ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED 131#ifdef EV_H
132# include EV_H
133#else
99# include "ev.h" 134# include "ev.h"
100#endif 135#endif
101 136
102#if __GNUC__ >= 3 137#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
119 154
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 156
157#include "ev_win32.c"
158
122/*****************************************************************************/ 159/*****************************************************************************/
123 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
124typedef struct 209typedef struct
125{ 210{
126 struct ev_watcher_list *head; 211 WL head;
127 unsigned char events; 212 unsigned char events;
128 unsigned char reify; 213 unsigned char reify;
129} ANFD; 214} ANFD;
130 215
131typedef struct 216typedef struct
134 int events; 219 int events;
135} ANPENDING; 220} ANPENDING;
136 221
137#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
138 223
139struct ev_loop 224 struct ev_loop
140{ 225 {
141# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
142# include "ev_vars.h" 227 #include "ev_vars.h"
143};
144# undef VAR 228 #undef VAR
229 };
145# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
146 234
147#else 235#else
148 236
149# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 238 #include "ev_vars.h"
151# undef VAR 239 #undef VAR
240
241 static int default_loop;
152 242
153#endif 243#endif
154 244
155/*****************************************************************************/ 245/*****************************************************************************/
156 246
187ev_now (EV_P) 277ev_now (EV_P)
188{ 278{
189 return rt_now; 279 return rt_now;
190} 280}
191 281
192#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
193 283
194#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
196 { \ 286 { \
197 int newcnt = cur; \ 287 int newcnt = cur; \
198 do \ 288 do \
199 { \ 289 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 291 } \
202 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
203 \ 293 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 296 cur = newcnt; \
207 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 314
209/*****************************************************************************/ 315/*****************************************************************************/
210 316
211static void 317static void
212anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
219 325
220 ++base; 326 ++base;
221 } 327 }
222} 328}
223 329
224static void 330void
225event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
226{ 332{
333 W w_ = (W)w;
334
227 if (w->pending) 335 if (w_->pending)
228 { 336 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 338 return;
231 } 339 }
232 340
233 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 345}
238 346
239static void 347static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 349{
242 int i; 350 int i;
243 351
244 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
246} 354}
247 355
248static void 356inline void
249fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
250{ 358{
251 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 360 struct ev_io *w;
253 361
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 363 {
256 int ev = w->events & events; 364 int ev = w->events & revents;
257 365
258 if (ev) 366 if (ev)
259 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
260 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
261} 375}
262 376
263/*****************************************************************************/ 377/*****************************************************************************/
264 378
265static void 379static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 393 events |= w->events;
280 394
281 anfd->reify = 0; 395 anfd->reify = 0;
282 396
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 398 anfd->events = events;
287 }
288 } 399 }
289 400
290 fdchangecnt = 0; 401 fdchangecnt = 0;
291} 402}
292 403
293static void 404static void
294fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
295{ 406{
296 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
297 return; 408 return;
298 409
299 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
300 411
301 ++fdchangecnt; 412 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
304} 415}
305 416
306static void 417static void
307fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
309 struct ev_io *w; 420 struct ev_io *w;
310 421
311 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
312 { 423 {
313 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
316} 437}
317 438
318/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
319static void 440static void
320fd_ebadf (EV_P) 441fd_ebadf (EV_P)
321{ 442{
322 int fd; 443 int fd;
323 444
324 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 446 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
328} 449}
329 450
330/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 452static void
332fd_enomem (EV_P) 453fd_enomem (EV_P)
333{ 454{
334 int fd = anfdmax; 455 int fd;
335 456
336 while (fd--) 457 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 458 if (anfds [fd].events)
338 { 459 {
339 close (fd);
340 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
341 return; 461 return;
342 } 462 }
343} 463}
344 464
345/* susually called after fork if method needs to re-arm all fds from scratch */ 465/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 466static void
347fd_rearm_all (EV_P) 467fd_rearm_all (EV_P)
348{ 468{
349 int fd; 469 int fd;
350 470
351 /* this should be highly optimised to not do anything but set a flag */ 471 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 472 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 473 if (anfds [fd].events)
354 { 474 {
355 anfds [fd].events = 0; 475 anfds [fd].events = 0;
356 fd_change (fd); 476 fd_change (EV_A_ fd);
357 } 477 }
358} 478}
359 479
360/*****************************************************************************/ 480/*****************************************************************************/
361 481
365 WT w = heap [k]; 485 WT w = heap [k];
366 486
367 while (k && heap [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
368 { 488 {
369 heap [k] = heap [k >> 1]; 489 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
371 k >>= 1; 491 k >>= 1;
372 } 492 }
373 493
374 heap [k] = w; 494 heap [k] = w;
375 heap [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
376 496
377} 497}
378 498
379static void 499static void
380downheap (WT *heap, int N, int k) 500downheap (WT *heap, int N, int k)
390 510
391 if (w->at <= heap [j]->at) 511 if (w->at <= heap [j]->at)
392 break; 512 break;
393 513
394 heap [k] = heap [j]; 514 heap [k] = heap [j];
395 heap [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
396 k = j; 516 k = j;
397 } 517 }
398 518
399 heap [k] = w; 519 heap [k] = w;
400 heap [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
401} 533}
402 534
403/*****************************************************************************/ 535/*****************************************************************************/
404 536
405typedef struct 537typedef struct
406{ 538{
407 struct ev_watcher_list *head; 539 WL head;
408 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
409} ANSIG; 541} ANSIG;
410 542
411static ANSIG *signals; 543static ANSIG *signals;
412static int signalmax; 544static int signalmax;
413 545
414static int sigpipe [2]; 546static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 547static sig_atomic_t volatile gotsig;
548static struct ev_io sigev;
416 549
417static void 550static void
418signals_init (ANSIG *base, int count) 551signals_init (ANSIG *base, int count)
419{ 552{
420 while (count--) 553 while (count--)
427} 560}
428 561
429static void 562static void
430sighandler (int signum) 563sighandler (int signum)
431{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
432 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
433 570
434 if (!gotsig) 571 if (!gotsig)
435 { 572 {
436 int old_errno = errno; 573 int old_errno = errno;
437 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
438 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
439 errno = old_errno; 580 errno = old_errno;
440 } 581 }
441} 582}
442 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
443static void 604static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 606{
446 struct ev_watcher_list *w;
447 int signum; 607 int signum;
448 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
449 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
450 gotsig = 0; 614 gotsig = 0;
451 615
452 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
454 { 618 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 619}
461 620
462static void 621static void
463siginit (EV_P) 622siginit (EV_P)
464{ 623{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 635 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 636}
478 637
479/*****************************************************************************/ 638/*****************************************************************************/
480 639
640static struct ev_child *childs [PID_HASHSIZE];
641
481#ifndef WIN32 642#ifndef WIN32
643
644static struct ev_signal childev;
482 645
483#ifndef WCONTINUED 646#ifndef WCONTINUED
484# define WCONTINUED 0 647# define WCONTINUED 0
485#endif 648#endif
486 649
490 struct ev_child *w; 653 struct ev_child *w;
491 654
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 656 if (w->pid == pid || !w->pid)
494 { 657 {
495 w->priority = sw->priority; /* need to do it *now* */ 658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 659 w->rpid = pid;
497 w->rstatus = status; 660 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 662 }
500} 663}
501 664
502static void 665static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 666childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 668 int pid, status;
506 669
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 671 {
509 /* make sure we are called again until all childs have been reaped */ 672 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 674
512 child_reap (EV_A_ sw, pid, pid, status); 675 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 677 }
515} 678}
522# include "ev_kqueue.c" 685# include "ev_kqueue.c"
523#endif 686#endif
524#if EV_USE_EPOLL 687#if EV_USE_EPOLL
525# include "ev_epoll.c" 688# include "ev_epoll.c"
526#endif 689#endif
527#if EV_USEV_POLL 690#if EV_USE_POLL
528# include "ev_poll.c" 691# include "ev_poll.c"
529#endif 692#endif
530#if EV_USE_SELECT 693#if EV_USE_SELECT
531# include "ev_select.c" 694# include "ev_select.c"
532#endif 695#endif
584 methods = atoi (getenv ("LIBEV_METHODS")); 747 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 748 else
586 methods = EVMETHOD_ANY; 749 methods = EVMETHOD_ANY;
587 750
588 method = 0; 751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
589#if EV_USE_KQUEUE 755#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 757#endif
592#if EV_USE_EPOLL 758#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 760#endif
595#if EV_USEV_POLL 761#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 763#endif
598#if EV_USE_SELECT 764#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
601 } 770 }
602} 771}
603 772
604void 773void
605loop_destroy (EV_P) 774loop_destroy (EV_P)
606{ 775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
607#if EV_USE_KQUEUE 781#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 783#endif
610#if EV_USE_EPOLL 784#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 786#endif
613#if EV_USEV_POLL 787#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 789#endif
616#if EV_USE_SELECT 790#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 792#endif
619 793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
620 method = 0; 805 method = 0;
621 /*TODO*/
622} 806}
623 807
624void 808static void
625loop_fork (EV_P) 809loop_fork (EV_P)
626{ 810{
627 /*TODO*/
628#if EV_USE_EPOLL 811#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 813#endif
631#if EV_USE_KQUEUE 814#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
634} 834}
635 835
636#if EV_MULTIPLICITY 836#if EV_MULTIPLICITY
637struct ev_loop * 837struct ev_loop *
638ev_loop_new (int methods) 838ev_loop_new (int methods)
639{ 839{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
641 843
642 loop_init (EV_A_ methods); 844 loop_init (EV_A_ methods);
643 845
644 if (ev_methods (EV_A)) 846 if (ev_method (EV_A))
645 return loop; 847 return loop;
646 848
647 return 0; 849 return 0;
648} 850}
649 851
650void 852void
651ev_loop_destroy (EV_P) 853ev_loop_destroy (EV_P)
652{ 854{
653 loop_destroy (EV_A); 855 loop_destroy (EV_A);
654 free (loop); 856 ev_free (loop);
655} 857}
656 858
657void 859void
658ev_loop_fork (EV_P) 860ev_loop_fork (EV_P)
659{ 861{
660 loop_fork (EV_A); 862 postfork = 1;
661} 863}
662 864
663#endif 865#endif
664 866
665#if EV_MULTIPLICITY 867#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 868struct ev_loop *
670#else 869#else
671static int default_loop;
672
673int 870int
674#endif 871#endif
675ev_default_loop (int methods) 872ev_default_loop (int methods)
676{ 873{
677 if (sigpipe [0] == sigpipe [1]) 874 if (sigpipe [0] == sigpipe [1])
688 885
689 loop_init (EV_A_ methods); 886 loop_init (EV_A_ methods);
690 887
691 if (ev_method (EV_A)) 888 if (ev_method (EV_A))
692 { 889 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 890 siginit (EV_A);
696 891
697#ifndef WIN32 892#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 894 ev_set_priority (&childev, EV_MAXPRI);
713{ 908{
714#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 910 struct ev_loop *loop = default_loop;
716#endif 911#endif
717 912
913#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 914 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 915 ev_signal_stop (EV_A_ &childev);
916#endif
720 917
721 ev_ref (EV_A); /* signal watcher */ 918 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 919 ev_io_stop (EV_A_ &sigev);
723 920
724 close (sigpipe [0]); sigpipe [0] = 0; 921 close (sigpipe [0]); sigpipe [0] = 0;
726 923
727 loop_destroy (EV_A); 924 loop_destroy (EV_A);
728} 925}
729 926
730void 927void
731ev_default_fork (EV_P) 928ev_default_fork (void)
732{ 929{
733 loop_fork (EV_A); 930#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop;
932#endif
734 933
735 ev_io_stop (EV_A_ &sigev); 934 if (method)
736 close (sigpipe [0]); 935 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 936}
743 937
744/*****************************************************************************/ 938/*****************************************************************************/
939
940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
745 951
746static void 952static void
747call_pending (EV_P) 953call_pending (EV_P)
748{ 954{
749 int pri; 955 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 961
756 if (p->w) 962 if (p->w)
757 { 963 {
758 p->w->pending = 0; 964 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
760 } 966 }
761 } 967 }
762} 968}
763 969
764static void 970static void
765timers_reify (EV_P) 971timers_reify (EV_P)
766{ 972{
767 while (timercnt && timers [0]->at <= mn_now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 974 {
769 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 978
771 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
772 if (w->repeat) 980 if (w->repeat)
773 { 981 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
777 } 985 }
778 else 986 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 988
781 event (EV_A_ (W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 990 }
783} 991}
784 992
785static void 993static void
786periodics_reify (EV_P) 994periodics_reify (EV_P)
787{ 995{
788 while (periodiccnt && periodics [0]->at <= rt_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
789 { 997 {
790 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
791 999
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001
792 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
793 if (w->interval) 1003 if (w->reschedule_cb)
794 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1015 }
799 else 1016 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1018
802 event (EV_A_ (W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1020 }
804} 1021}
805 1022
806static void 1023static void
807periodics_reschedule (EV_P) 1024periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
813 { 1030 {
814 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
815 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
816 if (w->interval) 1035 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
829} 1042}
830 1043
831inline int 1044inline int
832time_update_monotonic (EV_P) 1045time_update_monotonic (EV_P)
833{ 1046{
884 { 1097 {
885 periodics_reschedule (EV_A); 1098 periodics_reschedule (EV_A);
886 1099
887 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1102 ((WT)timers [i])->at += rt_now - mn_now;
890 } 1103 }
891 1104
892 mn_now = rt_now; 1105 mn_now = rt_now;
893 } 1106 }
894} 1107}
920 { 1133 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1135 call_pending (EV_A);
923 } 1136 }
924 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
925 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1143 fd_reify (EV_A);
927 1144
928 /* calculate blocking time */ 1145 /* calculate blocking time */
929 1146
930 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1151 time_update_monotonic (EV_A);
935 else 1152 else
945 { 1162 {
946 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
947 1164
948 if (timercnt) 1165 if (timercnt)
949 { 1166 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1168 if (block > to) block = to;
952 } 1169 }
953 1170
954 if (periodiccnt) 1171 if (periodiccnt)
955 { 1172 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
957 if (block > to) block = to; 1174 if (block > to) block = to;
958 } 1175 }
959 1176
960 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
961 } 1178 }
968 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
970 periodics_reify (EV_A); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
971 1188
972 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1192
976 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
977 if (checkcnt) 1194 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1270 return;
1054 1271
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1273
1057 ev_start (EV_A_ (W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1277
1061 fd_change (EV_A_ fd); 1278 fd_change (EV_A_ fd);
1062} 1279}
1063 1280
1078ev_timer_start (EV_P_ struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1296{
1080 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1081 return; 1298 return;
1082 1299
1083 w->at += mn_now; 1300 ((WT)w)->at += mn_now;
1084 1301
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1303
1087 ev_start (EV_A_ (W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1310}
1092 1311
1093void 1312void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1314{
1096 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1098 return; 1317 return;
1099 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1100 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
1101 { 1322 {
1102 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1325 }
1105 1326
1106 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
1107 1328
1108 ev_stop (EV_A_ (W)w); 1329 ev_stop (EV_A_ (W)w);
1109} 1330}
1110 1331
1111void 1332void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1334{
1114 if (ev_is_active (w)) 1335 if (ev_is_active (w))
1115 { 1336 {
1116 if (w->repeat) 1337 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1339 else
1122 ev_timer_stop (EV_A_ w); 1340 ev_timer_stop (EV_A_ w);
1123 } 1341 }
1124 else if (w->repeat) 1342 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1343 ev_timer_start (EV_A_ w);
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1348{
1131 if (ev_is_active (w)) 1349 if (ev_is_active (w))
1132 return; 1350 return;
1133 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
1139 1360
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1367}
1145 1368
1146void 1369void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1371{
1149 ev_clear_pending (EV_A_ (W)w); 1372 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
1151 return; 1374 return;
1152 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
1153 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
1154 { 1379 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1382 }
1158 1383
1159 ev_stop (EV_A_ (W)w); 1384 ev_stop (EV_A_ (W)w);
1160} 1385}
1161 1386
1162void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1397{
1165 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1166 return; 1399 return;
1167 1400
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1401 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1403 idles [idlecnt - 1] = w;
1171} 1404}
1172 1405
1173void 1406void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1407ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1408{
1176 ev_clear_pending (EV_A_ (W)w); 1409 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1410 if (ev_is_active (w))
1178 return; 1411 return;
1179 1412
1180 idles [w->active - 1] = idles [--idlecnt]; 1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1414 ev_stop (EV_A_ (W)w);
1182} 1415}
1183 1416
1184void 1417void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1419{
1187 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1188 return; 1421 return;
1189 1422
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1423 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1425 prepares [preparecnt - 1] = w;
1193} 1426}
1194 1427
1195void 1428void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1430{
1198 ev_clear_pending (EV_A_ (W)w); 1431 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1200 return; 1433 return;
1201 1434
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1204} 1437}
1205 1438
1206void 1439void
1207ev_check_start (EV_P_ struct ev_check *w) 1440ev_check_start (EV_P_ struct ev_check *w)
1208{ 1441{
1209 if (ev_is_active (w)) 1442 if (ev_is_active (w))
1210 return; 1443 return;
1211 1444
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1445 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1447 checks [checkcnt - 1] = w;
1215} 1448}
1216 1449
1217void 1450void
1218ev_check_stop (EV_P_ struct ev_check *w) 1451ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1452{
1220 ev_clear_pending (EV_A_ (W)w); 1453 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1222 return; 1455 return;
1223 1456
1224 checks [w->active - 1] = checks [--checkcnt]; 1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1458 ev_stop (EV_A_ (W)w);
1226} 1459}
1227 1460
1228#ifndef SA_RESTART 1461#ifndef SA_RESTART
1229# define SA_RESTART 0 1462# define SA_RESTART 0
1239 return; 1472 return;
1240 1473
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1475
1243 ev_start (EV_A_ (W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1479
1247 if (!w->next) 1480 if (!((WL)w)->next)
1248 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1249 struct sigaction sa; 1485 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1254 } 1491 }
1255} 1492}
1256 1493
1257void 1494void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1546 void *arg = once->arg;
1310 1547
1311 ev_io_stop (EV_A_ &once->io); 1548 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1550 ev_free (once);
1314 1551
1315 cb (revents, arg); 1552 cb (revents, arg);
1316} 1553}
1317 1554
1318static void 1555static void
1328} 1565}
1329 1566
1330void 1567void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1569{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1571
1335 if (!once) 1572 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1574 else
1338 { 1575 {
1339 once->cb = cb; 1576 once->cb = cb;
1340 once->arg = arg; 1577 once->arg = arg;
1341 1578
1342 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1580 if (fd >= 0)
1344 { 1581 {
1345 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1583 ev_io_start (EV_A_ &once->io);
1347 } 1584 }
1348 1585
1349 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1587 if (timeout >= 0.)
1351 { 1588 {
1352 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1590 ev_timer_start (EV_A_ &once->to);
1354 } 1591 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines