ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.78 by root, Thu Nov 8 21:08:56 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
115typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
117 150
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 152
153#include "ev_win32.c"
154
120/*****************************************************************************/ 155/*****************************************************************************/
121 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
122typedef struct 205typedef struct
123{ 206{
124 struct ev_watcher_list *head; 207 WL head;
125 unsigned char events; 208 unsigned char events;
126 unsigned char reify; 209 unsigned char reify;
127} ANFD; 210} ANFD;
128 211
129typedef struct 212typedef struct
185ev_now (EV_P) 268ev_now (EV_P)
186{ 269{
187 return rt_now; 270 return rt_now;
188} 271}
189 272
190#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
191 274
192#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
194 { \ 277 { \
195 int newcnt = cur; \ 278 int newcnt = cur; \
196 do \ 279 do \
197 { \ 280 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 282 } \
200 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
201 \ 284 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 287 cur = newcnt; \
205 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 305
207/*****************************************************************************/ 306/*****************************************************************************/
208 307
209static void 308static void
210anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
217 316
218 ++base; 317 ++base;
219 } 318 }
220} 319}
221 320
222static void 321void
223event (EV_P_ W w, int events) 322ev_feed_event (EV_P_ void *w, int revents)
224{ 323{
324 W w_ = (W)w;
325
225 if (w->pending) 326 if (w_->pending)
226 { 327 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 329 return;
229 } 330 }
230 331
231 w->pending = ++pendingcnt [ABSPRI (w)]; 332 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 336}
236 337
237static void 338static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 339queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 340{
240 int i; 341 int i;
241 342
242 for (i = 0; i < eventcnt; ++i) 343 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 344 ev_feed_event (EV_A_ events [i], type);
244} 345}
245 346
246static void 347static void
247fd_event (EV_P_ int fd, int events) 348fd_event (EV_P_ int fd, int events)
248{ 349{
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 354 {
254 int ev = w->events & events; 355 int ev = w->events & events;
255 356
256 if (ev) 357 if (ev)
257 event (EV_A_ (W)w, ev); 358 ev_feed_event (EV_A_ (W)w, ev);
258 } 359 }
259} 360}
260 361
261/*****************************************************************************/ 362/*****************************************************************************/
262 363
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 378 events |= w->events;
278 379
279 anfd->reify = 0; 380 anfd->reify = 0;
280 381
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 382 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 383 anfd->events = events;
285 }
286 } 384 }
287 385
288 fdchangecnt = 0; 386 fdchangecnt = 0;
289} 387}
290 388
291static void 389static void
292fd_change (EV_P_ int fd) 390fd_change (EV_P_ int fd)
293{ 391{
294 if (anfds [fd].reify || fdchangecnt < 0) 392 if (anfds [fd].reify)
295 return; 393 return;
296 394
297 anfds [fd].reify = 1; 395 anfds [fd].reify = 1;
298 396
299 ++fdchangecnt; 397 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 398 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 399 fdchanges [fdchangecnt - 1] = fd;
302} 400}
303 401
304static void 402static void
305fd_kill (EV_P_ int fd) 403fd_kill (EV_P_ int fd)
307 struct ev_io *w; 405 struct ev_io *w;
308 406
309 while ((w = (struct ev_io *)anfds [fd].head)) 407 while ((w = (struct ev_io *)anfds [fd].head))
310 { 408 {
311 ev_io_stop (EV_A_ w); 409 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 410 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 411 }
412}
413
414static int
415fd_valid (int fd)
416{
417#ifdef WIN32
418 return !!win32_get_osfhandle (fd);
419#else
420 return fcntl (fd, F_GETFD) != -1;
421#endif
314} 422}
315 423
316/* called on EBADF to verify fds */ 424/* called on EBADF to verify fds */
317static void 425static void
318fd_ebadf (EV_P) 426fd_ebadf (EV_P)
319{ 427{
320 int fd; 428 int fd;
321 429
322 for (fd = 0; fd < anfdmax; ++fd) 430 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 431 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 432 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 433 fd_kill (EV_A_ fd);
326} 434}
327 435
328/* called on ENOMEM in select/poll to kill some fds and retry */ 436/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 437static void
330fd_enomem (EV_P) 438fd_enomem (EV_P)
331{ 439{
332 int fd = anfdmax; 440 int fd;
333 441
334 while (fd--) 442 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 443 if (anfds [fd].events)
336 { 444 {
337 close (fd);
338 fd_kill (EV_A_ fd); 445 fd_kill (EV_A_ fd);
339 return; 446 return;
340 } 447 }
341} 448}
342 449
343/* susually called after fork if method needs to re-arm all fds from scratch */ 450/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 451static void
345fd_rearm_all (EV_P) 452fd_rearm_all (EV_P)
346{ 453{
347 int fd; 454 int fd;
348 455
349 /* this should be highly optimised to not do anything but set a flag */ 456 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 457 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 458 if (anfds [fd].events)
352 { 459 {
353 anfds [fd].events = 0; 460 anfds [fd].events = 0;
354 fd_change (fd); 461 fd_change (EV_A_ fd);
355 } 462 }
356} 463}
357 464
358/*****************************************************************************/ 465/*****************************************************************************/
359 466
363 WT w = heap [k]; 470 WT w = heap [k];
364 471
365 while (k && heap [k >> 1]->at > w->at) 472 while (k && heap [k >> 1]->at > w->at)
366 { 473 {
367 heap [k] = heap [k >> 1]; 474 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 475 ((W)heap [k])->active = k + 1;
369 k >>= 1; 476 k >>= 1;
370 } 477 }
371 478
372 heap [k] = w; 479 heap [k] = w;
373 heap [k]->active = k + 1; 480 ((W)heap [k])->active = k + 1;
374 481
375} 482}
376 483
377static void 484static void
378downheap (WT *heap, int N, int k) 485downheap (WT *heap, int N, int k)
388 495
389 if (w->at <= heap [j]->at) 496 if (w->at <= heap [j]->at)
390 break; 497 break;
391 498
392 heap [k] = heap [j]; 499 heap [k] = heap [j];
393 heap [k]->active = k + 1; 500 ((W)heap [k])->active = k + 1;
394 k = j; 501 k = j;
395 } 502 }
396 503
397 heap [k] = w; 504 heap [k] = w;
398 heap [k]->active = k + 1; 505 ((W)heap [k])->active = k + 1;
399} 506}
400 507
401/*****************************************************************************/ 508/*****************************************************************************/
402 509
403typedef struct 510typedef struct
404{ 511{
405 struct ev_watcher_list *head; 512 WL head;
406 sig_atomic_t volatile gotsig; 513 sig_atomic_t volatile gotsig;
407} ANSIG; 514} ANSIG;
408 515
409static ANSIG *signals; 516static ANSIG *signals;
410static int signalmax; 517static int signalmax;
426} 533}
427 534
428static void 535static void
429sighandler (int signum) 536sighandler (int signum)
430{ 537{
538#if WIN32
539 signal (signum, sighandler);
540#endif
541
431 signals [signum - 1].gotsig = 1; 542 signals [signum - 1].gotsig = 1;
432 543
433 if (!gotsig) 544 if (!gotsig)
434 { 545 {
435 int old_errno = errno; 546 int old_errno = errno;
436 gotsig = 1; 547 gotsig = 1;
548#ifdef WIN32
549 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
550#else
437 write (sigpipe [1], &signum, 1); 551 write (sigpipe [1], &signum, 1);
552#endif
438 errno = old_errno; 553 errno = old_errno;
439 } 554 }
440} 555}
441 556
442static void 557static void
443sigcb (EV_P_ struct ev_io *iow, int revents) 558sigcb (EV_P_ struct ev_io *iow, int revents)
444{ 559{
445 struct ev_watcher_list *w; 560 WL w;
446 int signum; 561 int signum;
447 562
563#ifdef WIN32
564 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
565#else
448 read (sigpipe [0], &revents, 1); 566 read (sigpipe [0], &revents, 1);
567#endif
449 gotsig = 0; 568 gotsig = 0;
450 569
451 for (signum = signalmax; signum--; ) 570 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig) 571 if (signals [signum].gotsig)
453 { 572 {
454 signals [signum].gotsig = 0; 573 signals [signum].gotsig = 0;
455 574
456 for (w = signals [signum].head; w; w = w->next) 575 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL); 576 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
458 } 577 }
459} 578}
460 579
461static void 580static void
462siginit (EV_P) 581siginit (EV_P)
475 ev_unref (EV_A); /* child watcher should not keep loop alive */ 594 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 595}
477 596
478/*****************************************************************************/ 597/*****************************************************************************/
479 598
599static struct ev_child *childs [PID_HASHSIZE];
600
480#ifndef WIN32 601#ifndef WIN32
481 602
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 603static struct ev_signal childev;
484 604
485#ifndef WCONTINUED 605#ifndef WCONTINUED
486# define WCONTINUED 0 606# define WCONTINUED 0
487#endif 607#endif
492 struct ev_child *w; 612 struct ev_child *w;
493 613
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 614 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid) 615 if (w->pid == pid || !w->pid)
496 { 616 {
497 w->priority = sw->priority; /* need to do it *now* */ 617 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
498 w->rpid = pid; 618 w->rpid = pid;
499 w->rstatus = status; 619 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD); 620 ev_feed_event (EV_A_ (W)w, EV_CHILD);
501 } 621 }
502} 622}
503 623
504static void 624static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 625childcb (EV_P_ struct ev_signal *sw, int revents)
507 int pid, status; 627 int pid, status;
508 628
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 629 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 630 {
511 /* make sure we are called again until all childs have been reaped */ 631 /* make sure we are called again until all childs have been reaped */
512 event (EV_A_ (W)sw, EV_SIGNAL); 632 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 633
514 child_reap (EV_A_ sw, pid, pid, status); 634 child_reap (EV_A_ sw, pid, pid, status);
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 635 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 } 636 }
517} 637}
586 methods = atoi (getenv ("LIBEV_METHODS")); 706 methods = atoi (getenv ("LIBEV_METHODS"));
587 else 707 else
588 methods = EVMETHOD_ANY; 708 methods = EVMETHOD_ANY;
589 709
590 method = 0; 710 method = 0;
711#if EV_USE_WIN32
712 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
713#endif
591#if EV_USE_KQUEUE 714#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 715 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif 716#endif
594#if EV_USE_EPOLL 717#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 718 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 721 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif 722#endif
600#if EV_USE_SELECT 723#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 724 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif 725#endif
726
727 ev_watcher_init (&sigev, sigcb);
728 ev_set_priority (&sigev, EV_MAXPRI);
603 } 729 }
604} 730}
605 731
606void 732void
607loop_destroy (EV_P) 733loop_destroy (EV_P)
608{ 734{
735 int i;
736
737#if EV_USE_WIN32
738 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
739#endif
609#if EV_USE_KQUEUE 740#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 741 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif 742#endif
612#if EV_USE_EPOLL 743#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 744 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
617#endif 748#endif
618#if EV_USE_SELECT 749#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 750 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif 751#endif
621 752
753 for (i = NUMPRI; i--; )
754 array_free (pending, [i]);
755
756 /* have to use the microsoft-never-gets-it-right macro */
757 array_free_microshit (fdchange);
758 array_free_microshit (timer);
759 array_free_microshit (periodic);
760 array_free_microshit (idle);
761 array_free_microshit (prepare);
762 array_free_microshit (check);
763
622 method = 0; 764 method = 0;
623 /*TODO*/
624} 765}
625 766
626void 767static void
627loop_fork (EV_P) 768loop_fork (EV_P)
628{ 769{
629 /*TODO*/
630#if EV_USE_EPOLL 770#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 771 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif 772#endif
633#if EV_USE_KQUEUE 773#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 774 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif 775#endif
776
777 if (ev_is_active (&sigev))
778 {
779 /* default loop */
780
781 ev_ref (EV_A);
782 ev_io_stop (EV_A_ &sigev);
783 close (sigpipe [0]);
784 close (sigpipe [1]);
785
786 while (pipe (sigpipe))
787 syserr ("(libev) error creating pipe");
788
789 siginit (EV_A);
790 }
791
792 postfork = 0;
636} 793}
637 794
638#if EV_MULTIPLICITY 795#if EV_MULTIPLICITY
639struct ev_loop * 796struct ev_loop *
640ev_loop_new (int methods) 797ev_loop_new (int methods)
641{ 798{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 799 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
800
801 memset (loop, 0, sizeof (struct ev_loop));
643 802
644 loop_init (EV_A_ methods); 803 loop_init (EV_A_ methods);
645 804
646 if (ev_methods (EV_A)) 805 if (ev_method (EV_A))
647 return loop; 806 return loop;
648 807
649 return 0; 808 return 0;
650} 809}
651 810
652void 811void
653ev_loop_destroy (EV_P) 812ev_loop_destroy (EV_P)
654{ 813{
655 loop_destroy (EV_A); 814 loop_destroy (EV_A);
656 free (loop); 815 ev_free (loop);
657} 816}
658 817
659void 818void
660ev_loop_fork (EV_P) 819ev_loop_fork (EV_P)
661{ 820{
662 loop_fork (EV_A); 821 postfork = 1;
663} 822}
664 823
665#endif 824#endif
666 825
667#if EV_MULTIPLICITY 826#if EV_MULTIPLICITY
690 849
691 loop_init (EV_A_ methods); 850 loop_init (EV_A_ methods);
692 851
693 if (ev_method (EV_A)) 852 if (ev_method (EV_A))
694 { 853 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A); 854 siginit (EV_A);
698 855
699#ifndef WIN32 856#ifndef WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 857 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 858 ev_set_priority (&childev, EV_MAXPRI);
715{ 872{
716#if EV_MULTIPLICITY 873#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 874 struct ev_loop *loop = default_loop;
718#endif 875#endif
719 876
877#ifndef WIN32
720 ev_ref (EV_A); /* child watcher */ 878 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 879 ev_signal_stop (EV_A_ &childev);
880#endif
722 881
723 ev_ref (EV_A); /* signal watcher */ 882 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev); 883 ev_io_stop (EV_A_ &sigev);
725 884
726 close (sigpipe [0]); sigpipe [0] = 0; 885 close (sigpipe [0]); sigpipe [0] = 0;
728 887
729 loop_destroy (EV_A); 888 loop_destroy (EV_A);
730} 889}
731 890
732void 891void
733ev_default_fork (EV_P) 892ev_default_fork (void)
734{ 893{
735 loop_fork (EV_A); 894#if EV_MULTIPLICITY
895 struct ev_loop *loop = default_loop;
896#endif
736 897
737 ev_io_stop (EV_A_ &sigev); 898 if (method)
738 close (sigpipe [0]); 899 postfork = 1;
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 900}
745 901
746/*****************************************************************************/ 902/*****************************************************************************/
903
904static int
905any_pending (EV_P)
906{
907 int pri;
908
909 for (pri = NUMPRI; pri--; )
910 if (pendingcnt [pri])
911 return 1;
912
913 return 0;
914}
747 915
748static void 916static void
749call_pending (EV_P) 917call_pending (EV_P)
750{ 918{
751 int pri; 919 int pri;
764} 932}
765 933
766static void 934static void
767timers_reify (EV_P) 935timers_reify (EV_P)
768{ 936{
769 while (timercnt && timers [0]->at <= mn_now) 937 while (timercnt && ((WT)timers [0])->at <= mn_now)
770 { 938 {
771 struct ev_timer *w = timers [0]; 939 struct ev_timer *w = timers [0];
940
941 assert (("inactive timer on timer heap detected", ev_is_active (w)));
772 942
773 /* first reschedule or stop timer */ 943 /* first reschedule or stop timer */
774 if (w->repeat) 944 if (w->repeat)
775 { 945 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 946 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
777 w->at = mn_now + w->repeat; 947 ((WT)w)->at = mn_now + w->repeat;
778 downheap ((WT *)timers, timercnt, 0); 948 downheap ((WT *)timers, timercnt, 0);
779 } 949 }
780 else 950 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 951 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 952
783 event (EV_A_ (W)w, EV_TIMEOUT); 953 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 954 }
785} 955}
786 956
787static void 957static void
788periodics_reify (EV_P) 958periodics_reify (EV_P)
789{ 959{
790 while (periodiccnt && periodics [0]->at <= rt_now) 960 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
791 { 961 {
792 struct ev_periodic *w = periodics [0]; 962 struct ev_periodic *w = periodics [0];
793 963
964 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
965
794 /* first reschedule or stop timer */ 966 /* first reschedule or stop timer */
795 if (w->interval) 967 if (w->reschedule_cb)
796 { 968 {
969 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
970
971 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
972 downheap ((WT *)periodics, periodiccnt, 0);
973 }
974 else if (w->interval)
975 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 976 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 977 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 978 downheap ((WT *)periodics, periodiccnt, 0);
800 } 979 }
801 else 980 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 981 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 982
804 event (EV_A_ (W)w, EV_PERIODIC); 983 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 984 }
806} 985}
807 986
808static void 987static void
809periodics_reschedule (EV_P) 988periodics_reschedule (EV_P)
813 /* adjust periodics after time jump */ 992 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 993 for (i = 0; i < periodiccnt; ++i)
815 { 994 {
816 struct ev_periodic *w = periodics [i]; 995 struct ev_periodic *w = periodics [i];
817 996
997 if (w->reschedule_cb)
998 ((WT)w)->at = w->reschedule_cb (w, rt_now);
818 if (w->interval) 999 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1000 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 } 1001 }
1002
1003 /* now rebuild the heap */
1004 for (i = periodiccnt >> 1; i--; )
1005 downheap ((WT *)periodics, periodiccnt, i);
831} 1006}
832 1007
833inline int 1008inline int
834time_update_monotonic (EV_P) 1009time_update_monotonic (EV_P)
835{ 1010{
886 { 1061 {
887 periodics_reschedule (EV_A); 1062 periodics_reschedule (EV_A);
888 1063
889 /* adjust timers. this is easy, as the offset is the same for all */ 1064 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i) 1065 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now; 1066 ((WT)timers [i])->at += rt_now - mn_now;
892 } 1067 }
893 1068
894 mn_now = rt_now; 1069 mn_now = rt_now;
895 } 1070 }
896} 1071}
922 { 1097 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1098 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1099 call_pending (EV_A);
925 } 1100 }
926 1101
1102 /* we might have forked, so reify kernel state if necessary */
1103 if (expect_false (postfork))
1104 loop_fork (EV_A);
1105
927 /* update fd-related kernel structures */ 1106 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1107 fd_reify (EV_A);
929 1108
930 /* calculate blocking time */ 1109 /* calculate blocking time */
931 1110
932 /* we only need this for !monotonic clockor timers, but as we basically 1111 /* we only need this for !monotonic clock or timers, but as we basically
933 always have timers, we just calculate it always */ 1112 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC 1113#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic)) 1114 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A); 1115 time_update_monotonic (EV_A);
937 else 1116 else
947 { 1126 {
948 block = MAX_BLOCKTIME; 1127 block = MAX_BLOCKTIME;
949 1128
950 if (timercnt) 1129 if (timercnt)
951 { 1130 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1131 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
953 if (block > to) block = to; 1132 if (block > to) block = to;
954 } 1133 }
955 1134
956 if (periodiccnt) 1135 if (periodiccnt)
957 { 1136 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1137 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
959 if (block > to) block = to; 1138 if (block > to) block = to;
960 } 1139 }
961 1140
962 if (block < 0.) block = 0.; 1141 if (block < 0.) block = 0.;
963 } 1142 }
970 /* queue pending timers and reschedule them */ 1149 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1150 timers_reify (EV_A); /* relative timers called last */
972 periodics_reify (EV_A); /* absolute timers called first */ 1151 periodics_reify (EV_A); /* absolute timers called first */
973 1152
974 /* queue idle watchers unless io or timers are pending */ 1153 /* queue idle watchers unless io or timers are pending */
975 if (!pendingcnt) 1154 if (idlecnt && !any_pending (EV_A))
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1155 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 1156
978 /* queue check watchers, to be executed first */ 1157 /* queue check watchers, to be executed first */
979 if (checkcnt) 1158 if (checkcnt)
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1159 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 return; 1234 return;
1056 1235
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1236 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1237
1059 ev_start (EV_A_ (W)w, 1); 1238 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1239 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1240 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 1241
1063 fd_change (EV_A_ fd); 1242 fd_change (EV_A_ fd);
1064} 1243}
1065 1244
1080ev_timer_start (EV_P_ struct ev_timer *w) 1259ev_timer_start (EV_P_ struct ev_timer *w)
1081{ 1260{
1082 if (ev_is_active (w)) 1261 if (ev_is_active (w))
1083 return; 1262 return;
1084 1263
1085 w->at += mn_now; 1264 ((WT)w)->at += mn_now;
1086 1265
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1266 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1267
1089 ev_start (EV_A_ (W)w, ++timercnt); 1268 ev_start (EV_A_ (W)w, ++timercnt);
1090 array_needsize (timers, timermax, timercnt, ); 1269 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1091 timers [timercnt - 1] = w; 1270 timers [timercnt - 1] = w;
1092 upheap ((WT *)timers, timercnt - 1); 1271 upheap ((WT *)timers, timercnt - 1);
1272
1273 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1093} 1274}
1094 1275
1095void 1276void
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1277ev_timer_stop (EV_P_ struct ev_timer *w)
1097{ 1278{
1098 ev_clear_pending (EV_A_ (W)w); 1279 ev_clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1280 if (!ev_is_active (w))
1100 return; 1281 return;
1101 1282
1283 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1284
1102 if (w->active < timercnt--) 1285 if (((W)w)->active < timercnt--)
1103 { 1286 {
1104 timers [w->active - 1] = timers [timercnt]; 1287 timers [((W)w)->active - 1] = timers [timercnt];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 1288 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1106 } 1289 }
1107 1290
1108 w->at = w->repeat; 1291 ((WT)w)->at = w->repeat;
1109 1292
1110 ev_stop (EV_A_ (W)w); 1293 ev_stop (EV_A_ (W)w);
1111} 1294}
1112 1295
1113void 1296void
1115{ 1298{
1116 if (ev_is_active (w)) 1299 if (ev_is_active (w))
1117 { 1300 {
1118 if (w->repeat) 1301 if (w->repeat)
1119 { 1302 {
1120 w->at = mn_now + w->repeat; 1303 ((WT)w)->at = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 1304 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1122 } 1305 }
1123 else 1306 else
1124 ev_timer_stop (EV_A_ w); 1307 ev_timer_stop (EV_A_ w);
1125 } 1308 }
1126 else if (w->repeat) 1309 else if (w->repeat)
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 1314ev_periodic_start (EV_P_ struct ev_periodic *w)
1132{ 1315{
1133 if (ev_is_active (w)) 1316 if (ev_is_active (w))
1134 return; 1317 return;
1135 1318
1319 if (w->reschedule_cb)
1320 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1321 else if (w->interval)
1322 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1323 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 1324 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1325 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1326 }
1141 1327
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 1328 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 1329 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1144 periodics [periodiccnt - 1] = w; 1330 periodics [periodiccnt - 1] = w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 1331 upheap ((WT *)periodics, periodiccnt - 1);
1332
1333 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1146} 1334}
1147 1335
1148void 1336void
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 1337ev_periodic_stop (EV_P_ struct ev_periodic *w)
1150{ 1338{
1151 ev_clear_pending (EV_A_ (W)w); 1339 ev_clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 1340 if (!ev_is_active (w))
1153 return; 1341 return;
1154 1342
1343 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1344
1155 if (w->active < periodiccnt--) 1345 if (((W)w)->active < periodiccnt--)
1156 { 1346 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 1347 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1348 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1159 } 1349 }
1160 1350
1161 ev_stop (EV_A_ (W)w); 1351 ev_stop (EV_A_ (W)w);
1162} 1352}
1163 1353
1164void 1354void
1355ev_periodic_again (EV_P_ struct ev_periodic *w)
1356{
1357 ev_periodic_stop (EV_A_ w);
1358 ev_periodic_start (EV_A_ w);
1359}
1360
1361void
1165ev_idle_start (EV_P_ struct ev_idle *w) 1362ev_idle_start (EV_P_ struct ev_idle *w)
1166{ 1363{
1167 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1168 return; 1365 return;
1169 1366
1170 ev_start (EV_A_ (W)w, ++idlecnt); 1367 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, ); 1368 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1172 idles [idlecnt - 1] = w; 1369 idles [idlecnt - 1] = w;
1173} 1370}
1174 1371
1175void 1372void
1176ev_idle_stop (EV_P_ struct ev_idle *w) 1373ev_idle_stop (EV_P_ struct ev_idle *w)
1177{ 1374{
1178 ev_clear_pending (EV_A_ (W)w); 1375 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w)) 1376 if (ev_is_active (w))
1180 return; 1377 return;
1181 1378
1182 idles [w->active - 1] = idles [--idlecnt]; 1379 idles [((W)w)->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 1380 ev_stop (EV_A_ (W)w);
1184} 1381}
1185 1382
1186void 1383void
1187ev_prepare_start (EV_P_ struct ev_prepare *w) 1384ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{ 1385{
1189 if (ev_is_active (w)) 1386 if (ev_is_active (w))
1190 return; 1387 return;
1191 1388
1192 ev_start (EV_A_ (W)w, ++preparecnt); 1389 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, ); 1390 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1194 prepares [preparecnt - 1] = w; 1391 prepares [preparecnt - 1] = w;
1195} 1392}
1196 1393
1197void 1394void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w) 1395ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{ 1396{
1200 ev_clear_pending (EV_A_ (W)w); 1397 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1202 return; 1399 return;
1203 1400
1204 prepares [w->active - 1] = prepares [--preparecnt]; 1401 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w); 1402 ev_stop (EV_A_ (W)w);
1206} 1403}
1207 1404
1208void 1405void
1209ev_check_start (EV_P_ struct ev_check *w) 1406ev_check_start (EV_P_ struct ev_check *w)
1210{ 1407{
1211 if (ev_is_active (w)) 1408 if (ev_is_active (w))
1212 return; 1409 return;
1213 1410
1214 ev_start (EV_A_ (W)w, ++checkcnt); 1411 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, ); 1412 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1216 checks [checkcnt - 1] = w; 1413 checks [checkcnt - 1] = w;
1217} 1414}
1218 1415
1219void 1416void
1220ev_check_stop (EV_P_ struct ev_check *w) 1417ev_check_stop (EV_P_ struct ev_check *w)
1221{ 1418{
1222 ev_clear_pending (EV_A_ (W)w); 1419 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1224 return; 1421 return;
1225 1422
1226 checks [w->active - 1] = checks [--checkcnt]; 1423 checks [((W)w)->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w); 1424 ev_stop (EV_A_ (W)w);
1228} 1425}
1229 1426
1230#ifndef SA_RESTART 1427#ifndef SA_RESTART
1231# define SA_RESTART 0 1428# define SA_RESTART 0
1241 return; 1438 return;
1242 1439
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1440 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 1441
1245 ev_start (EV_A_ (W)w, 1); 1442 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 1443 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1444 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 1445
1249 if (!w->next) 1446 if (!((WL)w)->next)
1250 { 1447 {
1448#if WIN32
1449 signal (w->signum, sighandler);
1450#else
1251 struct sigaction sa; 1451 struct sigaction sa;
1252 sa.sa_handler = sighandler; 1452 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask); 1453 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1454 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 1455 sigaction (w->signum, &sa, 0);
1456#endif
1256 } 1457 }
1257} 1458}
1258 1459
1259void 1460void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 1461ev_signal_stop (EV_P_ struct ev_signal *w)
1310 void (*cb)(int revents, void *arg) = once->cb; 1511 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 1512 void *arg = once->arg;
1312 1513
1313 ev_io_stop (EV_A_ &once->io); 1514 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 1515 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 1516 ev_free (once);
1316 1517
1317 cb (revents, arg); 1518 cb (revents, arg);
1318} 1519}
1319 1520
1320static void 1521static void
1330} 1531}
1331 1532
1332void 1533void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1534ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 1535{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 1536 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 1537
1337 if (!once) 1538 if (!once)
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1539 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 1540 else
1340 { 1541 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines