 loop_fork (EV_A); 811 postfork = 1;
661} 812}
662 813
663#endif 814#endif
664 815
665#if EV_MULTIPLICITY 816#if EV_MULTIPLICITY
688 839
689 loop_init (EV_A_ methods); 840 loop_init (EV_A_ methods);
690 841
691 if (ev_method (EV_A)) 842 if (ev_method (EV_A))
692 { 843 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 844 siginit (EV_A);
696 845
697#ifndef WIN32 846#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 847 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 848 ev_set_priority (&childev, EV_MAXPRI);
713{ 862{
714#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 864 struct ev_loop *loop = default_loop;
716#endif 865#endif
717 866
867#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 868 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 869 ev_signal_stop (EV_A_ &childev);
870#endif
720 871
721 ev_ref (EV_A); /* signal watcher */ 872 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 873 ev_io_stop (EV_A_ &sigev);
723 874
724 close (sigpipe [0]); sigpipe [0] = 0; 875 close (sigpipe [0]); sigpipe [0] = 0;
726 877
727 loop_destroy (EV_A); 878 loop_destroy (EV_A);
728} 879}
729 880
730void 881void
731ev_default_fork (EV_P) 882ev_default_fork (void)
732{ 883{
733 loop_fork (EV_A); 884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop;
886#endif
734 887
735 ev_io_stop (EV_A_ &sigev); 888 if (method)
736 close (sigpipe [0]); 889 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 890}
743 891
744/*****************************************************************************/ 892/*****************************************************************************/
745 893
746static void 894static void
762} 910}
763 911
764static void 912static void
765timers_reify (EV_P) 913timers_reify (EV_P)
766{ 914{
767 while (timercnt && timers [0]->at <= mn_now) 915 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 916 {
769 struct ev_timer *w = timers [0]; 917 struct ev_timer *w = timers [0];
918
919 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 920
771 /* first reschedule or stop timer */ 921 /* first reschedule or stop timer */
772 if (w->repeat) 922 if (w->repeat)
773 { 923 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 924 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 925 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 926 downheap ((WT *)timers, timercnt, 0);
777 } 927 }
778 else 928 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 929 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 930
783} 933}
784 934
785static void 935static void
786periodics_reify (EV_P) 936periodics_reify (EV_P)
787{ 937{
788 while (periodiccnt && periodics [0]->at <= rt_now) 938 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 939 {
790 struct ev_periodic *w = periodics [0]; 940 struct ev_periodic *w = periodics [0];
941
942 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
791 943
792 /* first reschedule or stop timer */ 944 /* first reschedule or stop timer */
793 if (w->interval) 945 if (w->interval)
794 { 946 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 947 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 948 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 949 downheap ((WT *)periodics, periodiccnt, 0);
798 } 950 }
799 else 951 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 952 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 953
813 { 965 {
814 struct ev_periodic *w = periodics [i]; 966 struct ev_periodic *w = periodics [i];
815 967
816 if (w->interval) 968 if (w->interval)
817 { 969 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 970 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819 971
820 if (fabs (diff) >= 1e-4) 972 if (fabs (diff) >= 1e-4)
821 { 973 {
822 ev_periodic_stop (EV_A_ w); 974 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w); 975 ev_periodic_start (EV_A_ w);
884 { 1036 {
885 periodics_reschedule (EV_A); 1037 periodics_reschedule (EV_A);
886 1038
887 /* adjust timers. this is easy, as the offset is the same for all */ 1039 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1040 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1041 ((WT)timers [i])->at += rt_now - mn_now;
890 } 1042 }
891 1043
892 mn_now = rt_now; 1044 mn_now = rt_now;
893 } 1045 }
894} 1046}
920 { 1072 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1073 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1074 call_pending (EV_A);
923 } 1075 }
924 1076
1077 /* we might have forked, so reify kernel state if necessary */
1078 if (expect_false (postfork))
1079 loop_fork (EV_A);
1080
925 /* update fd-related kernel structures */ 1081 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1082 fd_reify (EV_A);
927 1083
928 /* calculate blocking time */ 1084 /* calculate blocking time */
929 1085
945 { 1101 {
946 block = MAX_BLOCKTIME; 1102 block = MAX_BLOCKTIME;
947 1103
948 if (timercnt) 1104 if (timercnt)
949 { 1105 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1106 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1107 if (block > to) block = to;
952 } 1108 }
953 1109
954 if (periodiccnt) 1110 if (periodiccnt)
955 { 1111 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1112 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1113 if (block > to) block = to;
958 } 1114 }
959 1115
960 if (block < 0.) block = 0.; 1116 if (block < 0.) block = 0.;
961 } 1117 }
1078ev_timer_start (EV_P_ struct ev_timer *w) 1234ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1235{
1080 if (ev_is_active (w)) 1236 if (ev_is_active (w))
1081 return; 1237 return;
1082 1238
1083 w->at += mn_now; 1239 ((WT)w)->at += mn_now;
1084 1240
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1241 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1242
1087 ev_start (EV_A_ (W)w, ++timercnt); 1243 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1244 array_needsize (timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1245 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1246 upheap ((WT *)timers, timercnt - 1);
1247
1248 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1249}
1092 1250
1093void 1251void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1252ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1253{
1096 ev_clear_pending (EV_A_ (W)w); 1254 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1255 if (!ev_is_active (w))
1098 return; 1256 return;
1099 1257
1258 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1259
1100 if (w->active < timercnt--) 1260 if (((W)w)->active < timercnt--)
1101 { 1261 {
1102 timers [w->active - 1] = timers [timercnt]; 1262 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1263 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1264 }
1105 1265
1106 w->at = w->repeat; 1266 ((WT)w)->at = w->repeat;
1107 1267
1108 ev_stop (EV_A_ (W)w); 1268 ev_stop (EV_A_ (W)w);
1109} 1269}
1110 1270
1111void 1271void
1113{ 1273{
1114 if (ev_is_active (w)) 1274 if (ev_is_active (w))
1115 { 1275 {
1116 if (w->repeat) 1276 if (w->repeat)
1117 { 1277 {
1118 w->at = mn_now + w->repeat; 1278 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1279 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1280 }
1121 else 1281 else
1122 ev_timer_stop (EV_A_ w); 1282 ev_timer_stop (EV_A_ w);
1123 } 1283 }
1124 else if (w->repeat) 1284 else if (w->repeat)
1133 1293
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1294 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135 1295
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1296 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval) 1297 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1298 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1139 1299
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1300 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1301 array_needsize (periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1302 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1303 upheap ((WT *)periodics, periodiccnt - 1);
1304
1305 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1306}
1145 1307
1146void 1308void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1309ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1310{
1149 ev_clear_pending (EV_A_ (W)w); 1311 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
1151 return; 1313 return;
1152 1314
1315 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1316
1153 if (w->active < periodiccnt--) 1317 if (((W)w)->active < periodiccnt--)
1154 { 1318 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1319 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1320 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1321 }
1158 1322
1159 ev_stop (EV_A_ (W)w); 1323 ev_stop (EV_A_ (W)w);
1160} 1324}
1161 1325
1164{ 1328{
1165 if (ev_is_active (w)) 1329 if (ev_is_active (w))
1166 return; 1330 return;
1167 1331
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1333 array_needsize (idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1334 idles [idlecnt - 1] = w;
1171} 1335}
1172 1336
1173void 1337void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1338ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1339{
1176 ev_clear_pending (EV_A_ (W)w); 1340 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1341 if (ev_is_active (w))
1178 return; 1342 return;
1179 1343
1180 idles [w->active - 1] = idles [--idlecnt]; 1344 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1345 ev_stop (EV_A_ (W)w);
1182} 1346}
1183 1347
1184void 1348void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1349ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1350{
1187 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1188 return; 1352 return;
1189 1353
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1354 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1355 array_needsize (prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1356 prepares [preparecnt - 1] = w;
1193} 1357}
1194 1358
1195void 1359void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1360ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1361{
1198 ev_clear_pending (EV_A_ (W)w); 1362 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1363 if (ev_is_active (w))
1200 return; 1364 return;
1201 1365
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1366 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1367 ev_stop (EV_A_ (W)w);
1204} 1368}
1205 1369
1206void 1370void
1207ev_check_start (EV_P_ struct ev_check *w) 1371ev_check_start (EV_P_ struct ev_check *w)
1208{ 1372{
1209 if (ev_is_active (w)) 1373 if (ev_is_active (w))
1210 return; 1374 return;
1211 1375
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1376 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1377 array_needsize (checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1378 checks [checkcnt - 1] = w;
1215} 1379}
1216 1380
1217void 1381void
1218ev_check_stop (EV_P_ struct ev_check *w) 1382ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1383{
1220 ev_clear_pending (EV_A_ (W)w); 1384 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1385 if (ev_is_active (w))
1222 return; 1386 return;
1223 1387
1224 checks [w->active - 1] = checks [--checkcnt]; 1388 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1389 ev_stop (EV_A_ (W)w);
1226} 1390}
1227 1391
1228#ifndef SA_RESTART 1392#ifndef SA_RESTART
1229# define SA_RESTART 0 1393# define SA_RESTART 0
1242 1406
1243 ev_start (EV_A_ (W)w, 1); 1407 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1408 array_needsize (signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1409 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1410
1247 if (!w->next) 1411 if (!((WL)w)->next)
1248 { 1412 {
1413#if WIN32
1414 signal (w->signum, sighandler);
1415#else
1249 struct sigaction sa; 1416 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1417 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1418 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1419 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1420 sigaction (w->signum, &sa, 0);
1421#endif
1254 } 1422 }
1255} 1423}
1256 1424
1257void 1425void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1426ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1476 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1477 void *arg = once->arg;
1310 1478
1311 ev_io_stop (EV_A_ &once->io); 1479 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1480 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1481 ev_free (once);
1314 1482
1315 cb (revents, arg); 1483 cb (revents, arg);
1316} 1484}
1317 1485
1318static void 1486static void
1328} 1496}
1329 1497
1330void 1498void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1499ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1500{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1501 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1334 1502
1335 if (!once) 1503 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1504 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1505 else
1338 { 1506 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines