ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.46 by root, Sat Nov 3 09:20:12 2007 UTC vs.
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33#endif 33#endif
34 34
35#include <math.h> 35#include <math.h>
36#include <stdlib.h> 36#include <stdlib.h>
113 113
114typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
117 117
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 119
128/*****************************************************************************/ 120/*****************************************************************************/
129 121
130ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
131ev_time (void) 156ev_time (void)
132{ 157{
133#if EV_USE_REALTIME 158#if EV_USE_REALTIME
134 struct timespec ts; 159 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 166#endif
142} 167}
143 168
144static ev_tstamp 169inline ev_tstamp
145get_clock (void) 170get_clock (void)
146{ 171{
147#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 173 if (expect_true (have_monotonic))
149 { 174 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 178 }
154#endif 179#endif
155 180
156 return ev_time (); 181 return ev_time ();
182}
183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
157} 188}
158 189
159#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
160 191
161#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 204 cur = newcnt; \
174 } 205 }
175 206
176/*****************************************************************************/ 207/*****************************************************************************/
177 208
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 209static void
189anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
190{ 211{
191 while (count--) 212 while (count--)
192 { 213 {
196 217
197 ++base; 218 ++base;
198 } 219 }
199} 220}
200 221
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 222static void
211event (W w, int events) 223event (EV_P_ W w, int events)
212{ 224{
213 if (w->pending) 225 if (w->pending)
214 { 226 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 228 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 235}
224 236
225static void 237static void
226queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 239{
228 int i; 240 int i;
229 241
230 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 243 event (EV_A_ events [i], type);
232} 244}
233 245
234static void 246static void
235fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
236{ 248{
237 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 250 struct ev_io *w;
239 251
240 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 253 {
242 int ev = w->events & events; 254 int ev = w->events & events;
243 255
244 if (ev) 256 if (ev)
245 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
246 } 258 }
247} 259}
248 260
249/*****************************************************************************/ 261/*****************************************************************************/
250 262
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 263static void
255fd_reify (void) 264fd_reify (EV_P)
256{ 265{
257 int i; 266 int i;
258 267
259 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
260 { 269 {
262 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 272 struct ev_io *w;
264 273
265 int events = 0; 274 int events = 0;
266 275
267 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 277 events |= w->events;
269 278
270 anfd->reify = 0; 279 anfd->reify = 0;
271 280
272 if (anfd->events != events) 281 if (anfd->events != events)
273 { 282 {
274 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 284 anfd->events = events;
276 } 285 }
277 } 286 }
278 287
279 fdchangecnt = 0; 288 fdchangecnt = 0;
280} 289}
281 290
282static void 291static void
283fd_change (int fd) 292fd_change (EV_P_ int fd)
284{ 293{
285 if (anfds [fd].reify || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 295 return;
287 296
288 anfds [fd].reify = 1; 297 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
293} 302}
294 303
295static void 304static void
296fd_kill (int fd) 305fd_kill (EV_P_ int fd)
297{ 306{
298 struct ev_io *w; 307 struct ev_io *w;
299 308
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 309 while ((w = (struct ev_io *)anfds [fd].head))
302 { 310 {
303 ev_io_stop (w); 311 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 313 }
306} 314}
307 315
308/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
309static void 317static void
310fd_ebadf (void) 318fd_ebadf (EV_P)
311{ 319{
312 int fd; 320 int fd;
313 321
314 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 323 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 325 fd_kill (EV_A_ fd);
318} 326}
319 327
320/* called on ENOMEM in select/poll to kill some fds and retry */ 328/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 329static void
322fd_enomem (void) 330fd_enomem (EV_P)
323{ 331{
324 int fd = anfdmax; 332 int fd = anfdmax;
325 333
326 while (fd--) 334 while (fd--)
327 if (anfds [fd].events) 335 if (anfds [fd].events)
328 { 336 {
329 close (fd); 337 close (fd);
330 fd_kill (fd); 338 fd_kill (EV_A_ fd);
331 return; 339 return;
332 } 340 }
333} 341}
334 342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
356}
357
335/*****************************************************************************/ 358/*****************************************************************************/
336 359
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 360static void
344upheap (WT *timers, int k) 361upheap (WT *heap, int k)
345{ 362{
346 WT w = timers [k]; 363 WT w = heap [k];
347 364
348 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
349 { 366 {
350 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
352 k >>= 1; 369 k >>= 1;
353 } 370 }
354 371
355 timers [k] = w; 372 heap [k] = w;
356 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
357 374
358} 375}
359 376
360static void 377static void
361downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
362{ 379{
363 WT w = timers [k]; 380 WT w = heap [k];
364 381
365 while (k < (N >> 1)) 382 while (k < (N >> 1))
366 { 383 {
367 int j = k << 1; 384 int j = k << 1;
368 385
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 387 ++j;
371 388
372 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
373 break; 390 break;
374 391
375 timers [k] = timers [j]; 392 heap [k] = heap [j];
376 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
377 k = j; 394 k = j;
378 } 395 }
379 396
380 timers [k] = w; 397 heap [k] = w;
381 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
382} 399}
383 400
384/*****************************************************************************/ 401/*****************************************************************************/
385 402
386typedef struct 403typedef struct
387{ 404{
388 struct ev_signal *head; 405 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 406 sig_atomic_t volatile gotsig;
390} ANSIG; 407} ANSIG;
391 408
392static ANSIG *signals; 409static ANSIG *signals;
393static int signalmax; 410static int signalmax;
413{ 430{
414 signals [signum - 1].gotsig = 1; 431 signals [signum - 1].gotsig = 1;
415 432
416 if (!gotsig) 433 if (!gotsig)
417 { 434 {
435 int old_errno = errno;
418 gotsig = 1; 436 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
420 } 439 }
421} 440}
422 441
423static void 442static void
424sigcb (struct ev_io *iow, int revents) 443sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 444{
426 struct ev_signal *w; 445 struct ev_watcher_list *w;
427 int signum; 446 int signum;
428 447
429 read (sigpipe [0], &revents, 1); 448 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 449 gotsig = 0;
431 450
433 if (signals [signum].gotsig) 452 if (signals [signum].gotsig)
434 { 453 {
435 signals [signum].gotsig = 0; 454 signals [signum].gotsig = 0;
436 455
437 for (w = signals [signum].head; w; w = w->next) 456 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 457 event (EV_A_ (W)w, EV_SIGNAL);
439 } 458 }
440} 459}
441 460
442static void 461static void
443siginit (void) 462siginit (EV_P)
444{ 463{
445#ifndef WIN32 464#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 467
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 471#endif
453 472
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 473 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 476}
457 477
458/*****************************************************************************/ 478/*****************************************************************************/
459 479
460static struct ev_idle **idles; 480#ifndef WIN32
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470 481
471static struct ev_child *childs [PID_HASHSIZE]; 482static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 483static struct ev_signal childev;
473 484
474#ifndef WIN32
475
476#ifndef WCONTINUED 485#ifndef WCONTINUED
477# define WCONTINUED 0 486# define WCONTINUED 0
478#endif 487#endif
479 488
480static void 489static void
481childcb (struct ev_signal *sw, int revents) 490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 491{
483 struct ev_child *w; 492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents)
506{
484 int pid, status; 507 int pid, status;
485 508
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 510 {
488 if (w->pid == pid || !w->pid) 511 /* make sure we are called again until all childs have been reaped */
489 { 512 event (EV_A_ (W)sw, EV_SIGNAL);
490 w->rpid = pid; 513
491 w->rstatus = status; 514 child_reap (EV_A_ sw, pid, pid, status);
492 event ((W)w, EV_CHILD); 515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
493 } 516 }
494} 517}
495 518
496#endif 519#endif
497 520
498/*****************************************************************************/ 521/*****************************************************************************/
520ev_version_minor (void) 543ev_version_minor (void)
521{ 544{
522 return EV_VERSION_MINOR; 545 return EV_VERSION_MINOR;
523} 546}
524 547
525/* return true if we are running with elevated privileges and ignore env variables */ 548/* return true if we are running with elevated privileges and should ignore env variables */
526static int 549static int
527enable_secure () 550enable_secure (void)
528{ 551{
552#ifdef WIN32
553 return 0;
554#else
529 return getuid () != geteuid () 555 return getuid () != geteuid ()
530 || getgid () != getegid (); 556 || getgid () != getegid ();
557#endif
531} 558}
532 559
533int ev_init (int methods) 560int
561ev_method (EV_P)
534{ 562{
563 return method;
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
535 if (!ev_method) 569 if (!method)
536 { 570 {
537#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
538 { 572 {
539 struct timespec ts; 573 struct timespec ts;
540 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
541 have_monotonic = 1; 575 have_monotonic = 1;
542 } 576 }
543#endif 577#endif
544 578
545 ev_now = ev_time (); 579 rt_now = ev_time ();
546 now = get_clock (); 580 mn_now = get_clock ();
547 now_floor = now; 581 now_floor = mn_now;
548 diff = ev_now - now; 582 rtmn_diff = rt_now - mn_now;
549
550 if (pipe (sigpipe))
551 return 0;
552 583
553 if (methods == EVMETHOD_AUTO) 584 if (methods == EVMETHOD_AUTO)
554 if (!enable_secure () && getenv ("LIBEV_METHODS")) 585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
555 methods = atoi (getenv ("LIBEV_METHODS")); 586 methods = atoi (getenv ("LIBEV_METHODS"));
556 else 587 else
557 methods = EVMETHOD_ANY; 588 methods = EVMETHOD_ANY;
558 589
559 ev_method = 0; 590 method = 0;
560#if EV_USE_KQUEUE 591#if EV_USE_KQUEUE
561 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
562#endif 593#endif
563#if EV_USE_EPOLL 594#if EV_USE_EPOLL
564 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
565#endif 596#endif
566#if EV_USE_POLL 597#if EV_USE_POLL
567 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
568#endif 599#endif
569#if EV_USE_SELECT 600#if EV_USE_SELECT
570 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
571#endif 602#endif
603 }
604}
572 605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY
639struct ev_loop *
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop)
684 {
685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1;
689#endif
690
691 loop_init (EV_A_ methods);
692
573 if (ev_method) 693 if (ev_method (EV_A))
574 { 694 {
575 ev_watcher_init (&sigev, sigcb); 695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
576 siginit (); 697 siginit (EV_A);
577 698
578#ifndef WIN32 699#ifndef WIN32
579 ev_signal_init (&childev, childcb, SIGCHLD); 700 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI);
580 ev_signal_start (&childev); 702 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */
581#endif 704#endif
582 } 705 }
706 else
707 default_loop = 0;
583 } 708 }
584 709
585 return ev_method; 710 return default_loop;
586} 711}
587 712
588/*****************************************************************************/
589
590void 713void
591ev_fork_prepare (void) 714ev_default_destroy (void)
592{ 715{
593 /* nop */ 716#if EV_MULTIPLICITY
594} 717 struct ev_loop *loop = default_loop;
595
596void
597ev_fork_parent (void)
598{
599 /* nop */
600}
601
602void
603ev_fork_child (void)
604{
605#if EV_USE_EPOLL
606 if (ev_method == EVMETHOD_EPOLL)
607 epoll_postfork_child ();
608#endif 718#endif
609 719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
610 ev_io_stop (&sigev); 724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730}
731
732void
733ev_default_fork (EV_P)
734{
735 loop_fork (EV_A);
736
737 ev_io_stop (EV_A_ &sigev);
611 close (sigpipe [0]); 738 close (sigpipe [0]);
612 close (sigpipe [1]); 739 close (sigpipe [1]);
613 pipe (sigpipe); 740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
614 siginit (); 743 siginit (EV_A);
615} 744}
616 745
617/*****************************************************************************/ 746/*****************************************************************************/
618 747
619static void 748static void
620call_pending (void) 749call_pending (EV_P)
621{ 750{
622 int pri; 751 int pri;
623 752
624 for (pri = NUMPRI; pri--; ) 753 for (pri = NUMPRI; pri--; )
625 while (pendingcnt [pri]) 754 while (pendingcnt [pri])
627 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 756 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
628 757
629 if (p->w) 758 if (p->w)
630 { 759 {
631 p->w->pending = 0; 760 p->w->pending = 0;
632 p->w->cb (p->w, p->events); 761 p->w->cb (EV_A_ p->w, p->events);
633 } 762 }
634 } 763 }
635} 764}
636 765
637static void 766static void
638timers_reify (void) 767timers_reify (EV_P)
639{ 768{
640 while (timercnt && timers [0]->at <= now) 769 while (timercnt && timers [0]->at <= mn_now)
641 { 770 {
642 struct ev_timer *w = timers [0]; 771 struct ev_timer *w = timers [0];
643 772
644 /* first reschedule or stop timer */ 773 /* first reschedule or stop timer */
645 if (w->repeat) 774 if (w->repeat)
646 { 775 {
647 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
648 w->at = now + w->repeat; 777 w->at = mn_now + w->repeat;
649 downheap ((WT *)timers, timercnt, 0); 778 downheap ((WT *)timers, timercnt, 0);
650 } 779 }
651 else 780 else
652 ev_timer_stop (w); /* nonrepeating: stop timer */ 781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
653 782
654 event ((W)w, EV_TIMEOUT); 783 event (EV_A_ (W)w, EV_TIMEOUT);
655 } 784 }
656} 785}
657 786
658static void 787static void
659periodics_reify (void) 788periodics_reify (EV_P)
660{ 789{
661 while (periodiccnt && periodics [0]->at <= ev_now) 790 while (periodiccnt && periodics [0]->at <= rt_now)
662 { 791 {
663 struct ev_periodic *w = periodics [0]; 792 struct ev_periodic *w = periodics [0];
664 793
665 /* first reschedule or stop timer */ 794 /* first reschedule or stop timer */
666 if (w->interval) 795 if (w->interval)
667 { 796 {
668 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
669 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
670 downheap ((WT *)periodics, periodiccnt, 0); 799 downheap ((WT *)periodics, periodiccnt, 0);
671 } 800 }
672 else 801 else
673 ev_periodic_stop (w); /* nonrepeating: stop timer */ 802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
674 803
675 event ((W)w, EV_PERIODIC); 804 event (EV_A_ (W)w, EV_PERIODIC);
676 } 805 }
677} 806}
678 807
679static void 808static void
680periodics_reschedule (ev_tstamp diff) 809periodics_reschedule (EV_P)
681{ 810{
682 int i; 811 int i;
683 812
684 /* adjust periodics after time jump */ 813 /* adjust periodics after time jump */
685 for (i = 0; i < periodiccnt; ++i) 814 for (i = 0; i < periodiccnt; ++i)
686 { 815 {
687 struct ev_periodic *w = periodics [i]; 816 struct ev_periodic *w = periodics [i];
688 817
689 if (w->interval) 818 if (w->interval)
690 { 819 {
691 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
692 821
693 if (fabs (diff) >= 1e-4) 822 if (fabs (diff) >= 1e-4)
694 { 823 {
695 ev_periodic_stop (w); 824 ev_periodic_stop (EV_A_ w);
696 ev_periodic_start (w); 825 ev_periodic_start (EV_A_ w);
697 826
698 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
699 } 828 }
700 } 829 }
701 } 830 }
702} 831}
703 832
704static int 833inline int
705time_update_monotonic (void) 834time_update_monotonic (EV_P)
706{ 835{
707 now = get_clock (); 836 mn_now = get_clock ();
708 837
709 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
710 { 839 {
711 ev_now = now + diff; 840 rt_now = rtmn_diff + mn_now;
712 return 0; 841 return 0;
713 } 842 }
714 else 843 else
715 { 844 {
716 now_floor = now; 845 now_floor = mn_now;
717 ev_now = ev_time (); 846 rt_now = ev_time ();
718 return 1; 847 return 1;
719 } 848 }
720} 849}
721 850
722static void 851static void
723time_update (void) 852time_update (EV_P)
724{ 853{
725 int i; 854 int i;
726 855
727#if EV_USE_MONOTONIC 856#if EV_USE_MONOTONIC
728 if (expect_true (have_monotonic)) 857 if (expect_true (have_monotonic))
729 { 858 {
730 if (time_update_monotonic ()) 859 if (time_update_monotonic (EV_A))
731 { 860 {
732 ev_tstamp odiff = diff; 861 ev_tstamp odiff = rtmn_diff;
733 862
734 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 863 for (i = 4; --i; ) /* loop a few times, before making important decisions */
735 { 864 {
736 diff = ev_now - now; 865 rtmn_diff = rt_now - mn_now;
737 866
738 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
739 return; /* all is well */ 868 return; /* all is well */
740 869
741 ev_now = ev_time (); 870 rt_now = ev_time ();
742 now = get_clock (); 871 mn_now = get_clock ();
743 now_floor = now; 872 now_floor = mn_now;
744 } 873 }
745 874
746 periodics_reschedule (diff - odiff); 875 periodics_reschedule (EV_A);
747 /* no timer adjustment, as the monotonic clock doesn't jump */ 876 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
748 } 878 }
749 } 879 }
750 else 880 else
751#endif 881#endif
752 { 882 {
753 ev_now = ev_time (); 883 rt_now = ev_time ();
754 884
755 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
756 { 886 {
757 periodics_reschedule (ev_now - now); 887 periodics_reschedule (EV_A);
758 888
759 /* adjust timers. this is easy, as the offset is the same for all */ 889 /* adjust timers. this is easy, as the offset is the same for all */
760 for (i = 0; i < timercnt; ++i) 890 for (i = 0; i < timercnt; ++i)
761 timers [i]->at += diff; 891 timers [i]->at += rt_now - mn_now;
762 } 892 }
763 893
764 now = ev_now; 894 mn_now = rt_now;
765 } 895 }
766} 896}
767 897
768int ev_loop_done; 898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
769 903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
770void ev_loop (int flags) 913ev_loop (EV_P_ int flags)
771{ 914{
772 double block; 915 double block;
773 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
774 917
775 do 918 do
776 { 919 {
777 /* queue check watchers (and execute them) */ 920 /* queue check watchers (and execute them) */
778 if (expect_false (preparecnt)) 921 if (expect_false (preparecnt))
779 { 922 {
780 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
781 call_pending (); 924 call_pending (EV_A);
782 } 925 }
783 926
784 /* update fd-related kernel structures */ 927 /* update fd-related kernel structures */
785 fd_reify (); 928 fd_reify (EV_A);
786 929
787 /* calculate blocking time */ 930 /* calculate blocking time */
788 931
789 /* we only need this for !monotonic clockor timers, but as we basically 932 /* we only need this for !monotonic clockor timers, but as we basically
790 always have timers, we just calculate it always */ 933 always have timers, we just calculate it always */
791#if EV_USE_MONOTONIC 934#if EV_USE_MONOTONIC
792 if (expect_true (have_monotonic)) 935 if (expect_true (have_monotonic))
793 time_update_monotonic (); 936 time_update_monotonic (EV_A);
794 else 937 else
795#endif 938#endif
796 { 939 {
797 ev_now = ev_time (); 940 rt_now = ev_time ();
798 now = ev_now; 941 mn_now = rt_now;
799 } 942 }
800 943
801 if (flags & EVLOOP_NONBLOCK || idlecnt) 944 if (flags & EVLOOP_NONBLOCK || idlecnt)
802 block = 0.; 945 block = 0.;
803 else 946 else
804 { 947 {
805 block = MAX_BLOCKTIME; 948 block = MAX_BLOCKTIME;
806 949
807 if (timercnt) 950 if (timercnt)
808 { 951 {
809 ev_tstamp to = timers [0]->at - now + method_fudge; 952 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
810 if (block > to) block = to; 953 if (block > to) block = to;
811 } 954 }
812 955
813 if (periodiccnt) 956 if (periodiccnt)
814 { 957 {
815 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
816 if (block > to) block = to; 959 if (block > to) block = to;
817 } 960 }
818 961
819 if (block < 0.) block = 0.; 962 if (block < 0.) block = 0.;
820 } 963 }
821 964
822 method_poll (block); 965 method_poll (EV_A_ block);
823 966
824 /* update ev_now, do magic */ 967 /* update rt_now, do magic */
825 time_update (); 968 time_update (EV_A);
826 969
827 /* queue pending timers and reschedule them */ 970 /* queue pending timers and reschedule them */
828 timers_reify (); /* relative timers called last */ 971 timers_reify (EV_A); /* relative timers called last */
829 periodics_reify (); /* absolute timers called first */ 972 periodics_reify (EV_A); /* absolute timers called first */
830 973
831 /* queue idle watchers unless io or timers are pending */ 974 /* queue idle watchers unless io or timers are pending */
832 if (!pendingcnt) 975 if (!pendingcnt)
833 queue_events ((W *)idles, idlecnt, EV_IDLE); 976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
834 977
835 /* queue check watchers, to be executed first */ 978 /* queue check watchers, to be executed first */
836 if (checkcnt) 979 if (checkcnt)
837 queue_events ((W *)checks, checkcnt, EV_CHECK); 980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
838 981
839 call_pending (); 982 call_pending (EV_A);
840 } 983 }
841 while (!ev_loop_done); 984 while (activecnt && !loop_done);
842 985
843 if (ev_loop_done != 2) 986 if (loop_done != 2)
844 ev_loop_done = 0; 987 loop_done = 0;
988}
989
990void
991ev_unloop (EV_P_ int how)
992{
993 loop_done = how;
845} 994}
846 995
847/*****************************************************************************/ 996/*****************************************************************************/
848 997
849static void 998inline void
850wlist_add (WL *head, WL elem) 999wlist_add (WL *head, WL elem)
851{ 1000{
852 elem->next = *head; 1001 elem->next = *head;
853 *head = elem; 1002 *head = elem;
854} 1003}
855 1004
856static void 1005inline void
857wlist_del (WL *head, WL elem) 1006wlist_del (WL *head, WL elem)
858{ 1007{
859 while (*head) 1008 while (*head)
860 { 1009 {
861 if (*head == elem) 1010 if (*head == elem)
866 1015
867 head = &(*head)->next; 1016 head = &(*head)->next;
868 } 1017 }
869} 1018}
870 1019
871static void 1020inline void
872ev_clear_pending (W w) 1021ev_clear_pending (EV_P_ W w)
873{ 1022{
874 if (w->pending) 1023 if (w->pending)
875 { 1024 {
876 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1025 pendings [ABSPRI (w)][w->pending - 1].w = 0;
877 w->pending = 0; 1026 w->pending = 0;
878 } 1027 }
879} 1028}
880 1029
881static void 1030inline void
882ev_start (W w, int active) 1031ev_start (EV_P_ W w, int active)
883{ 1032{
884 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
885 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
886 1035
887 w->active = active; 1036 w->active = active;
1037 ev_ref (EV_A);
888} 1038}
889 1039
890static void 1040inline void
891ev_stop (W w) 1041ev_stop (EV_P_ W w)
892{ 1042{
1043 ev_unref (EV_A);
893 w->active = 0; 1044 w->active = 0;
894} 1045}
895 1046
896/*****************************************************************************/ 1047/*****************************************************************************/
897 1048
898void 1049void
899ev_io_start (struct ev_io *w) 1050ev_io_start (EV_P_ struct ev_io *w)
900{ 1051{
901 int fd = w->fd; 1052 int fd = w->fd;
902 1053
903 if (ev_is_active (w)) 1054 if (ev_is_active (w))
904 return; 1055 return;
905 1056
906 assert (("ev_io_start called with negative fd", fd >= 0)); 1057 assert (("ev_io_start called with negative fd", fd >= 0));
907 1058
908 ev_start ((W)w, 1); 1059 ev_start (EV_A_ (W)w, 1);
909 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
910 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1061 wlist_add ((WL *)&anfds[fd].head, (WL)w);
911 1062
912 fd_change (fd); 1063 fd_change (EV_A_ fd);
913} 1064}
914 1065
915void 1066void
916ev_io_stop (struct ev_io *w) 1067ev_io_stop (EV_P_ struct ev_io *w)
917{ 1068{
918 ev_clear_pending ((W)w); 1069 ev_clear_pending (EV_A_ (W)w);
919 if (!ev_is_active (w)) 1070 if (!ev_is_active (w))
920 return; 1071 return;
921 1072
922 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
923 ev_stop ((W)w); 1074 ev_stop (EV_A_ (W)w);
924 1075
925 fd_change (w->fd); 1076 fd_change (EV_A_ w->fd);
926} 1077}
927 1078
928void 1079void
929ev_timer_start (struct ev_timer *w) 1080ev_timer_start (EV_P_ struct ev_timer *w)
930{ 1081{
931 if (ev_is_active (w)) 1082 if (ev_is_active (w))
932 return; 1083 return;
933 1084
934 w->at += now; 1085 w->at += mn_now;
935 1086
936 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
937 1088
938 ev_start ((W)w, ++timercnt); 1089 ev_start (EV_A_ (W)w, ++timercnt);
939 array_needsize (timers, timermax, timercnt, ); 1090 array_needsize (timers, timermax, timercnt, );
940 timers [timercnt - 1] = w; 1091 timers [timercnt - 1] = w;
941 upheap ((WT *)timers, timercnt - 1); 1092 upheap ((WT *)timers, timercnt - 1);
942} 1093}
943 1094
944void 1095void
945ev_timer_stop (struct ev_timer *w) 1096ev_timer_stop (EV_P_ struct ev_timer *w)
946{ 1097{
947 ev_clear_pending ((W)w); 1098 ev_clear_pending (EV_A_ (W)w);
948 if (!ev_is_active (w)) 1099 if (!ev_is_active (w))
949 return; 1100 return;
950 1101
951 if (w->active < timercnt--) 1102 if (w->active < timercnt--)
952 { 1103 {
954 downheap ((WT *)timers, timercnt, w->active - 1); 1105 downheap ((WT *)timers, timercnt, w->active - 1);
955 } 1106 }
956 1107
957 w->at = w->repeat; 1108 w->at = w->repeat;
958 1109
959 ev_stop ((W)w); 1110 ev_stop (EV_A_ (W)w);
960} 1111}
961 1112
962void 1113void
963ev_timer_again (struct ev_timer *w) 1114ev_timer_again (EV_P_ struct ev_timer *w)
964{ 1115{
965 if (ev_is_active (w)) 1116 if (ev_is_active (w))
966 { 1117 {
967 if (w->repeat) 1118 if (w->repeat)
968 { 1119 {
969 w->at = now + w->repeat; 1120 w->at = mn_now + w->repeat;
970 downheap ((WT *)timers, timercnt, w->active - 1); 1121 downheap ((WT *)timers, timercnt, w->active - 1);
971 } 1122 }
972 else 1123 else
973 ev_timer_stop (w); 1124 ev_timer_stop (EV_A_ w);
974 } 1125 }
975 else if (w->repeat) 1126 else if (w->repeat)
976 ev_timer_start (w); 1127 ev_timer_start (EV_A_ w);
977} 1128}
978 1129
979void 1130void
980ev_periodic_start (struct ev_periodic *w) 1131ev_periodic_start (EV_P_ struct ev_periodic *w)
981{ 1132{
982 if (ev_is_active (w)) 1133 if (ev_is_active (w))
983 return; 1134 return;
984 1135
985 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
986 1137
987 /* this formula differs from the one in periodic_reify because we do not always round up */ 1138 /* this formula differs from the one in periodic_reify because we do not always round up */
988 if (w->interval) 1139 if (w->interval)
989 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
990 1141
991 ev_start ((W)w, ++periodiccnt); 1142 ev_start (EV_A_ (W)w, ++periodiccnt);
992 array_needsize (periodics, periodicmax, periodiccnt, ); 1143 array_needsize (periodics, periodicmax, periodiccnt, );
993 periodics [periodiccnt - 1] = w; 1144 periodics [periodiccnt - 1] = w;
994 upheap ((WT *)periodics, periodiccnt - 1); 1145 upheap ((WT *)periodics, periodiccnt - 1);
995} 1146}
996 1147
997void 1148void
998ev_periodic_stop (struct ev_periodic *w) 1149ev_periodic_stop (EV_P_ struct ev_periodic *w)
999{ 1150{
1000 ev_clear_pending ((W)w); 1151 ev_clear_pending (EV_A_ (W)w);
1001 if (!ev_is_active (w)) 1152 if (!ev_is_active (w))
1002 return; 1153 return;
1003 1154
1004 if (w->active < periodiccnt--) 1155 if (w->active < periodiccnt--)
1005 { 1156 {
1006 periodics [w->active - 1] = periodics [periodiccnt]; 1157 periodics [w->active - 1] = periodics [periodiccnt];
1007 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1158 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1008 } 1159 }
1009 1160
1010 ev_stop ((W)w); 1161 ev_stop (EV_A_ (W)w);
1011} 1162}
1012 1163
1013void 1164void
1014ev_signal_start (struct ev_signal *w) 1165ev_idle_start (EV_P_ struct ev_idle *w)
1015{ 1166{
1016 if (ev_is_active (w)) 1167 if (ev_is_active (w))
1017 return; 1168 return;
1018 1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w);
1184}
1185
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229
1230#ifndef SA_RESTART
1231# define SA_RESTART 0
1232#endif
1233
1234void
1235ev_signal_start (EV_P_ struct ev_signal *w)
1236{
1237#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239#endif
1240 if (ev_is_active (w))
1241 return;
1242
1019 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1020 1244
1021 ev_start ((W)w, 1); 1245 ev_start (EV_A_ (W)w, 1);
1022 array_needsize (signals, signalmax, w->signum, signals_init); 1246 array_needsize (signals, signalmax, w->signum, signals_init);
1023 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1024 1248
1025 if (!w->next) 1249 if (!w->next)
1026 { 1250 {
1027 struct sigaction sa; 1251 struct sigaction sa;
1028 sa.sa_handler = sighandler; 1252 sa.sa_handler = sighandler;
1029 sigfillset (&sa.sa_mask); 1253 sigfillset (&sa.sa_mask);
1030 sa.sa_flags = 0; 1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1031 sigaction (w->signum, &sa, 0); 1255 sigaction (w->signum, &sa, 0);
1032 } 1256 }
1033} 1257}
1034 1258
1035void 1259void
1036ev_signal_stop (struct ev_signal *w) 1260ev_signal_stop (EV_P_ struct ev_signal *w)
1037{ 1261{
1038 ev_clear_pending ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
1039 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
1040 return; 1264 return;
1041 1265
1042 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1043 ev_stop ((W)w); 1267 ev_stop (EV_A_ (W)w);
1044 1268
1045 if (!signals [w->signum - 1].head) 1269 if (!signals [w->signum - 1].head)
1046 signal (w->signum, SIG_DFL); 1270 signal (w->signum, SIG_DFL);
1047} 1271}
1048 1272
1049void 1273void
1050ev_idle_start (struct ev_idle *w) 1274ev_child_start (EV_P_ struct ev_child *w)
1051{ 1275{
1276#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop));
1278#endif
1052 if (ev_is_active (w)) 1279 if (ev_is_active (w))
1053 return; 1280 return;
1054 1281
1055 ev_start ((W)w, ++idlecnt); 1282 ev_start (EV_A_ (W)w, 1);
1056 array_needsize (idles, idlemax, idlecnt, ); 1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1057 idles [idlecnt - 1] = w;
1058} 1284}
1059 1285
1060void 1286void
1061ev_idle_stop (struct ev_idle *w) 1287ev_child_stop (EV_P_ struct ev_child *w)
1062{ 1288{
1063 ev_clear_pending ((W)w); 1289 ev_clear_pending (EV_A_ (W)w);
1064 if (ev_is_active (w)) 1290 if (ev_is_active (w))
1065 return; 1291 return;
1066 1292
1067 idles [w->active - 1] = idles [--idlecnt];
1068 ev_stop ((W)w);
1069}
1070
1071void
1072ev_prepare_start (struct ev_prepare *w)
1073{
1074 if (ev_is_active (w))
1075 return;
1076
1077 ev_start ((W)w, ++preparecnt);
1078 array_needsize (prepares, preparemax, preparecnt, );
1079 prepares [preparecnt - 1] = w;
1080}
1081
1082void
1083ev_prepare_stop (struct ev_prepare *w)
1084{
1085 ev_clear_pending ((W)w);
1086 if (ev_is_active (w))
1087 return;
1088
1089 prepares [w->active - 1] = prepares [--preparecnt];
1090 ev_stop ((W)w);
1091}
1092
1093void
1094ev_check_start (struct ev_check *w)
1095{
1096 if (ev_is_active (w))
1097 return;
1098
1099 ev_start ((W)w, ++checkcnt);
1100 array_needsize (checks, checkmax, checkcnt, );
1101 checks [checkcnt - 1] = w;
1102}
1103
1104void
1105ev_check_stop (struct ev_check *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 checks [w->active - 1] = checks [--checkcnt];
1112 ev_stop ((W)w);
1113}
1114
1115void
1116ev_child_start (struct ev_child *w)
1117{
1118 if (ev_is_active (w))
1119 return;
1120
1121 ev_start ((W)w, 1);
1122 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1123}
1124
1125void
1126ev_child_stop (struct ev_child *w)
1127{
1128 ev_clear_pending ((W)w);
1129 if (ev_is_active (w))
1130 return;
1131
1132 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1133 ev_stop ((W)w); 1294 ev_stop (EV_A_ (W)w);
1134} 1295}
1135 1296
1136/*****************************************************************************/ 1297/*****************************************************************************/
1137 1298
1138struct ev_once 1299struct ev_once
1142 void (*cb)(int revents, void *arg); 1303 void (*cb)(int revents, void *arg);
1143 void *arg; 1304 void *arg;
1144}; 1305};
1145 1306
1146static void 1307static void
1147once_cb (struct ev_once *once, int revents) 1308once_cb (EV_P_ struct ev_once *once, int revents)
1148{ 1309{
1149 void (*cb)(int revents, void *arg) = once->cb; 1310 void (*cb)(int revents, void *arg) = once->cb;
1150 void *arg = once->arg; 1311 void *arg = once->arg;
1151 1312
1152 ev_io_stop (&once->io); 1313 ev_io_stop (EV_A_ &once->io);
1153 ev_timer_stop (&once->to); 1314 ev_timer_stop (EV_A_ &once->to);
1154 free (once); 1315 free (once);
1155 1316
1156 cb (revents, arg); 1317 cb (revents, arg);
1157} 1318}
1158 1319
1159static void 1320static void
1160once_cb_io (struct ev_io *w, int revents) 1321once_cb_io (EV_P_ struct ev_io *w, int revents)
1161{ 1322{
1162 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1163} 1324}
1164 1325
1165static void 1326static void
1166once_cb_to (struct ev_timer *w, int revents) 1327once_cb_to (EV_P_ struct ev_timer *w, int revents)
1167{ 1328{
1168 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1169} 1330}
1170 1331
1171void 1332void
1172ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1173{ 1334{
1174 struct ev_once *once = malloc (sizeof (struct ev_once)); 1335 struct ev_once *once = malloc (sizeof (struct ev_once));
1175 1336
1176 if (!once) 1337 if (!once)
1177 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1182 1343
1183 ev_watcher_init (&once->io, once_cb_io); 1344 ev_watcher_init (&once->io, once_cb_io);
1184 if (fd >= 0) 1345 if (fd >= 0)
1185 { 1346 {
1186 ev_io_set (&once->io, fd, events); 1347 ev_io_set (&once->io, fd, events);
1187 ev_io_start (&once->io); 1348 ev_io_start (EV_A_ &once->io);
1188 } 1349 }
1189 1350
1190 ev_watcher_init (&once->to, once_cb_to); 1351 ev_watcher_init (&once->to, once_cb_to);
1191 if (timeout >= 0.) 1352 if (timeout >= 0.)
1192 { 1353 {
1193 ev_timer_set (&once->to, timeout, 0.); 1354 ev_timer_set (&once->to, timeout, 0.);
1194 ev_timer_start (&once->to); 1355 ev_timer_start (EV_A_ &once->to);
1195 } 1356 }
1196 } 1357 }
1197} 1358}
1198 1359
1199/*****************************************************************************/
1200
1201#if 0
1202
1203struct ev_io wio;
1204
1205static void
1206sin_cb (struct ev_io *w, int revents)
1207{
1208 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1209}
1210
1211static void
1212ocb (struct ev_timer *w, int revents)
1213{
1214 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1215 ev_timer_stop (w);
1216 ev_timer_start (w);
1217}
1218
1219static void
1220scb (struct ev_signal *w, int revents)
1221{
1222 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1223 ev_io_stop (&wio);
1224 ev_io_start (&wio);
1225}
1226
1227static void
1228gcb (struct ev_signal *w, int revents)
1229{
1230 fprintf (stderr, "generic %x\n", revents);
1231
1232}
1233
1234int main (void)
1235{
1236 ev_init (0);
1237
1238 ev_io_init (&wio, sin_cb, 0, EV_READ);
1239 ev_io_start (&wio);
1240
1241 struct ev_timer t[10000];
1242
1243#if 0
1244 int i;
1245 for (i = 0; i < 10000; ++i)
1246 {
1247 struct ev_timer *w = t + i;
1248 ev_watcher_init (w, ocb, i);
1249 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1250 ev_timer_start (w);
1251 if (drand48 () < 0.5)
1252 ev_timer_stop (w);
1253 }
1254#endif
1255
1256 struct ev_timer t1;
1257 ev_timer_init (&t1, ocb, 5, 10);
1258 ev_timer_start (&t1);
1259
1260 struct ev_signal sig;
1261 ev_signal_init (&sig, scb, SIGQUIT);
1262 ev_signal_start (&sig);
1263
1264 struct ev_check cw;
1265 ev_check_init (&cw, gcb);
1266 ev_check_start (&cw);
1267
1268 struct ev_idle iw;
1269 ev_idle_init (&iw, gcb);
1270 ev_idle_start (&iw);
1271
1272 ev_loop (0);
1273
1274 return 0;
1275}
1276
1277#endif
1278
1279
1280
1281

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines