ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED 131#ifdef EV_H
132# include EV_H
133#else
99# include "ev.h" 134# include "ev.h"
100#endif 135#endif
101 136
102#if __GNUC__ >= 3 137#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
119 154
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 156
157#include "ev_win32.c"
158
122/*****************************************************************************/ 159/*****************************************************************************/
123 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
124typedef struct 209typedef struct
125{ 210{
126 struct ev_watcher_list *head; 211 WL head;
127 unsigned char events; 212 unsigned char events;
128 unsigned char reify; 213 unsigned char reify;
129} ANFD; 214} ANFD;
130 215
131typedef struct 216typedef struct
134 int events; 219 int events;
135} ANPENDING; 220} ANPENDING;
136 221
137#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
138 223
139struct ev_loop 224 struct ev_loop
140{ 225 {
141# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
142# include "ev_vars.h" 227 #include "ev_vars.h"
143};
144# undef VAR 228 #undef VAR
229 };
145# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
146 234
147#else 235#else
148 236
149# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 238 #include "ev_vars.h"
151# undef VAR 239 #undef VAR
240
241 static int default_loop;
152 242
153#endif 243#endif
154 244
155/*****************************************************************************/ 245/*****************************************************************************/
156 246
181#endif 271#endif
182 272
183 return ev_time (); 273 return ev_time ();
184} 274}
185 275
276#if EV_MULTIPLICITY
186ev_tstamp 277ev_tstamp
187ev_now (EV_P) 278ev_now (EV_P)
188{ 279{
189 return rt_now; 280 return ev_rt_now;
190} 281}
282#endif
191 283
192#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
193 285
194#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
196 { \ 288 { \
197 int newcnt = cur; \ 289 int newcnt = cur; \
198 do \ 290 do \
199 { \ 291 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 293 } \
202 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
203 \ 295 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 298 cur = newcnt; \
207 } 299 }
300
301#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 }
308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313
314#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 316
209/*****************************************************************************/ 317/*****************************************************************************/
210 318
211static void 319static void
212anfds_init (ANFD *base, int count) 320anfds_init (ANFD *base, int count)
219 327
220 ++base; 328 ++base;
221 } 329 }
222} 330}
223 331
224static void 332void
225event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
226{ 334{
335 W w_ = (W)w;
336
227 if (w->pending) 337 if (w_->pending)
228 { 338 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 340 return;
231 } 341 }
232 342
233 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 347}
238 348
239static void 349static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 351{
242 int i; 352 int i;
243 353
244 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
246} 356}
247 357
248static void 358inline void
249fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
250{ 360{
251 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 362 struct ev_io *w;
253 363
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 365 {
256 int ev = w->events & events; 366 int ev = w->events & revents;
257 367
258 if (ev) 368 if (ev)
259 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
260 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
261} 377}
262 378
263/*****************************************************************************/ 379/*****************************************************************************/
264 380
265static void 381static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 395 events |= w->events;
280 396
281 anfd->reify = 0; 397 anfd->reify = 0;
282 398
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 399 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 400 anfd->events = events;
287 }
288 } 401 }
289 402
290 fdchangecnt = 0; 403 fdchangecnt = 0;
291} 404}
292 405
293static void 406static void
294fd_change (EV_P_ int fd) 407fd_change (EV_P_ int fd)
295{ 408{
296 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
297 return; 410 return;
298 411
299 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
300 413
301 ++fdchangecnt; 414 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
304} 417}
305 418
306static void 419static void
307fd_kill (EV_P_ int fd) 420fd_kill (EV_P_ int fd)
309 struct ev_io *w; 422 struct ev_io *w;
310 423
311 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
312 { 425 {
313 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
316} 439}
317 440
318/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
319static void 442static void
320fd_ebadf (EV_P) 443fd_ebadf (EV_P)
321{ 444{
322 int fd; 445 int fd;
323 446
324 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 448 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 450 fd_kill (EV_A_ fd);
328} 451}
329 452
330/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 454static void
332fd_enomem (EV_P) 455fd_enomem (EV_P)
333{ 456{
334 int fd = anfdmax; 457 int fd;
335 458
336 while (fd--) 459 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 460 if (anfds [fd].events)
338 { 461 {
339 close (fd);
340 fd_kill (EV_A_ fd); 462 fd_kill (EV_A_ fd);
341 return; 463 return;
342 } 464 }
343} 465}
344 466
345/* susually called after fork if method needs to re-arm all fds from scratch */ 467/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 468static void
347fd_rearm_all (EV_P) 469fd_rearm_all (EV_P)
348{ 470{
349 int fd; 471 int fd;
350 472
351 /* this should be highly optimised to not do anything but set a flag */ 473 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 474 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 475 if (anfds [fd].events)
354 { 476 {
355 anfds [fd].events = 0; 477 anfds [fd].events = 0;
356 fd_change (fd); 478 fd_change (EV_A_ fd);
357 } 479 }
358} 480}
359 481
360/*****************************************************************************/ 482/*****************************************************************************/
361 483
365 WT w = heap [k]; 487 WT w = heap [k];
366 488
367 while (k && heap [k >> 1]->at > w->at) 489 while (k && heap [k >> 1]->at > w->at)
368 { 490 {
369 heap [k] = heap [k >> 1]; 491 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 492 ((W)heap [k])->active = k + 1;
371 k >>= 1; 493 k >>= 1;
372 } 494 }
373 495
374 heap [k] = w; 496 heap [k] = w;
375 heap [k]->active = k + 1; 497 ((W)heap [k])->active = k + 1;
376 498
377} 499}
378 500
379static void 501static void
380downheap (WT *heap, int N, int k) 502downheap (WT *heap, int N, int k)
390 512
391 if (w->at <= heap [j]->at) 513 if (w->at <= heap [j]->at)
392 break; 514 break;
393 515
394 heap [k] = heap [j]; 516 heap [k] = heap [j];
395 heap [k]->active = k + 1; 517 ((W)heap [k])->active = k + 1;
396 k = j; 518 k = j;
397 } 519 }
398 520
399 heap [k] = w; 521 heap [k] = w;
400 heap [k]->active = k + 1; 522 ((W)heap [k])->active = k + 1;
523}
524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
401} 535}
402 536
403/*****************************************************************************/ 537/*****************************************************************************/
404 538
405typedef struct 539typedef struct
406{ 540{
407 struct ev_watcher_list *head; 541 WL head;
408 sig_atomic_t volatile gotsig; 542 sig_atomic_t volatile gotsig;
409} ANSIG; 543} ANSIG;
410 544
411static ANSIG *signals; 545static ANSIG *signals;
412static int signalmax; 546static int signalmax;
413 547
414static int sigpipe [2]; 548static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 549static sig_atomic_t volatile gotsig;
550static struct ev_io sigev;
416 551
417static void 552static void
418signals_init (ANSIG *base, int count) 553signals_init (ANSIG *base, int count)
419{ 554{
420 while (count--) 555 while (count--)
427} 562}
428 563
429static void 564static void
430sighandler (int signum) 565sighandler (int signum)
431{ 566{
567#if WIN32
568 signal (signum, sighandler);
569#endif
570
432 signals [signum - 1].gotsig = 1; 571 signals [signum - 1].gotsig = 1;
433 572
434 if (!gotsig) 573 if (!gotsig)
435 { 574 {
436 int old_errno = errno; 575 int old_errno = errno;
437 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
438 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
439 errno = old_errno; 582 errno = old_errno;
440 } 583 }
441} 584}
442 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
443static void 606static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 608{
446 struct ev_watcher_list *w;
447 int signum; 609 int signum;
448 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
449 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
450 gotsig = 0; 616 gotsig = 0;
451 617
452 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
454 { 620 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 621}
461 622
462static void 623static void
463siginit (EV_P) 624siginit (EV_P)
464{ 625{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 637 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 638}
478 639
479/*****************************************************************************/ 640/*****************************************************************************/
480 641
642static struct ev_child *childs [PID_HASHSIZE];
643
481#ifndef WIN32 644#ifndef WIN32
645
646static struct ev_signal childev;
482 647
483#ifndef WCONTINUED 648#ifndef WCONTINUED
484# define WCONTINUED 0 649# define WCONTINUED 0
485#endif 650#endif
486 651
490 struct ev_child *w; 655 struct ev_child *w;
491 656
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
494 { 659 {
495 w->priority = sw->priority; /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 661 w->rpid = pid;
497 w->rstatus = status; 662 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 664 }
500} 665}
501 666
502static void 667static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 670 int pid, status;
506 671
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 673 {
509 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 676
512 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 679 }
515} 680}
522# include "ev_kqueue.c" 687# include "ev_kqueue.c"
523#endif 688#endif
524#if EV_USE_EPOLL 689#if EV_USE_EPOLL
525# include "ev_epoll.c" 690# include "ev_epoll.c"
526#endif 691#endif
527#if EV_USEV_POLL 692#if EV_USE_POLL
528# include "ev_poll.c" 693# include "ev_poll.c"
529#endif 694#endif
530#if EV_USE_SELECT 695#if EV_USE_SELECT
531# include "ev_select.c" 696# include "ev_select.c"
532#endif 697#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 738 have_monotonic = 1;
574 } 739 }
575#endif 740#endif
576 741
577 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 743 mn_now = get_clock ();
579 now_floor = mn_now; 744 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
581 746
582 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 750 else
586 methods = EVMETHOD_ANY; 751 methods = EVMETHOD_ANY;
587 752
588 method = 0; 753 method = 0;
754#if EV_USE_WIN32
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
756#endif
589#if EV_USE_KQUEUE 757#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 759#endif
592#if EV_USE_EPOLL 760#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 762#endif
595#if EV_USEV_POLL 763#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 765#endif
598#if EV_USE_SELECT 766#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 768#endif
769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
601 } 772 }
602} 773}
603 774
604void 775void
605loop_destroy (EV_P) 776loop_destroy (EV_P)
606{ 777{
778 int i;
779
780#if EV_USE_WIN32
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
782#endif
607#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 785#endif
610#if EV_USE_EPOLL 786#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 788#endif
613#if EV_USEV_POLL 789#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 790 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 791#endif
616#if EV_USE_SELECT 792#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 793 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 794#endif
619 795
796 for (i = NUMPRI; i--; )
797 array_free (pending, [i]);
798
799 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange);
801 array_free_microshit (timer);
802 array_free_microshit (periodic);
803 array_free_microshit (idle);
804 array_free_microshit (prepare);
805 array_free_microshit (check);
806
620 method = 0; 807 method = 0;
621 /*TODO*/
622} 808}
623 809
624void 810static void
625loop_fork (EV_P) 811loop_fork (EV_P)
626{ 812{
627 /*TODO*/
628#if EV_USE_EPOLL 813#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 815#endif
631#if EV_USE_KQUEUE 816#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
634} 836}
635 837
636#if EV_MULTIPLICITY 838#if EV_MULTIPLICITY
637struct ev_loop * 839struct ev_loop *
638ev_loop_new (int methods) 840ev_loop_new (int methods)
639{ 841{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843
844 memset (loop, 0, sizeof (struct ev_loop));
641 845
642 loop_init (EV_A_ methods); 846 loop_init (EV_A_ methods);
643 847
644 if (ev_methods (EV_A)) 848 if (ev_method (EV_A))
645 return loop; 849 return loop;
646 850
647 return 0; 851 return 0;
648} 852}
649 853
650void 854void
651ev_loop_destroy (EV_P) 855ev_loop_destroy (EV_P)
652{ 856{
653 loop_destroy (EV_A); 857 loop_destroy (EV_A);
654 free (loop); 858 ev_free (loop);
655} 859}
656 860
657void 861void
658ev_loop_fork (EV_P) 862ev_loop_fork (EV_P)
659{ 863{
660 loop_fork (EV_A); 864 postfork = 1;
661} 865}
662 866
663#endif 867#endif
664 868
665#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 870struct ev_loop *
670#else 871#else
671static int default_loop;
672
673int 872int
674#endif 873#endif
675ev_default_loop (int methods) 874ev_default_loop (int methods)
676{ 875{
677 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
688 887
689 loop_init (EV_A_ methods); 888 loop_init (EV_A_ methods);
690 889
691 if (ev_method (EV_A)) 890 if (ev_method (EV_A))
692 { 891 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 892 siginit (EV_A);
696 893
697#ifndef WIN32 894#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
713{ 910{
714#if EV_MULTIPLICITY 911#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 912 struct ev_loop *loop = default_loop;
716#endif 913#endif
717 914
915#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 916 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 917 ev_signal_stop (EV_A_ &childev);
918#endif
720 919
721 ev_ref (EV_A); /* signal watcher */ 920 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 921 ev_io_stop (EV_A_ &sigev);
723 922
724 close (sigpipe [0]); sigpipe [0] = 0; 923 close (sigpipe [0]); sigpipe [0] = 0;
726 925
727 loop_destroy (EV_A); 926 loop_destroy (EV_A);
728} 927}
729 928
730void 929void
731ev_default_fork (EV_P) 930ev_default_fork (void)
732{ 931{
733 loop_fork (EV_A); 932#if EV_MULTIPLICITY
933 struct ev_loop *loop = default_loop;
934#endif
734 935
735 ev_io_stop (EV_A_ &sigev); 936 if (method)
736 close (sigpipe [0]); 937 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 938}
743 939
744/*****************************************************************************/ 940/*****************************************************************************/
941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
745 953
746static void 954static void
747call_pending (EV_P) 955call_pending (EV_P)
748{ 956{
749 int pri; 957 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 963
756 if (p->w) 964 if (p->w)
757 { 965 {
758 p->w->pending = 0; 966 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
760 } 968 }
761 } 969 }
762} 970}
763 971
764static void 972static void
765timers_reify (EV_P) 973timers_reify (EV_P)
766{ 974{
767 while (timercnt && timers [0]->at <= mn_now) 975 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 976 {
769 struct ev_timer *w = timers [0]; 977 struct ev_timer *w = timers [0];
978
979 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 980
771 /* first reschedule or stop timer */ 981 /* first reschedule or stop timer */
772 if (w->repeat) 982 if (w->repeat)
773 { 983 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 985 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
777 } 987 }
778 else 988 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 990
781 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 992 }
783} 993}
784 994
785static void 995static void
786periodics_reify (EV_P) 996periodics_reify (EV_P)
787{ 997{
788 while (periodiccnt && periodics [0]->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 999 {
790 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
791 1001
1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1003
792 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
793 if (w->interval) 1005 if (w->reschedule_cb)
794 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1017 }
799 else 1018 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1020
802 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1022 }
804} 1023}
805 1024
806static void 1025static void
807periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
813 { 1032 {
814 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
815 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1037 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
829} 1044}
830 1045
831inline int 1046inline int
832time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
833{ 1048{
834 mn_now = get_clock (); 1049 mn_now = get_clock ();
835 1050
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1052 {
838 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1054 return 0;
840 } 1055 }
841 else 1056 else
842 { 1057 {
843 now_floor = mn_now; 1058 now_floor = mn_now;
844 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
845 return 1; 1060 return 1;
846 } 1061 }
847} 1062}
848 1063
849static void 1064static void
858 { 1073 {
859 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
860 1075
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1077 {
863 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
864 1079
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1081 return; /* all is well */
867 1082
868 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1084 mn_now = get_clock ();
870 now_floor = mn_now; 1085 now_floor = mn_now;
871 } 1086 }
872 1087
873 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
876 } 1091 }
877 } 1092 }
878 else 1093 else
879#endif 1094#endif
880 { 1095 {
881 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
882 1097
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1099 {
885 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
886 1101
887 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1105 }
891 1106
892 mn_now = rt_now; 1107 mn_now = ev_rt_now;
893 } 1108 }
894} 1109}
895 1110
896void 1111void
897ev_ref (EV_P) 1112ev_ref (EV_P)
920 { 1135 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1137 call_pending (EV_A);
923 } 1138 }
924 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
925 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1145 fd_reify (EV_A);
927 1146
928 /* calculate blocking time */ 1147 /* calculate blocking time */
929 1148
930 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
935 else 1154 else
936#endif 1155#endif
937 { 1156 {
938 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1158 mn_now = ev_rt_now;
940 } 1159 }
941 1160
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1162 block = 0.;
944 else 1163 else
945 { 1164 {
946 block = MAX_BLOCKTIME; 1165 block = MAX_BLOCKTIME;
947 1166
948 if (timercnt) 1167 if (timercnt)
949 { 1168 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1170 if (block > to) block = to;
952 } 1171 }
953 1172
954 if (periodiccnt) 1173 if (periodiccnt)
955 { 1174 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1176 if (block > to) block = to;
958 } 1177 }
959 1178
960 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
961 } 1180 }
962 1181
963 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
964 1183
965 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1185 time_update (EV_A);
967 1186
968 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
970 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
971 1190
972 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1194
976 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
977 if (checkcnt) 1196 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1272 return;
1054 1273
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1275
1057 ev_start (EV_A_ (W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1279
1061 fd_change (EV_A_ fd); 1280 fd_change (EV_A_ fd);
1062} 1281}
1063 1282
1078ev_timer_start (EV_P_ struct ev_timer *w) 1297ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1298{
1080 if (ev_is_active (w)) 1299 if (ev_is_active (w))
1081 return; 1300 return;
1082 1301
1083 w->at += mn_now; 1302 ((WT)w)->at += mn_now;
1084 1303
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1305
1087 ev_start (EV_A_ (W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
1310
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1312}
1092 1313
1093void 1314void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1315ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1316{
1096 ev_clear_pending (EV_A_ (W)w); 1317 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1318 if (!ev_is_active (w))
1098 return; 1319 return;
1099 1320
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322
1100 if (w->active < timercnt--) 1323 if (((W)w)->active < timercnt--)
1101 { 1324 {
1102 timers [w->active - 1] = timers [timercnt]; 1325 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1327 }
1105 1328
1106 w->at = w->repeat; 1329 ((WT)w)->at = w->repeat;
1107 1330
1108 ev_stop (EV_A_ (W)w); 1331 ev_stop (EV_A_ (W)w);
1109} 1332}
1110 1333
1111void 1334void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1336{
1114 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1115 { 1338 {
1116 if (w->repeat) 1339 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1341 else
1122 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1123 } 1343 }
1124 else if (w->repeat) 1344 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1350{
1131 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1132 return; 1352 return;
1133 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1139 1362
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1367
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1369}
1145 1370
1146void 1371void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1372ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1373{
1149 ev_clear_pending (EV_A_ (W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1375 if (!ev_is_active (w))
1151 return; 1376 return;
1152 1377
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1379
1153 if (w->active < periodiccnt--) 1380 if (((W)w)->active < periodiccnt--)
1154 { 1381 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1382 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1384 }
1158 1385
1159 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1160} 1387}
1161 1388
1162void 1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1399{
1165 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1166 return; 1401 return;
1167 1402
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1403 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1405 idles [idlecnt - 1] = w;
1171} 1406}
1172 1407
1173void 1408void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1409ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1410{
1176 ev_clear_pending (EV_A_ (W)w); 1411 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1412 if (ev_is_active (w))
1178 return; 1413 return;
1179 1414
1180 idles [w->active - 1] = idles [--idlecnt]; 1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1182} 1417}
1183 1418
1184void 1419void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1421{
1187 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1188 return; 1423 return;
1189 1424
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1425 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1427 prepares [preparecnt - 1] = w;
1193} 1428}
1194 1429
1195void 1430void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1432{
1198 ev_clear_pending (EV_A_ (W)w); 1433 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1434 if (ev_is_active (w))
1200 return; 1435 return;
1201 1436
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1438 ev_stop (EV_A_ (W)w);
1204} 1439}
1205 1440
1206void 1441void
1207ev_check_start (EV_P_ struct ev_check *w) 1442ev_check_start (EV_P_ struct ev_check *w)
1208{ 1443{
1209 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1210 return; 1445 return;
1211 1446
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1447 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1449 checks [checkcnt - 1] = w;
1215} 1450}
1216 1451
1217void 1452void
1218ev_check_stop (EV_P_ struct ev_check *w) 1453ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1454{
1220 ev_clear_pending (EV_A_ (W)w); 1455 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1456 if (ev_is_active (w))
1222 return; 1457 return;
1223 1458
1224 checks [w->active - 1] = checks [--checkcnt]; 1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1460 ev_stop (EV_A_ (W)w);
1226} 1461}
1227 1462
1228#ifndef SA_RESTART 1463#ifndef SA_RESTART
1229# define SA_RESTART 0 1464# define SA_RESTART 0
1239 return; 1474 return;
1240 1475
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1477
1243 ev_start (EV_A_ (W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1481
1247 if (!w->next) 1482 if (!((WL)w)->next)
1248 { 1483 {
1484#if WIN32
1485 signal (w->signum, sighandler);
1486#else
1249 struct sigaction sa; 1487 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1488 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1489 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1490 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1491 sigaction (w->signum, &sa, 0);
1492#endif
1254 } 1493 }
1255} 1494}
1256 1495
1257void 1496void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1497ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1547 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1548 void *arg = once->arg;
1310 1549
1311 ev_io_stop (EV_A_ &once->io); 1550 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1551 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1552 ev_free (once);
1314 1553
1315 cb (revents, arg); 1554 cb (revents, arg);
1316} 1555}
1317 1556
1318static void 1557static void
1328} 1567}
1329 1568
1330void 1569void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1571{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1573
1335 if (!once) 1574 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1576 else
1338 { 1577 {
1339 once->cb = cb; 1578 once->cb = cb;
1340 once->arg = arg; 1579 once->arg = arg;
1341 1580
1342 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1582 if (fd >= 0)
1344 { 1583 {
1345 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1347 } 1586 }
1348 1587
1349 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1589 if (timeout >= 0.)
1351 { 1590 {
1352 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1354 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines