ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
98#ifndef EV_EMBED 131#ifdef EV_H
132# include EV_H
133#else
99# include "ev.h" 134# include "ev.h"
100#endif 135#endif
101 136
102#if __GNUC__ >= 3 137#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
119 154
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 156
157#include "ev_win32.c"
158
122/*****************************************************************************/ 159/*****************************************************************************/
123 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
124typedef struct 209typedef struct
125{ 210{
126 struct ev_watcher_list *head; 211 WL head;
127 unsigned char events; 212 unsigned char events;
128 unsigned char reify; 213 unsigned char reify;
129} ANFD; 214} ANFD;
130 215
131typedef struct 216typedef struct
134 int events; 219 int events;
135} ANPENDING; 220} ANPENDING;
136 221
137#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
138 223
139struct ev_loop 224 struct ev_loop
140{ 225 {
226 ev_tstamp ev_rt_now;
141# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
142# include "ev_vars.h" 228 #include "ev_vars.h"
143};
144# undef VAR 229 #undef VAR
230 };
145# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
146 235
147#else 236#else
148 237
238 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 240 #include "ev_vars.h"
151# undef VAR 241 #undef VAR
242
243 static int default_loop;
152 244
153#endif 245#endif
154 246
155/*****************************************************************************/ 247/*****************************************************************************/
156 248
181#endif 273#endif
182 274
183 return ev_time (); 275 return ev_time ();
184} 276}
185 277
278#if EV_MULTIPLICITY
186ev_tstamp 279ev_tstamp
187ev_now (EV_P) 280ev_now (EV_P)
188{ 281{
189 return rt_now; 282 return ev_rt_now;
190} 283}
284#endif
191 285
192#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
193 287
194#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
196 { \ 290 { \
197 int newcnt = cur; \ 291 int newcnt = cur; \
198 do \ 292 do \
199 { \ 293 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 295 } \
202 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
203 \ 297 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 300 cur = newcnt; \
207 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 318
209/*****************************************************************************/ 319/*****************************************************************************/
210 320
211static void 321static void
212anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
219 329
220 ++base; 330 ++base;
221 } 331 }
222} 332}
223 333
224static void 334void
225event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
226{ 336{
337 W w_ = (W)w;
338
227 if (w->pending) 339 if (w_->pending)
228 { 340 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 342 return;
231 } 343 }
232 344
233 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 349}
238 350
239static void 351static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 353{
242 int i; 354 int i;
243 355
244 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
246} 358}
247 359
248static void 360inline void
249fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
250{ 362{
251 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 364 struct ev_io *w;
253 365
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 367 {
256 int ev = w->events & events; 368 int ev = w->events & revents;
257 369
258 if (ev) 370 if (ev)
259 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
260 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
261} 379}
262 380
263/*****************************************************************************/ 381/*****************************************************************************/
264 382
265static void 383static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 397 events |= w->events;
280 398
281 anfd->reify = 0; 399 anfd->reify = 0;
282 400
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 401 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 402 anfd->events = events;
287 }
288 } 403 }
289 404
290 fdchangecnt = 0; 405 fdchangecnt = 0;
291} 406}
292 407
293static void 408static void
294fd_change (EV_P_ int fd) 409fd_change (EV_P_ int fd)
295{ 410{
296 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
297 return; 412 return;
298 413
299 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
300 415
301 ++fdchangecnt; 416 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
304} 419}
305 420
306static void 421static void
307fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
309 struct ev_io *w; 424 struct ev_io *w;
310 425
311 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
312 { 427 {
313 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
316} 441}
317 442
318/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
319static void 444static void
320fd_ebadf (EV_P) 445fd_ebadf (EV_P)
321{ 446{
322 int fd; 447 int fd;
323 448
324 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 450 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 452 fd_kill (EV_A_ fd);
328} 453}
329 454
330/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 456static void
332fd_enomem (EV_P) 457fd_enomem (EV_P)
333{ 458{
334 int fd = anfdmax; 459 int fd;
335 460
336 while (fd--) 461 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 462 if (anfds [fd].events)
338 { 463 {
339 close (fd);
340 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
341 return; 465 return;
342 } 466 }
343} 467}
344 468
345/* susually called after fork if method needs to re-arm all fds from scratch */ 469/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 470static void
347fd_rearm_all (EV_P) 471fd_rearm_all (EV_P)
348{ 472{
349 int fd; 473 int fd;
350 474
351 /* this should be highly optimised to not do anything but set a flag */ 475 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 476 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 477 if (anfds [fd].events)
354 { 478 {
355 anfds [fd].events = 0; 479 anfds [fd].events = 0;
356 fd_change (fd); 480 fd_change (EV_A_ fd);
357 } 481 }
358} 482}
359 483
360/*****************************************************************************/ 484/*****************************************************************************/
361 485
365 WT w = heap [k]; 489 WT w = heap [k];
366 490
367 while (k && heap [k >> 1]->at > w->at) 491 while (k && heap [k >> 1]->at > w->at)
368 { 492 {
369 heap [k] = heap [k >> 1]; 493 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 494 ((W)heap [k])->active = k + 1;
371 k >>= 1; 495 k >>= 1;
372 } 496 }
373 497
374 heap [k] = w; 498 heap [k] = w;
375 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
376 500
377} 501}
378 502
379static void 503static void
380downheap (WT *heap, int N, int k) 504downheap (WT *heap, int N, int k)
390 514
391 if (w->at <= heap [j]->at) 515 if (w->at <= heap [j]->at)
392 break; 516 break;
393 517
394 heap [k] = heap [j]; 518 heap [k] = heap [j];
395 heap [k]->active = k + 1; 519 ((W)heap [k])->active = k + 1;
396 k = j; 520 k = j;
397 } 521 }
398 522
399 heap [k] = w; 523 heap [k] = w;
400 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
401} 537}
402 538
403/*****************************************************************************/ 539/*****************************************************************************/
404 540
405typedef struct 541typedef struct
406{ 542{
407 struct ev_watcher_list *head; 543 WL head;
408 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
409} ANSIG; 545} ANSIG;
410 546
411static ANSIG *signals; 547static ANSIG *signals;
412static int signalmax; 548static int signalmax;
413 549
414static int sigpipe [2]; 550static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 551static sig_atomic_t volatile gotsig;
552static struct ev_io sigev;
416 553
417static void 554static void
418signals_init (ANSIG *base, int count) 555signals_init (ANSIG *base, int count)
419{ 556{
420 while (count--) 557 while (count--)
427} 564}
428 565
429static void 566static void
430sighandler (int signum) 567sighandler (int signum)
431{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
432 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
433 574
434 if (!gotsig) 575 if (!gotsig)
435 { 576 {
436 int old_errno = errno; 577 int old_errno = errno;
437 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
438 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
439 errno = old_errno; 584 errno = old_errno;
440 } 585 }
441} 586}
442 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
443static void 608static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 610{
446 struct ev_watcher_list *w;
447 int signum; 611 int signum;
448 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
449 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
450 gotsig = 0; 618 gotsig = 0;
451 619
452 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
454 { 622 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 623}
461 624
462static void 625static void
463siginit (EV_P) 626siginit (EV_P)
464{ 627{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 639 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 640}
478 641
479/*****************************************************************************/ 642/*****************************************************************************/
480 643
644static struct ev_child *childs [PID_HASHSIZE];
645
481#ifndef WIN32 646#ifndef WIN32
647
648static struct ev_signal childev;
482 649
483#ifndef WCONTINUED 650#ifndef WCONTINUED
484# define WCONTINUED 0 651# define WCONTINUED 0
485#endif 652#endif
486 653
490 struct ev_child *w; 657 struct ev_child *w;
491 658
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
494 { 661 {
495 w->priority = sw->priority; /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 663 w->rpid = pid;
497 w->rstatus = status; 664 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 666 }
500} 667}
501 668
502static void 669static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 672 int pid, status;
506 673
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 675 {
509 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 678
512 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 681 }
515} 682}
522# include "ev_kqueue.c" 689# include "ev_kqueue.c"
523#endif 690#endif
524#if EV_USE_EPOLL 691#if EV_USE_EPOLL
525# include "ev_epoll.c" 692# include "ev_epoll.c"
526#endif 693#endif
527#if EV_USEV_POLL 694#if EV_USE_POLL
528# include "ev_poll.c" 695# include "ev_poll.c"
529#endif 696#endif
530#if EV_USE_SELECT 697#if EV_USE_SELECT
531# include "ev_select.c" 698# include "ev_select.c"
532#endif 699#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 740 have_monotonic = 1;
574 } 741 }
575#endif 742#endif
576 743
577 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 745 mn_now = get_clock ();
579 now_floor = mn_now; 746 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
581 748
582 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 752 else
586 methods = EVMETHOD_ANY; 753 methods = EVMETHOD_ANY;
587 754
588 method = 0; 755 method = 0;
756#if EV_USE_WIN32
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758#endif
589#if EV_USE_KQUEUE 759#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 761#endif
592#if EV_USE_EPOLL 762#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 764#endif
595#if EV_USEV_POLL 765#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 767#endif
598#if EV_USE_SELECT 768#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
601 } 774 }
602} 775}
603 776
604void 777void
605loop_destroy (EV_P) 778loop_destroy (EV_P)
606{ 779{
780 int i;
781
782#if EV_USE_WIN32
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784#endif
607#if EV_USE_KQUEUE 785#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 787#endif
610#if EV_USE_EPOLL 788#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 790#endif
613#if EV_USEV_POLL 791#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 792 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 793#endif
616#if EV_USE_SELECT 794#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 796#endif
619 797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
620 method = 0; 809 method = 0;
621 /*TODO*/
622} 810}
623 811
624void 812static void
625loop_fork (EV_P) 813loop_fork (EV_P)
626{ 814{
627 /*TODO*/
628#if EV_USE_EPOLL 815#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 817#endif
631#if EV_USE_KQUEUE 818#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
634} 838}
635 839
636#if EV_MULTIPLICITY 840#if EV_MULTIPLICITY
637struct ev_loop * 841struct ev_loop *
638ev_loop_new (int methods) 842ev_loop_new (int methods)
639{ 843{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
641 847
642 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
643 849
644 if (ev_methods (EV_A)) 850 if (ev_method (EV_A))
645 return loop; 851 return loop;
646 852
647 return 0; 853 return 0;
648} 854}
649 855
650void 856void
651ev_loop_destroy (EV_P) 857ev_loop_destroy (EV_P)
652{ 858{
653 loop_destroy (EV_A); 859 loop_destroy (EV_A);
654 free (loop); 860 ev_free (loop);
655} 861}
656 862
657void 863void
658ev_loop_fork (EV_P) 864ev_loop_fork (EV_P)
659{ 865{
660 loop_fork (EV_A); 866 postfork = 1;
661} 867}
662 868
663#endif 869#endif
664 870
665#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 872struct ev_loop *
670#else 873#else
671static int default_loop;
672
673int 874int
674#endif 875#endif
675ev_default_loop (int methods) 876ev_default_loop (int methods)
676{ 877{
677 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
688 889
689 loop_init (EV_A_ methods); 890 loop_init (EV_A_ methods);
690 891
691 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
692 { 893 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 894 siginit (EV_A);
696 895
697#ifndef WIN32 896#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
713{ 912{
714#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 914 struct ev_loop *loop = default_loop;
716#endif 915#endif
717 916
917#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 918 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 919 ev_signal_stop (EV_A_ &childev);
920#endif
720 921
721 ev_ref (EV_A); /* signal watcher */ 922 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 923 ev_io_stop (EV_A_ &sigev);
723 924
724 close (sigpipe [0]); sigpipe [0] = 0; 925 close (sigpipe [0]); sigpipe [0] = 0;
726 927
727 loop_destroy (EV_A); 928 loop_destroy (EV_A);
728} 929}
729 930
730void 931void
731ev_default_fork (EV_P) 932ev_default_fork (void)
732{ 933{
733 loop_fork (EV_A); 934#if EV_MULTIPLICITY
935 struct ev_loop *loop = default_loop;
936#endif
734 937
735 ev_io_stop (EV_A_ &sigev); 938 if (method)
736 close (sigpipe [0]); 939 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 940}
743 941
744/*****************************************************************************/ 942/*****************************************************************************/
943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
745 955
746static void 956static void
747call_pending (EV_P) 957call_pending (EV_P)
748{ 958{
749 int pri; 959 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 965
756 if (p->w) 966 if (p->w)
757 { 967 {
758 p->w->pending = 0; 968 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
760 } 970 }
761 } 971 }
762} 972}
763 973
764static void 974static void
765timers_reify (EV_P) 975timers_reify (EV_P)
766{ 976{
767 while (timercnt && timers [0]->at <= mn_now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 978 {
769 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
980
981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 982
771 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
772 if (w->repeat) 984 if (w->repeat)
773 { 985 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
775 w->at = mn_now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
776 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
777 } 989 }
778 else 990 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 992
781 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 994 }
783} 995}
784 996
785static void 997static void
786periodics_reify (EV_P) 998periodics_reify (EV_P)
787{ 999{
788 while (periodiccnt && periodics [0]->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 1001 {
790 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
791 1003
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005
792 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
793 if (w->interval) 1007 if (w->reschedule_cb)
794 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1019 }
799 else 1020 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1022
802 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1024 }
804} 1025}
805 1026
806static void 1027static void
807periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
813 { 1034 {
814 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
815 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1039 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
829} 1046}
830 1047
831inline int 1048inline int
832time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
833{ 1050{
834 mn_now = get_clock (); 1051 mn_now = get_clock ();
835 1052
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1054 {
838 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1056 return 0;
840 } 1057 }
841 else 1058 else
842 { 1059 {
843 now_floor = mn_now; 1060 now_floor = mn_now;
844 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
845 return 1; 1062 return 1;
846 } 1063 }
847} 1064}
848 1065
849static void 1066static void
858 { 1075 {
859 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
860 1077
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1079 {
863 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
864 1081
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1083 return; /* all is well */
867 1084
868 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1086 mn_now = get_clock ();
870 now_floor = mn_now; 1087 now_floor = mn_now;
871 } 1088 }
872 1089
873 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
876 } 1093 }
877 } 1094 }
878 else 1095 else
879#endif 1096#endif
880 { 1097 {
881 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
882 1099
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1101 {
885 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
886 1103
887 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1107 }
891 1108
892 mn_now = rt_now; 1109 mn_now = ev_rt_now;
893 } 1110 }
894} 1111}
895 1112
896void 1113void
897ev_ref (EV_P) 1114ev_ref (EV_P)
920 { 1137 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1139 call_pending (EV_A);
923 } 1140 }
924 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
925 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1147 fd_reify (EV_A);
927 1148
928 /* calculate blocking time */ 1149 /* calculate blocking time */
929 1150
930 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
935 else 1156 else
936#endif 1157#endif
937 { 1158 {
938 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1160 mn_now = ev_rt_now;
940 } 1161 }
941 1162
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1164 block = 0.;
944 else 1165 else
945 { 1166 {
946 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
947 1168
948 if (timercnt) 1169 if (timercnt)
949 { 1170 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1172 if (block > to) block = to;
952 } 1173 }
953 1174
954 if (periodiccnt) 1175 if (periodiccnt)
955 { 1176 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1178 if (block > to) block = to;
958 } 1179 }
959 1180
960 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
961 } 1182 }
962 1183
963 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
964 1185
965 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1187 time_update (EV_A);
967 1188
968 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
970 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
971 1192
972 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1196
976 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
977 if (checkcnt) 1198 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1274 return;
1054 1275
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1277
1057 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1281
1061 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1062} 1283}
1063 1284
1078ev_timer_start (EV_P_ struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1300{
1080 if (ev_is_active (w)) 1301 if (ev_is_active (w))
1081 return; 1302 return;
1082 1303
1083 w->at += mn_now; 1304 ((WT)w)->at += mn_now;
1084 1305
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1307
1087 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1314}
1092 1315
1093void 1316void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1317ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1318{
1096 ev_clear_pending (EV_A_ (W)w); 1319 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
1098 return; 1321 return;
1099 1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
1100 if (w->active < timercnt--) 1325 if (((W)w)->active < timercnt--)
1101 { 1326 {
1102 timers [w->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1329 }
1105 1330
1106 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
1107 1332
1108 ev_stop (EV_A_ (W)w); 1333 ev_stop (EV_A_ (W)w);
1109} 1334}
1110 1335
1111void 1336void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1338{
1114 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1115 { 1340 {
1116 if (w->repeat) 1341 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1343 else
1122 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1123 } 1345 }
1124 else if (w->repeat) 1346 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1352{
1131 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1132 return; 1354 return;
1133 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1139 1364
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1369
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1371}
1145 1372
1146void 1373void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1374ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1375{
1149 ev_clear_pending (EV_A_ (W)w); 1376 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1377 if (!ev_is_active (w))
1151 return; 1378 return;
1152 1379
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381
1153 if (w->active < periodiccnt--) 1382 if (((W)w)->active < periodiccnt--)
1154 { 1383 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1384 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1386 }
1158 1387
1159 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1160} 1389}
1161 1390
1162void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1401{
1165 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1166 return; 1403 return;
1167 1404
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1171} 1408}
1172 1409
1173void 1410void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1412{
1176 ev_clear_pending (EV_A_ (W)w); 1413 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1414 if (ev_is_active (w))
1178 return; 1415 return;
1179 1416
1180 idles [w->active - 1] = idles [--idlecnt]; 1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1182} 1419}
1183 1420
1184void 1421void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1423{
1187 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1188 return; 1425 return;
1189 1426
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1193} 1430}
1194 1431
1195void 1432void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1434{
1198 ev_clear_pending (EV_A_ (W)w); 1435 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1436 if (ev_is_active (w))
1200 return; 1437 return;
1201 1438
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1440 ev_stop (EV_A_ (W)w);
1204} 1441}
1205 1442
1206void 1443void
1207ev_check_start (EV_P_ struct ev_check *w) 1444ev_check_start (EV_P_ struct ev_check *w)
1208{ 1445{
1209 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1210 return; 1447 return;
1211 1448
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1215} 1452}
1216 1453
1217void 1454void
1218ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1456{
1220 ev_clear_pending (EV_A_ (W)w); 1457 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1458 if (ev_is_active (w))
1222 return; 1459 return;
1223 1460
1224 checks [w->active - 1] = checks [--checkcnt]; 1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1462 ev_stop (EV_A_ (W)w);
1226} 1463}
1227 1464
1228#ifndef SA_RESTART 1465#ifndef SA_RESTART
1229# define SA_RESTART 0 1466# define SA_RESTART 0
1239 return; 1476 return;
1240 1477
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1479
1243 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1483
1247 if (!w->next) 1484 if (!((WL)w)->next)
1248 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
1249 struct sigaction sa; 1489 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
1254 } 1495 }
1255} 1496}
1256 1497
1257void 1498void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1550 void *arg = once->arg;
1310 1551
1311 ev_io_stop (EV_A_ &once->io); 1552 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1554 ev_free (once);
1314 1555
1315 cb (revents, arg); 1556 cb (revents, arg);
1316} 1557}
1317 1558
1318static void 1559static void
1328} 1569}
1329 1570
1330void 1571void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1573{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1575
1335 if (!once) 1576 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1578 else
1338 { 1579 {
1339 once->cb = cb; 1580 once->cb = cb;
1340 once->arg = arg; 1581 once->arg = arg;
1341 1582
1342 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1584 if (fd >= 0)
1344 { 1585 {
1345 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1347 } 1588 }
1348 1589
1349 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1591 if (timeout >= 0.)
1351 { 1592 {
1352 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1354 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines