ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED
99# include "ev.h" 131#include "ev.h"
100#endif
101 132
102#if __GNUC__ >= 3 133#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 134# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 135# define inline inline
105#else 136#else
117typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
119 150
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 152
153#include "ev_win32.c"
154
122/*****************************************************************************/ 155/*****************************************************************************/
123 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
124typedef struct 205typedef struct
125{ 206{
126 struct ev_watcher_list *head; 207 WL head;
127 unsigned char events; 208 unsigned char events;
128 unsigned char reify; 209 unsigned char reify;
129} ANFD; 210} ANFD;
130 211
131typedef struct 212typedef struct
187ev_now (EV_P) 268ev_now (EV_P)
188{ 269{
189 return rt_now; 270 return rt_now;
190} 271}
191 272
192#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
193 274
194#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
196 { \ 277 { \
197 int newcnt = cur; \ 278 int newcnt = cur; \
198 do \ 279 do \
199 { \ 280 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 282 } \
202 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
203 \ 284 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 287 cur = newcnt; \
207 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 305
209/*****************************************************************************/ 306/*****************************************************************************/
210 307
211static void 308static void
212anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
230 return; 327 return;
231 } 328 }
232 329
233 w->pending = ++pendingcnt [ABSPRI (w)]; 330 w->pending = ++pendingcnt [ABSPRI (w)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
237} 334}
238 335
239static void 336static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 376 events |= w->events;
280 377
281 anfd->reify = 0; 378 anfd->reify = 0;
282 379
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 381 anfd->events = events;
287 }
288 } 382 }
289 383
290 fdchangecnt = 0; 384 fdchangecnt = 0;
291} 385}
292 386
293static void 387static void
294fd_change (EV_P_ int fd) 388fd_change (EV_P_ int fd)
295{ 389{
296 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
297 return; 391 return;
298 392
299 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
300 394
301 ++fdchangecnt; 395 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
304} 398}
305 399
306static void 400static void
307fd_kill (EV_P_ int fd) 401fd_kill (EV_P_ int fd)
313 ev_io_stop (EV_A_ w); 407 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 409 }
316} 410}
317 411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
318/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
319static void 423static void
320fd_ebadf (EV_P) 424fd_ebadf (EV_P)
321{ 425{
322 int fd; 426 int fd;
323 427
324 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 429 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 431 fd_kill (EV_A_ fd);
328} 432}
329 433
330/* called on ENOMEM in select/poll to kill some fds and retry */ 434/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 435static void
332fd_enomem (EV_P) 436fd_enomem (EV_P)
333{ 437{
334 int fd = anfdmax; 438 int fd;
335 439
336 while (fd--) 440 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 441 if (anfds [fd].events)
338 { 442 {
339 close (fd);
340 fd_kill (EV_A_ fd); 443 fd_kill (EV_A_ fd);
341 return; 444 return;
342 } 445 }
343} 446}
344 447
345/* susually called after fork if method needs to re-arm all fds from scratch */ 448/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 449static void
347fd_rearm_all (EV_P) 450fd_rearm_all (EV_P)
348{ 451{
349 int fd; 452 int fd;
350 453
351 /* this should be highly optimised to not do anything but set a flag */ 454 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 455 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 456 if (anfds [fd].events)
354 { 457 {
355 anfds [fd].events = 0; 458 anfds [fd].events = 0;
356 fd_change (fd); 459 fd_change (EV_A_ fd);
357 } 460 }
358} 461}
359 462
360/*****************************************************************************/ 463/*****************************************************************************/
361 464
365 WT w = heap [k]; 468 WT w = heap [k];
366 469
367 while (k && heap [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
368 { 471 {
369 heap [k] = heap [k >> 1]; 472 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
371 k >>= 1; 474 k >>= 1;
372 } 475 }
373 476
374 heap [k] = w; 477 heap [k] = w;
375 heap [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
376 479
377} 480}
378 481
379static void 482static void
380downheap (WT *heap, int N, int k) 483downheap (WT *heap, int N, int k)
390 493
391 if (w->at <= heap [j]->at) 494 if (w->at <= heap [j]->at)
392 break; 495 break;
393 496
394 heap [k] = heap [j]; 497 heap [k] = heap [j];
395 heap [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
396 k = j; 499 k = j;
397 } 500 }
398 501
399 heap [k] = w; 502 heap [k] = w;
400 heap [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
401} 504}
402 505
403/*****************************************************************************/ 506/*****************************************************************************/
404 507
405typedef struct 508typedef struct
406{ 509{
407 struct ev_watcher_list *head; 510 WL head;
408 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
409} ANSIG; 512} ANSIG;
410 513
411static ANSIG *signals; 514static ANSIG *signals;
412static int signalmax; 515static int signalmax;
413 516
414static int sigpipe [2]; 517static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 518static sig_atomic_t volatile gotsig;
519static struct ev_io sigev;
416 520
417static void 521static void
418signals_init (ANSIG *base, int count) 522signals_init (ANSIG *base, int count)
419{ 523{
420 while (count--) 524 while (count--)
427} 531}
428 532
429static void 533static void
430sighandler (int signum) 534sighandler (int signum)
431{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
432 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
433 541
434 if (!gotsig) 542 if (!gotsig)
435 { 543 {
436 int old_errno = errno; 544 int old_errno = errno;
437 gotsig = 1; 545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
438 write (sigpipe [1], &signum, 1); 549 write (sigpipe [1], &signum, 1);
550#endif
439 errno = old_errno; 551 errno = old_errno;
440 } 552 }
441} 553}
442 554
443static void 555static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 556sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 557{
446 struct ev_watcher_list *w; 558 WL w;
447 int signum; 559 int signum;
448 560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
449 read (sigpipe [0], &revents, 1); 564 read (sigpipe [0], &revents, 1);
565#endif
450 gotsig = 0; 566 gotsig = 0;
451 567
452 for (signum = signalmax; signum--; ) 568 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 569 if (signals [signum].gotsig)
454 { 570 {
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 592 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 593}
478 594
479/*****************************************************************************/ 595/*****************************************************************************/
480 596
597static struct ev_child *childs [PID_HASHSIZE];
598
481#ifndef WIN32 599#ifndef WIN32
600
601static struct ev_signal childev;
482 602
483#ifndef WCONTINUED 603#ifndef WCONTINUED
484# define WCONTINUED 0 604# define WCONTINUED 0
485#endif 605#endif
486 606
490 struct ev_child *w; 610 struct ev_child *w;
491 611
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 613 if (w->pid == pid || !w->pid)
494 { 614 {
495 w->priority = sw->priority; /* need to do it *now* */ 615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 616 w->rpid = pid;
497 w->rstatus = status; 617 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 618 event (EV_A_ (W)w, EV_CHILD);
499 } 619 }
500} 620}
501 621
502static void 622static void
522# include "ev_kqueue.c" 642# include "ev_kqueue.c"
523#endif 643#endif
524#if EV_USE_EPOLL 644#if EV_USE_EPOLL
525# include "ev_epoll.c" 645# include "ev_epoll.c"
526#endif 646#endif
527#if EV_USEV_POLL 647#if EV_USE_POLL
528# include "ev_poll.c" 648# include "ev_poll.c"
529#endif 649#endif
530#if EV_USE_SELECT 650#if EV_USE_SELECT
531# include "ev_select.c" 651# include "ev_select.c"
532#endif 652#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 704 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 705 else
586 methods = EVMETHOD_ANY; 706 methods = EVMETHOD_ANY;
587 707
588 method = 0; 708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
589#if EV_USE_KQUEUE 712#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 714#endif
592#if EV_USE_EPOLL 715#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 717#endif
595#if EV_USEV_POLL 718#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 720#endif
598#if EV_USE_SELECT 721#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
601 } 727 }
602} 728}
603 729
604void 730void
605loop_destroy (EV_P) 731loop_destroy (EV_P)
606{ 732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
607#if EV_USE_KQUEUE 738#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 740#endif
610#if EV_USE_EPOLL 741#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 743#endif
613#if EV_USEV_POLL 744#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 745 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 746#endif
616#if EV_USE_SELECT 747#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 749#endif
619 750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
620 method = 0; 762 method = 0;
621 /*TODO*/
622} 763}
623 764
624void 765static void
625loop_fork (EV_P) 766loop_fork (EV_P)
626{ 767{
627 /*TODO*/
628#if EV_USE_EPOLL 768#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 770#endif
631#if EV_USE_KQUEUE 771#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
634} 791}
635 792
636#if EV_MULTIPLICITY 793#if EV_MULTIPLICITY
637struct ev_loop * 794struct ev_loop *
638ev_loop_new (int methods) 795ev_loop_new (int methods)
639{ 796{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
641 800
642 loop_init (EV_A_ methods); 801 loop_init (EV_A_ methods);
643 802
644 if (ev_methods (EV_A)) 803 if (ev_method (EV_A))
645 return loop; 804 return loop;
646 805
647 return 0; 806 return 0;
648} 807}
649 808
650void 809void
651ev_loop_destroy (EV_P) 810ev_loop_destroy (EV_P)
652{ 811{
653 loop_destroy (EV_A); 812 loop_destroy (EV_A);
654 free (loop); 813 ev_free (loop);
655} 814}
656 815
657void 816void
658ev_loop_fork (EV_P) 817ev_loop_fork (EV_P)
659{ 818{
660 loop_fork (EV_A); 819 postfork = 1;
661} 820}
662 821
663#endif 822#endif
664 823
665#if EV_MULTIPLICITY 824#if EV_MULTIPLICITY
688 847
689 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
690 849
691 if (ev_method (EV_A)) 850 if (ev_method (EV_A))
692 { 851 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 852 siginit (EV_A);
696 853
697#ifndef WIN32 854#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 855 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 856 ev_set_priority (&childev, EV_MAXPRI);
713{ 870{
714#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 872 struct ev_loop *loop = default_loop;
716#endif 873#endif
717 874
875#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 876 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 877 ev_signal_stop (EV_A_ &childev);
878#endif
720 879
721 ev_ref (EV_A); /* signal watcher */ 880 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 881 ev_io_stop (EV_A_ &sigev);
723 882
724 close (sigpipe [0]); sigpipe [0] = 0; 883 close (sigpipe [0]); sigpipe [0] = 0;
726 885
727 loop_destroy (EV_A); 886 loop_destroy (EV_A);
728} 887}
729 888
730void 889void
731ev_default_fork (EV_P) 890ev_default_fork (void)
732{ 891{
733 loop_fork (EV_A); 892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
734 895
735 ev_io_stop (EV_A_ &sigev); 896 if (method)
736 close (sigpipe [0]); 897 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 898}
743 899
744/*****************************************************************************/ 900/*****************************************************************************/
901
902static int
903any_pending (EV_P)
904{
905 int pri;
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912}
745 913
746static void 914static void
747call_pending (EV_P) 915call_pending (EV_P)
748{ 916{
749 int pri; 917 int pri;
762} 930}
763 931
764static void 932static void
765timers_reify (EV_P) 933timers_reify (EV_P)
766{ 934{
767 while (timercnt && timers [0]->at <= mn_now) 935 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 936 {
769 struct ev_timer *w = timers [0]; 937 struct ev_timer *w = timers [0];
938
939 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 940
771 /* first reschedule or stop timer */ 941 /* first reschedule or stop timer */
772 if (w->repeat) 942 if (w->repeat)
773 { 943 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 945 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 946 downheap ((WT *)timers, timercnt, 0);
777 } 947 }
778 else 948 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 950
783} 953}
784 954
785static void 955static void
786periodics_reify (EV_P) 956periodics_reify (EV_P)
787{ 957{
788 while (periodiccnt && periodics [0]->at <= rt_now) 958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 959 {
790 struct ev_periodic *w = periodics [0]; 960 struct ev_periodic *w = periodics [0];
791 961
962 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963
792 /* first reschedule or stop timer */ 964 /* first reschedule or stop timer */
793 if (w->interval) 965 if (w->reschedule_cb)
794 { 966 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0);
971 }
972 else if (w->interval)
973 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 976 downheap ((WT *)periodics, periodiccnt, 0);
798 } 977 }
799 else 978 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 980
811 /* adjust periodics after time jump */ 990 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 991 for (i = 0; i < periodiccnt; ++i)
813 { 992 {
814 struct ev_periodic *w = periodics [i]; 993 struct ev_periodic *w = periodics [i];
815 994
995 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now);
816 if (w->interval) 997 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 999 }
1000
1001 /* now rebuild the heap */
1002 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i);
829} 1004}
830 1005
831inline int 1006inline int
832time_update_monotonic (EV_P) 1007time_update_monotonic (EV_P)
833{ 1008{
884 { 1059 {
885 periodics_reschedule (EV_A); 1060 periodics_reschedule (EV_A);
886 1061
887 /* adjust timers. this is easy, as the offset is the same for all */ 1062 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1063 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1064 ((WT)timers [i])->at += rt_now - mn_now;
890 } 1065 }
891 1066
892 mn_now = rt_now; 1067 mn_now = rt_now;
893 } 1068 }
894} 1069}
920 { 1095 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1097 call_pending (EV_A);
923 } 1098 }
924 1099
1100 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork))
1102 loop_fork (EV_A);
1103
925 /* update fd-related kernel structures */ 1104 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1105 fd_reify (EV_A);
927 1106
928 /* calculate blocking time */ 1107 /* calculate blocking time */
929 1108
930 /* we only need this for !monotonic clockor timers, but as we basically 1109 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1110 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1111#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1112 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1113 time_update_monotonic (EV_A);
935 else 1114 else
945 { 1124 {
946 block = MAX_BLOCKTIME; 1125 block = MAX_BLOCKTIME;
947 1126
948 if (timercnt) 1127 if (timercnt)
949 { 1128 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1130 if (block > to) block = to;
952 } 1131 }
953 1132
954 if (periodiccnt) 1133 if (periodiccnt)
955 { 1134 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1136 if (block > to) block = to;
958 } 1137 }
959 1138
960 if (block < 0.) block = 0.; 1139 if (block < 0.) block = 0.;
961 } 1140 }
968 /* queue pending timers and reschedule them */ 1147 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1148 timers_reify (EV_A); /* relative timers called last */
970 periodics_reify (EV_A); /* absolute timers called first */ 1149 periodics_reify (EV_A); /* absolute timers called first */
971 1150
972 /* queue idle watchers unless io or timers are pending */ 1151 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1152 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1154
976 /* queue check watchers, to be executed first */ 1155 /* queue check watchers, to be executed first */
977 if (checkcnt) 1156 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1232 return;
1054 1233
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1234 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1235
1057 ev_start (EV_A_ (W)w, 1); 1236 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1238 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1239
1061 fd_change (EV_A_ fd); 1240 fd_change (EV_A_ fd);
1062} 1241}
1063 1242
1078ev_timer_start (EV_P_ struct ev_timer *w) 1257ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1258{
1080 if (ev_is_active (w)) 1259 if (ev_is_active (w))
1081 return; 1260 return;
1082 1261
1083 w->at += mn_now; 1262 ((WT)w)->at += mn_now;
1084 1263
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1265
1087 ev_start (EV_A_ (W)w, ++timercnt); 1266 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1268 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1269 upheap ((WT *)timers, timercnt - 1);
1270
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1272}
1092 1273
1093void 1274void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1275ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1276{
1096 ev_clear_pending (EV_A_ (W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1098 return; 1279 return;
1099 1280
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1282
1100 if (w->active < timercnt--) 1283 if (((W)w)->active < timercnt--)
1101 { 1284 {
1102 timers [w->active - 1] = timers [timercnt]; 1285 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1287 }
1105 1288
1106 w->at = w->repeat; 1289 ((WT)w)->at = w->repeat;
1107 1290
1108 ev_stop (EV_A_ (W)w); 1291 ev_stop (EV_A_ (W)w);
1109} 1292}
1110 1293
1111void 1294void
1113{ 1296{
1114 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1115 { 1298 {
1116 if (w->repeat) 1299 if (w->repeat)
1117 { 1300 {
1118 w->at = mn_now + w->repeat; 1301 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1303 }
1121 else 1304 else
1122 ev_timer_stop (EV_A_ w); 1305 ev_timer_stop (EV_A_ w);
1123 } 1306 }
1124 else if (w->repeat) 1307 else if (w->repeat)
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1312ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1313{
1131 if (ev_is_active (w)) 1314 if (ev_is_active (w))
1132 return; 1315 return;
1133 1316
1317 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1319 else if (w->interval)
1320 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1322 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 }
1139 1325
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1326 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1328 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1329 upheap ((WT *)periodics, periodiccnt - 1);
1330
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1332}
1145 1333
1146void 1334void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1335ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1336{
1149 ev_clear_pending (EV_A_ (W)w); 1337 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1338 if (!ev_is_active (w))
1151 return; 1339 return;
1152 1340
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1342
1153 if (w->active < periodiccnt--) 1343 if (((W)w)->active < periodiccnt--)
1154 { 1344 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1345 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1347 }
1158 1348
1159 ev_stop (EV_A_ (W)w); 1349 ev_stop (EV_A_ (W)w);
1160} 1350}
1161 1351
1162void 1352void
1353ev_periodic_again (EV_P_ struct ev_periodic *w)
1354{
1355 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w);
1357}
1358
1359void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1360ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1361{
1165 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1166 return; 1363 return;
1167 1364
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1365 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1367 idles [idlecnt - 1] = w;
1171} 1368}
1172 1369
1173void 1370void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1371ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1372{
1176 ev_clear_pending (EV_A_ (W)w); 1373 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1374 if (ev_is_active (w))
1178 return; 1375 return;
1179 1376
1180 idles [w->active - 1] = idles [--idlecnt]; 1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1378 ev_stop (EV_A_ (W)w);
1182} 1379}
1183 1380
1184void 1381void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1383{
1187 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1188 return; 1385 return;
1189 1386
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1387 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1389 prepares [preparecnt - 1] = w;
1193} 1390}
1194 1391
1195void 1392void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1394{
1198 ev_clear_pending (EV_A_ (W)w); 1395 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1396 if (ev_is_active (w))
1200 return; 1397 return;
1201 1398
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1400 ev_stop (EV_A_ (W)w);
1204} 1401}
1205 1402
1206void 1403void
1207ev_check_start (EV_P_ struct ev_check *w) 1404ev_check_start (EV_P_ struct ev_check *w)
1208{ 1405{
1209 if (ev_is_active (w)) 1406 if (ev_is_active (w))
1210 return; 1407 return;
1211 1408
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1409 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1411 checks [checkcnt - 1] = w;
1215} 1412}
1216 1413
1217void 1414void
1218ev_check_stop (EV_P_ struct ev_check *w) 1415ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1416{
1220 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1418 if (ev_is_active (w))
1222 return; 1419 return;
1223 1420
1224 checks [w->active - 1] = checks [--checkcnt]; 1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1422 ev_stop (EV_A_ (W)w);
1226} 1423}
1227 1424
1228#ifndef SA_RESTART 1425#ifndef SA_RESTART
1229# define SA_RESTART 0 1426# define SA_RESTART 0
1239 return; 1436 return;
1240 1437
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1439
1243 ev_start (EV_A_ (W)w, 1); 1440 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1443
1247 if (!w->next) 1444 if (!((WL)w)->next)
1248 { 1445 {
1446#if WIN32
1447 signal (w->signum, sighandler);
1448#else
1249 struct sigaction sa; 1449 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1450 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1451 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1453 sigaction (w->signum, &sa, 0);
1454#endif
1254 } 1455 }
1255} 1456}
1256 1457
1257void 1458void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1459ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1509 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1510 void *arg = once->arg;
1310 1511
1311 ev_io_stop (EV_A_ &once->io); 1512 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1513 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1514 ev_free (once);
1314 1515
1315 cb (revents, arg); 1516 cb (revents, arg);
1316} 1517}
1317 1518
1318static void 1519static void
1328} 1529}
1329 1530
1330void 1531void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1533{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1535
1335 if (!once) 1536 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1538 else
1338 { 1539 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines