ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.80 by root, Fri Nov 9 15:30:59 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED
99# include "ev.h" 131#include "ev.h"
100#endif
101 132
102#if __GNUC__ >= 3 133#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 134# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline 135# define inline inline
105#else 136#else
117typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
119 150
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 152
153#include "ev_win32.c"
154
122/*****************************************************************************/ 155/*****************************************************************************/
123 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
124typedef struct 205typedef struct
125{ 206{
126 struct ev_watcher_list *head; 207 WL head;
127 unsigned char events; 208 unsigned char events;
128 unsigned char reify; 209 unsigned char reify;
129} ANFD; 210} ANFD;
130 211
131typedef struct 212typedef struct
134 int events; 215 int events;
135} ANPENDING; 216} ANPENDING;
136 217
137#if EV_MULTIPLICITY 218#if EV_MULTIPLICITY
138 219
139struct ev_loop 220 struct ev_loop
140{ 221 {
141# define VAR(name,decl) decl; 222 #define VAR(name,decl) decl;
142# include "ev_vars.h" 223 #include "ev_vars.h"
143};
144# undef VAR 224 #undef VAR
225 };
145# include "ev_wrap.h" 226 #include "ev_wrap.h"
227
228 struct ev_loop default_loop_struct;
229 static struct ev_loop *default_loop;
146 230
147#else 231#else
148 232
149# define VAR(name,decl) static decl; 233 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 234 #include "ev_vars.h"
151# undef VAR 235 #undef VAR
236
237 static int default_loop;
152 238
153#endif 239#endif
154 240
155/*****************************************************************************/ 241/*****************************************************************************/
156 242
187ev_now (EV_P) 273ev_now (EV_P)
188{ 274{
189 return rt_now; 275 return rt_now;
190} 276}
191 277
192#define array_roundsize(base,n) ((n) | 4 & ~3) 278#define array_roundsize(type,n) ((n) | 4 & ~3)
193 279
194#define array_needsize(base,cur,cnt,init) \ 280#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 281 if (expect_false ((cnt) > cur)) \
196 { \ 282 { \
197 int newcnt = cur; \ 283 int newcnt = cur; \
198 do \ 284 do \
199 { \ 285 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 286 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 287 } \
202 while ((cnt) > newcnt); \ 288 while ((cnt) > newcnt); \
203 \ 289 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 290 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 291 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 292 cur = newcnt; \
207 } 293 }
294
295#define array_slim(type,stem) \
296 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
297 { \
298 stem ## max = array_roundsize (stem ## cnt >> 1); \
299 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
301 }
302
303/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
304/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
305#define array_free_microshit(stem) \
306 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
307
308#define array_free(stem, idx) \
309 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 310
209/*****************************************************************************/ 311/*****************************************************************************/
210 312
211static void 313static void
212anfds_init (ANFD *base, int count) 314anfds_init (ANFD *base, int count)
219 321
220 ++base; 322 ++base;
221 } 323 }
222} 324}
223 325
224static void 326void
225event (EV_P_ W w, int events) 327ev_feed_event (EV_P_ void *w, int revents)
226{ 328{
329 W w_ = (W)w;
330
227 if (w->pending) 331 if (w_->pending)
228 { 332 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 333 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 334 return;
231 } 335 }
232 336
233 w->pending = ++pendingcnt [ABSPRI (w)]; 337 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 338 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 339 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 340 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 341}
238 342
239static void 343static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 344queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 345{
242 int i; 346 int i;
243 347
244 for (i = 0; i < eventcnt; ++i) 348 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 349 ev_feed_event (EV_A_ events [i], type);
246} 350}
247 351
248static void 352inline void
249fd_event (EV_P_ int fd, int events) 353fd_event (EV_P_ int fd, int revents)
250{ 354{
251 ANFD *anfd = anfds + fd; 355 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 356 struct ev_io *w;
253 357
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 358 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 359 {
256 int ev = w->events & events; 360 int ev = w->events & revents;
257 361
258 if (ev) 362 if (ev)
259 event (EV_A_ (W)w, ev); 363 ev_feed_event (EV_A_ (W)w, ev);
260 } 364 }
365}
366
367void
368ev_feed_fd_event (EV_P_ int fd, int revents)
369{
370 fd_event (EV_A_ fd, revents);
261} 371}
262 372
263/*****************************************************************************/ 373/*****************************************************************************/
264 374
265static void 375static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 388 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 389 events |= w->events;
280 390
281 anfd->reify = 0; 391 anfd->reify = 0;
282 392
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 393 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 394 anfd->events = events;
287 }
288 } 395 }
289 396
290 fdchangecnt = 0; 397 fdchangecnt = 0;
291} 398}
292 399
293static void 400static void
294fd_change (EV_P_ int fd) 401fd_change (EV_P_ int fd)
295{ 402{
296 if (anfds [fd].reify || fdchangecnt < 0) 403 if (anfds [fd].reify)
297 return; 404 return;
298 405
299 anfds [fd].reify = 1; 406 anfds [fd].reify = 1;
300 407
301 ++fdchangecnt; 408 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 409 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 410 fdchanges [fdchangecnt - 1] = fd;
304} 411}
305 412
306static void 413static void
307fd_kill (EV_P_ int fd) 414fd_kill (EV_P_ int fd)
309 struct ev_io *w; 416 struct ev_io *w;
310 417
311 while ((w = (struct ev_io *)anfds [fd].head)) 418 while ((w = (struct ev_io *)anfds [fd].head))
312 { 419 {
313 ev_io_stop (EV_A_ w); 420 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 421 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 422 }
423}
424
425static int
426fd_valid (int fd)
427{
428#ifdef WIN32
429 return !!win32_get_osfhandle (fd);
430#else
431 return fcntl (fd, F_GETFD) != -1;
432#endif
316} 433}
317 434
318/* called on EBADF to verify fds */ 435/* called on EBADF to verify fds */
319static void 436static void
320fd_ebadf (EV_P) 437fd_ebadf (EV_P)
321{ 438{
322 int fd; 439 int fd;
323 440
324 for (fd = 0; fd < anfdmax; ++fd) 441 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 442 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 443 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 444 fd_kill (EV_A_ fd);
328} 445}
329 446
330/* called on ENOMEM in select/poll to kill some fds and retry */ 447/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 448static void
332fd_enomem (EV_P) 449fd_enomem (EV_P)
333{ 450{
334 int fd = anfdmax; 451 int fd;
335 452
336 while (fd--) 453 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 454 if (anfds [fd].events)
338 { 455 {
339 close (fd);
340 fd_kill (EV_A_ fd); 456 fd_kill (EV_A_ fd);
341 return; 457 return;
342 } 458 }
343} 459}
344 460
345/* susually called after fork if method needs to re-arm all fds from scratch */ 461/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 462static void
347fd_rearm_all (EV_P) 463fd_rearm_all (EV_P)
348{ 464{
349 int fd; 465 int fd;
350 466
351 /* this should be highly optimised to not do anything but set a flag */ 467 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 468 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 469 if (anfds [fd].events)
354 { 470 {
355 anfds [fd].events = 0; 471 anfds [fd].events = 0;
356 fd_change (fd); 472 fd_change (EV_A_ fd);
357 } 473 }
358} 474}
359 475
360/*****************************************************************************/ 476/*****************************************************************************/
361 477
365 WT w = heap [k]; 481 WT w = heap [k];
366 482
367 while (k && heap [k >> 1]->at > w->at) 483 while (k && heap [k >> 1]->at > w->at)
368 { 484 {
369 heap [k] = heap [k >> 1]; 485 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
371 k >>= 1; 487 k >>= 1;
372 } 488 }
373 489
374 heap [k] = w; 490 heap [k] = w;
375 heap [k]->active = k + 1; 491 ((W)heap [k])->active = k + 1;
376 492
377} 493}
378 494
379static void 495static void
380downheap (WT *heap, int N, int k) 496downheap (WT *heap, int N, int k)
390 506
391 if (w->at <= heap [j]->at) 507 if (w->at <= heap [j]->at)
392 break; 508 break;
393 509
394 heap [k] = heap [j]; 510 heap [k] = heap [j];
395 heap [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
396 k = j; 512 k = j;
397 } 513 }
398 514
399 heap [k] = w; 515 heap [k] = w;
400 heap [k]->active = k + 1; 516 ((W)heap [k])->active = k + 1;
401} 517}
402 518
403/*****************************************************************************/ 519/*****************************************************************************/
404 520
405typedef struct 521typedef struct
406{ 522{
407 struct ev_watcher_list *head; 523 WL head;
408 sig_atomic_t volatile gotsig; 524 sig_atomic_t volatile gotsig;
409} ANSIG; 525} ANSIG;
410 526
411static ANSIG *signals; 527static ANSIG *signals;
412static int signalmax; 528static int signalmax;
413 529
414static int sigpipe [2]; 530static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 531static sig_atomic_t volatile gotsig;
532static struct ev_io sigev;
416 533
417static void 534static void
418signals_init (ANSIG *base, int count) 535signals_init (ANSIG *base, int count)
419{ 536{
420 while (count--) 537 while (count--)
427} 544}
428 545
429static void 546static void
430sighandler (int signum) 547sighandler (int signum)
431{ 548{
549#if WIN32
550 signal (signum, sighandler);
551#endif
552
432 signals [signum - 1].gotsig = 1; 553 signals [signum - 1].gotsig = 1;
433 554
434 if (!gotsig) 555 if (!gotsig)
435 { 556 {
436 int old_errno = errno; 557 int old_errno = errno;
437 gotsig = 1; 558 gotsig = 1;
559#ifdef WIN32
560 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
561#else
438 write (sigpipe [1], &signum, 1); 562 write (sigpipe [1], &signum, 1);
563#endif
439 errno = old_errno; 564 errno = old_errno;
440 } 565 }
441} 566}
442 567
568void
569ev_feed_signal_event (EV_P_ int signum)
570{
571 WL w;
572
573#if EV_MULTIPLICITY
574 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
575#endif
576
577 --signum;
578
579 if (signum < 0 || signum >= signalmax)
580 return;
581
582 signals [signum].gotsig = 0;
583
584 for (w = signals [signum].head; w; w = w->next)
585 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
586}
587
443static void 588static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 589sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 590{
446 struct ev_watcher_list *w;
447 int signum; 591 int signum;
448 592
593#ifdef WIN32
594 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
595#else
449 read (sigpipe [0], &revents, 1); 596 read (sigpipe [0], &revents, 1);
597#endif
450 gotsig = 0; 598 gotsig = 0;
451 599
452 for (signum = signalmax; signum--; ) 600 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 601 if (signals [signum].gotsig)
454 { 602 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 603}
461 604
462static void 605static void
463siginit (EV_P) 606siginit (EV_P)
464{ 607{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 619 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 620}
478 621
479/*****************************************************************************/ 622/*****************************************************************************/
480 623
624static struct ev_child *childs [PID_HASHSIZE];
625
481#ifndef WIN32 626#ifndef WIN32
627
628static struct ev_signal childev;
482 629
483#ifndef WCONTINUED 630#ifndef WCONTINUED
484# define WCONTINUED 0 631# define WCONTINUED 0
485#endif 632#endif
486 633
490 struct ev_child *w; 637 struct ev_child *w;
491 638
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 639 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 640 if (w->pid == pid || !w->pid)
494 { 641 {
495 w->priority = sw->priority; /* need to do it *now* */ 642 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 643 w->rpid = pid;
497 w->rstatus = status; 644 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 645 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 646 }
500} 647}
501 648
502static void 649static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 650childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 652 int pid, status;
506 653
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 654 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 655 {
509 /* make sure we are called again until all childs have been reaped */ 656 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 657 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 658
512 child_reap (EV_A_ sw, pid, pid, status); 659 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 660 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 661 }
515} 662}
522# include "ev_kqueue.c" 669# include "ev_kqueue.c"
523#endif 670#endif
524#if EV_USE_EPOLL 671#if EV_USE_EPOLL
525# include "ev_epoll.c" 672# include "ev_epoll.c"
526#endif 673#endif
527#if EV_USEV_POLL 674#if EV_USE_POLL
528# include "ev_poll.c" 675# include "ev_poll.c"
529#endif 676#endif
530#if EV_USE_SELECT 677#if EV_USE_SELECT
531# include "ev_select.c" 678# include "ev_select.c"
532#endif 679#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 731 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 732 else
586 methods = EVMETHOD_ANY; 733 methods = EVMETHOD_ANY;
587 734
588 method = 0; 735 method = 0;
736#if EV_USE_WIN32
737 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
738#endif
589#if EV_USE_KQUEUE 739#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 740 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 741#endif
592#if EV_USE_EPOLL 742#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 743 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 744#endif
595#if EV_USEV_POLL 745#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 746 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 747#endif
598#if EV_USE_SELECT 748#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 749 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 750#endif
751
752 ev_watcher_init (&sigev, sigcb);
753 ev_set_priority (&sigev, EV_MAXPRI);
601 } 754 }
602} 755}
603 756
604void 757void
605loop_destroy (EV_P) 758loop_destroy (EV_P)
606{ 759{
760 int i;
761
762#if EV_USE_WIN32
763 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
764#endif
607#if EV_USE_KQUEUE 765#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 766 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 767#endif
610#if EV_USE_EPOLL 768#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 769 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 770#endif
613#if EV_USEV_POLL 771#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 772 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 773#endif
616#if EV_USE_SELECT 774#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 775 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 776#endif
619 777
778 for (i = NUMPRI; i--; )
779 array_free (pending, [i]);
780
781 /* have to use the microsoft-never-gets-it-right macro */
782 array_free_microshit (fdchange);
783 array_free_microshit (timer);
784 array_free_microshit (periodic);
785 array_free_microshit (idle);
786 array_free_microshit (prepare);
787 array_free_microshit (check);
788
620 method = 0; 789 method = 0;
621 /*TODO*/
622} 790}
623 791
624void 792static void
625loop_fork (EV_P) 793loop_fork (EV_P)
626{ 794{
627 /*TODO*/
628#if EV_USE_EPOLL 795#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 796 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 797#endif
631#if EV_USE_KQUEUE 798#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 799 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 800#endif
801
802 if (ev_is_active (&sigev))
803 {
804 /* default loop */
805
806 ev_ref (EV_A);
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810
811 while (pipe (sigpipe))
812 syserr ("(libev) error creating pipe");
813
814 siginit (EV_A);
815 }
816
817 postfork = 0;
634} 818}
635 819
636#if EV_MULTIPLICITY 820#if EV_MULTIPLICITY
637struct ev_loop * 821struct ev_loop *
638ev_loop_new (int methods) 822ev_loop_new (int methods)
639{ 823{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 824 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
825
826 memset (loop, 0, sizeof (struct ev_loop));
641 827
642 loop_init (EV_A_ methods); 828 loop_init (EV_A_ methods);
643 829
644 if (ev_methods (EV_A)) 830 if (ev_method (EV_A))
645 return loop; 831 return loop;
646 832
647 return 0; 833 return 0;
648} 834}
649 835
650void 836void
651ev_loop_destroy (EV_P) 837ev_loop_destroy (EV_P)
652{ 838{
653 loop_destroy (EV_A); 839 loop_destroy (EV_A);
654 free (loop); 840 ev_free (loop);
655} 841}
656 842
657void 843void
658ev_loop_fork (EV_P) 844ev_loop_fork (EV_P)
659{ 845{
660 loop_fork (EV_A); 846 postfork = 1;
661} 847}
662 848
663#endif 849#endif
664 850
665#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 852struct ev_loop *
670#else 853#else
671static int default_loop;
672
673int 854int
674#endif 855#endif
675ev_default_loop (int methods) 856ev_default_loop (int methods)
676{ 857{
677 if (sigpipe [0] == sigpipe [1]) 858 if (sigpipe [0] == sigpipe [1])
688 869
689 loop_init (EV_A_ methods); 870 loop_init (EV_A_ methods);
690 871
691 if (ev_method (EV_A)) 872 if (ev_method (EV_A))
692 { 873 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 874 siginit (EV_A);
696 875
697#ifndef WIN32 876#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 877 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 878 ev_set_priority (&childev, EV_MAXPRI);
713{ 892{
714#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 894 struct ev_loop *loop = default_loop;
716#endif 895#endif
717 896
897#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 898 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 899 ev_signal_stop (EV_A_ &childev);
900#endif
720 901
721 ev_ref (EV_A); /* signal watcher */ 902 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 903 ev_io_stop (EV_A_ &sigev);
723 904
724 close (sigpipe [0]); sigpipe [0] = 0; 905 close (sigpipe [0]); sigpipe [0] = 0;
726 907
727 loop_destroy (EV_A); 908 loop_destroy (EV_A);
728} 909}
729 910
730void 911void
731ev_default_fork (EV_P) 912ev_default_fork (void)
732{ 913{
733 loop_fork (EV_A); 914#if EV_MULTIPLICITY
915 struct ev_loop *loop = default_loop;
916#endif
734 917
735 ev_io_stop (EV_A_ &sigev); 918 if (method)
736 close (sigpipe [0]); 919 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 920}
743 921
744/*****************************************************************************/ 922/*****************************************************************************/
923
924static int
925any_pending (EV_P)
926{
927 int pri;
928
929 for (pri = NUMPRI; pri--; )
930 if (pendingcnt [pri])
931 return 1;
932
933 return 0;
934}
745 935
746static void 936static void
747call_pending (EV_P) 937call_pending (EV_P)
748{ 938{
749 int pri; 939 int pri;
762} 952}
763 953
764static void 954static void
765timers_reify (EV_P) 955timers_reify (EV_P)
766{ 956{
767 while (timercnt && timers [0]->at <= mn_now) 957 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 958 {
769 struct ev_timer *w = timers [0]; 959 struct ev_timer *w = timers [0];
960
961 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 962
771 /* first reschedule or stop timer */ 963 /* first reschedule or stop timer */
772 if (w->repeat) 964 if (w->repeat)
773 { 965 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 966 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 967 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 968 downheap ((WT *)timers, timercnt, 0);
777 } 969 }
778 else 970 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 971 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 972
781 event (EV_A_ (W)w, EV_TIMEOUT); 973 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 974 }
783} 975}
784 976
785static void 977static void
786periodics_reify (EV_P) 978periodics_reify (EV_P)
787{ 979{
788 while (periodiccnt && periodics [0]->at <= rt_now) 980 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 981 {
790 struct ev_periodic *w = periodics [0]; 982 struct ev_periodic *w = periodics [0];
791 983
984 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
985
792 /* first reschedule or stop timer */ 986 /* first reschedule or stop timer */
793 if (w->interval) 987 if (w->reschedule_cb)
794 { 988 {
989 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
990
991 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
992 downheap ((WT *)periodics, periodiccnt, 0);
993 }
994 else if (w->interval)
995 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 996 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 997 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 998 downheap ((WT *)periodics, periodiccnt, 0);
798 } 999 }
799 else 1000 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1001 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1002
802 event (EV_A_ (W)w, EV_PERIODIC); 1003 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1004 }
804} 1005}
805 1006
806static void 1007static void
807periodics_reschedule (EV_P) 1008periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1012 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1013 for (i = 0; i < periodiccnt; ++i)
813 { 1014 {
814 struct ev_periodic *w = periodics [i]; 1015 struct ev_periodic *w = periodics [i];
815 1016
1017 if (w->reschedule_cb)
1018 ((WT)w)->at = w->reschedule_cb (w, rt_now);
816 if (w->interval) 1019 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1020 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1021 }
1022
1023 /* now rebuild the heap */
1024 for (i = periodiccnt >> 1; i--; )
1025 downheap ((WT *)periodics, periodiccnt, i);
829} 1026}
830 1027
831inline int 1028inline int
832time_update_monotonic (EV_P) 1029time_update_monotonic (EV_P)
833{ 1030{
884 { 1081 {
885 periodics_reschedule (EV_A); 1082 periodics_reschedule (EV_A);
886 1083
887 /* adjust timers. this is easy, as the offset is the same for all */ 1084 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1085 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1086 ((WT)timers [i])->at += rt_now - mn_now;
890 } 1087 }
891 1088
892 mn_now = rt_now; 1089 mn_now = rt_now;
893 } 1090 }
894} 1091}
920 { 1117 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1118 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1119 call_pending (EV_A);
923 } 1120 }
924 1121
1122 /* we might have forked, so reify kernel state if necessary */
1123 if (expect_false (postfork))
1124 loop_fork (EV_A);
1125
925 /* update fd-related kernel structures */ 1126 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1127 fd_reify (EV_A);
927 1128
928 /* calculate blocking time */ 1129 /* calculate blocking time */
929 1130
930 /* we only need this for !monotonic clockor timers, but as we basically 1131 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1132 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1133#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1134 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1135 time_update_monotonic (EV_A);
935 else 1136 else
945 { 1146 {
946 block = MAX_BLOCKTIME; 1147 block = MAX_BLOCKTIME;
947 1148
948 if (timercnt) 1149 if (timercnt)
949 { 1150 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1151 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1152 if (block > to) block = to;
952 } 1153 }
953 1154
954 if (periodiccnt) 1155 if (periodiccnt)
955 { 1156 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1157 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1158 if (block > to) block = to;
958 } 1159 }
959 1160
960 if (block < 0.) block = 0.; 1161 if (block < 0.) block = 0.;
961 } 1162 }
968 /* queue pending timers and reschedule them */ 1169 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1170 timers_reify (EV_A); /* relative timers called last */
970 periodics_reify (EV_A); /* absolute timers called first */ 1171 periodics_reify (EV_A); /* absolute timers called first */
971 1172
972 /* queue idle watchers unless io or timers are pending */ 1173 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1174 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1175 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1176
976 /* queue check watchers, to be executed first */ 1177 /* queue check watchers, to be executed first */
977 if (checkcnt) 1178 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1179 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1254 return;
1054 1255
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1256 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1257
1057 ev_start (EV_A_ (W)w, 1); 1258 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1259 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1260 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1261
1061 fd_change (EV_A_ fd); 1262 fd_change (EV_A_ fd);
1062} 1263}
1063 1264
1078ev_timer_start (EV_P_ struct ev_timer *w) 1279ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1280{
1080 if (ev_is_active (w)) 1281 if (ev_is_active (w))
1081 return; 1282 return;
1082 1283
1083 w->at += mn_now; 1284 ((WT)w)->at += mn_now;
1084 1285
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1286 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1287
1087 ev_start (EV_A_ (W)w, ++timercnt); 1288 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1289 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1290 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1291 upheap ((WT *)timers, timercnt - 1);
1292
1293 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1294}
1092 1295
1093void 1296void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1297ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1298{
1096 ev_clear_pending (EV_A_ (W)w); 1299 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1300 if (!ev_is_active (w))
1098 return; 1301 return;
1099 1302
1303 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1304
1100 if (w->active < timercnt--) 1305 if (((W)w)->active < timercnt--)
1101 { 1306 {
1102 timers [w->active - 1] = timers [timercnt]; 1307 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1308 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1309 }
1105 1310
1106 w->at = w->repeat; 1311 ((WT)w)->at = w->repeat;
1107 1312
1108 ev_stop (EV_A_ (W)w); 1313 ev_stop (EV_A_ (W)w);
1109} 1314}
1110 1315
1111void 1316void
1113{ 1318{
1114 if (ev_is_active (w)) 1319 if (ev_is_active (w))
1115 { 1320 {
1116 if (w->repeat) 1321 if (w->repeat)
1117 { 1322 {
1118 w->at = mn_now + w->repeat; 1323 ((WT)w)->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1120 } 1325 }
1121 else 1326 else
1122 ev_timer_stop (EV_A_ w); 1327 ev_timer_stop (EV_A_ w);
1123 } 1328 }
1124 else if (w->repeat) 1329 else if (w->repeat)
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1334ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1335{
1131 if (ev_is_active (w)) 1336 if (ev_is_active (w))
1132 return; 1337 return;
1133 1338
1339 if (w->reschedule_cb)
1340 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1341 else if (w->interval)
1342 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1343 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1344 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1345 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1346 }
1139 1347
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1348 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1349 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1350 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1351 upheap ((WT *)periodics, periodiccnt - 1);
1352
1353 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1354}
1145 1355
1146void 1356void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1357ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1358{
1149 ev_clear_pending (EV_A_ (W)w); 1359 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1360 if (!ev_is_active (w))
1151 return; 1361 return;
1152 1362
1363 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1364
1153 if (w->active < periodiccnt--) 1365 if (((W)w)->active < periodiccnt--)
1154 { 1366 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1367 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1368 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1369 }
1158 1370
1159 ev_stop (EV_A_ (W)w); 1371 ev_stop (EV_A_ (W)w);
1160} 1372}
1161 1373
1162void 1374void
1375ev_periodic_again (EV_P_ struct ev_periodic *w)
1376{
1377 ev_periodic_stop (EV_A_ w);
1378 ev_periodic_start (EV_A_ w);
1379}
1380
1381void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1382ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1383{
1165 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1166 return; 1385 return;
1167 1386
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1387 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1388 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1389 idles [idlecnt - 1] = w;
1171} 1390}
1172 1391
1173void 1392void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1393ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1394{
1176 ev_clear_pending (EV_A_ (W)w); 1395 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1396 if (ev_is_active (w))
1178 return; 1397 return;
1179 1398
1180 idles [w->active - 1] = idles [--idlecnt]; 1399 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1400 ev_stop (EV_A_ (W)w);
1182} 1401}
1183 1402
1184void 1403void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1404ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1405{
1187 if (ev_is_active (w)) 1406 if (ev_is_active (w))
1188 return; 1407 return;
1189 1408
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1409 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1410 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1411 prepares [preparecnt - 1] = w;
1193} 1412}
1194 1413
1195void 1414void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1415ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1416{
1198 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1418 if (ev_is_active (w))
1200 return; 1419 return;
1201 1420
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1421 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1422 ev_stop (EV_A_ (W)w);
1204} 1423}
1205 1424
1206void 1425void
1207ev_check_start (EV_P_ struct ev_check *w) 1426ev_check_start (EV_P_ struct ev_check *w)
1208{ 1427{
1209 if (ev_is_active (w)) 1428 if (ev_is_active (w))
1210 return; 1429 return;
1211 1430
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1431 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1432 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1433 checks [checkcnt - 1] = w;
1215} 1434}
1216 1435
1217void 1436void
1218ev_check_stop (EV_P_ struct ev_check *w) 1437ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1438{
1220 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1440 if (ev_is_active (w))
1222 return; 1441 return;
1223 1442
1224 checks [w->active - 1] = checks [--checkcnt]; 1443 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1444 ev_stop (EV_A_ (W)w);
1226} 1445}
1227 1446
1228#ifndef SA_RESTART 1447#ifndef SA_RESTART
1229# define SA_RESTART 0 1448# define SA_RESTART 0
1239 return; 1458 return;
1240 1459
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1460 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1461
1243 ev_start (EV_A_ (W)w, 1); 1462 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1463 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1464 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1465
1247 if (!w->next) 1466 if (!((WL)w)->next)
1248 { 1467 {
1468#if WIN32
1469 signal (w->signum, sighandler);
1470#else
1249 struct sigaction sa; 1471 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1472 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1473 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1474 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1475 sigaction (w->signum, &sa, 0);
1476#endif
1254 } 1477 }
1255} 1478}
1256 1479
1257void 1480void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1481ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1531 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1532 void *arg = once->arg;
1310 1533
1311 ev_io_stop (EV_A_ &once->io); 1534 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1535 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1536 ev_free (once);
1314 1537
1315 cb (revents, arg); 1538 cb (revents, arg);
1316} 1539}
1317 1540
1318static void 1541static void
1328} 1551}
1329 1552
1330void 1553void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1554ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1555{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1556 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1557
1335 if (!once) 1558 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1559 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1560 else
1338 { 1561 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines