ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.126 by root, Sun Nov 18 01:25:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 55# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 56# define EV_USE_SELECT 1
57# else
58# define EV_USE_SELECT 0
41# endif 59# endif
42 60
43# if HAVE_POLL && HAVE_POLL_H 61# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 62# define EV_USE_POLL 1
63# else
64# define EV_USE_POLL 0
45# endif 65# endif
46 66
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 67# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 68# define EV_USE_EPOLL 1
69# else
70# define EV_USE_EPOLL 0
49# endif 71# endif
50 72
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 73# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 74# define EV_USE_KQUEUE 1
75# else
76# define EV_USE_KQUEUE 0
77# endif
78
79# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
80# define EV_USE_PORT 1
81# else
82# define EV_USE_PORT 0
53# endif 83# endif
54 84
55#endif 85#endif
56 86
57#include <math.h> 87#include <math.h>
58#include <stdlib.h> 88#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 89#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 90#include <stddef.h>
63 91
64#include <stdio.h> 92#include <stdio.h>
65 93
66#include <assert.h> 94#include <assert.h>
67#include <errno.h> 95#include <errno.h>
68#include <sys/types.h> 96#include <sys/types.h>
97#include <time.h>
98
99#include <signal.h>
100
69#ifndef WIN32 101#ifndef _WIN32
102# include <unistd.h>
103# include <sys/time.h>
70# include <sys/wait.h> 104# include <sys/wait.h>
105#else
106# define WIN32_LEAN_AND_MEAN
107# include <windows.h>
108# ifndef EV_SELECT_IS_WINSOCKET
109# define EV_SELECT_IS_WINSOCKET 1
71#endif 110# endif
72#include <sys/time.h> 111#endif
73#include <time.h>
74 112
75/**/ 113/**/
76 114
77#ifndef EV_USE_MONOTONIC 115#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef EV_USE_REALTIME
120# define EV_USE_REALTIME 0
79#endif 121#endif
80 122
81#ifndef EV_USE_SELECT 123#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 124# define EV_USE_SELECT 1
83#endif 125#endif
84 126
85#ifndef EV_USE_POLL 127#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 128# ifdef _WIN32
129# define EV_USE_POLL 0
130# else
131# define EV_USE_POLL 1
132# endif
87#endif 133#endif
88 134
89#ifndef EV_USE_EPOLL 135#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 136# define EV_USE_EPOLL 0
91#endif 137#endif
92 138
93#ifndef EV_USE_KQUEUE 139#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 140# define EV_USE_KQUEUE 0
95#endif 141#endif
96 142
97#ifndef EV_USE_REALTIME 143#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 144# define EV_USE_PORT 0
99#endif 145#endif
100 146
101/**/ 147/**/
148
149/* darwin simply cannot be helped */
150#ifdef __APPLE__
151# undef EV_USE_POLL
152# undef EV_USE_KQUEUE
153#endif
102 154
103#ifndef CLOCK_MONOTONIC 155#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 156# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 157# define EV_USE_MONOTONIC 0
106#endif 158#endif
108#ifndef CLOCK_REALTIME 160#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 161# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 162# define EV_USE_REALTIME 0
111#endif 163#endif
112 164
165#if EV_SELECT_IS_WINSOCKET
166# include <winsock.h>
167#endif
168
113/**/ 169/**/
114 170
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 171#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 172#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 173#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 174/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 175
176#ifdef EV_H
177# include EV_H
178#else
120#include "ev.h" 179# include "ev.h"
180#endif
121 181
122#if __GNUC__ >= 3 182#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 183# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 184# define inline static inline
125#else 185#else
126# define expect(expr,value) (expr) 186# define expect(expr,value) (expr)
127# define inline static 187# define inline static
128#endif 188#endif
129 189
131#define expect_true(expr) expect ((expr) != 0, 1) 191#define expect_true(expr) expect ((expr) != 0, 1)
132 192
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 193#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 194#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 195
196#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
197#define EMPTY2(a,b) /* used to suppress some warnings */
198
136typedef struct ev_watcher *W; 199typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 200typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 201typedef struct ev_watcher_time *WT;
139 202
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 203static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 204
205#ifdef _WIN32
206# include "ev_win32.c"
207#endif
208
142/*****************************************************************************/ 209/*****************************************************************************/
143 210
211static void (*syserr_cb)(const char *msg);
212
213void ev_set_syserr_cb (void (*cb)(const char *msg))
214{
215 syserr_cb = cb;
216}
217
218static void
219syserr (const char *msg)
220{
221 if (!msg)
222 msg = "(libev) system error";
223
224 if (syserr_cb)
225 syserr_cb (msg);
226 else
227 {
228 perror (msg);
229 abort ();
230 }
231}
232
233static void *(*alloc)(void *ptr, long size);
234
235void ev_set_allocator (void *(*cb)(void *ptr, long size))
236{
237 alloc = cb;
238}
239
240static void *
241ev_realloc (void *ptr, long size)
242{
243 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
244
245 if (!ptr && size)
246 {
247 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
248 abort ();
249 }
250
251 return ptr;
252}
253
254#define ev_malloc(size) ev_realloc (0, (size))
255#define ev_free(ptr) ev_realloc ((ptr), 0)
256
257/*****************************************************************************/
258
144typedef struct 259typedef struct
145{ 260{
146 struct ev_watcher_list *head; 261 WL head;
147 unsigned char events; 262 unsigned char events;
148 unsigned char reify; 263 unsigned char reify;
264#if EV_SELECT_IS_WINSOCKET
265 SOCKET handle;
266#endif
149} ANFD; 267} ANFD;
150 268
151typedef struct 269typedef struct
152{ 270{
153 W w; 271 W w;
154 int events; 272 int events;
155} ANPENDING; 273} ANPENDING;
156 274
157#if EV_MULTIPLICITY 275#if EV_MULTIPLICITY
158 276
159struct ev_loop 277 struct ev_loop
160{ 278 {
279 ev_tstamp ev_rt_now;
280 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 281 #define VAR(name,decl) decl;
162# include "ev_vars.h" 282 #include "ev_vars.h"
163};
164# undef VAR 283 #undef VAR
284 };
165# include "ev_wrap.h" 285 #include "ev_wrap.h"
286
287 static struct ev_loop default_loop_struct;
288 struct ev_loop *ev_default_loop_ptr;
166 289
167#else 290#else
168 291
292 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 293 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 294 #include "ev_vars.h"
171# undef VAR 295 #undef VAR
296
297 static int ev_default_loop_ptr;
172 298
173#endif 299#endif
174 300
175/*****************************************************************************/ 301/*****************************************************************************/
176 302
177inline ev_tstamp 303ev_tstamp
178ev_time (void) 304ev_time (void)
179{ 305{
180#if EV_USE_REALTIME 306#if EV_USE_REALTIME
181 struct timespec ts; 307 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 308 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 327#endif
202 328
203 return ev_time (); 329 return ev_time ();
204} 330}
205 331
332#if EV_MULTIPLICITY
206ev_tstamp 333ev_tstamp
207ev_now (EV_P) 334ev_now (EV_P)
208{ 335{
209 return rt_now; 336 return ev_rt_now;
210} 337}
338#endif
211 339
212#define array_roundsize(base,n) ((n) | 4 & ~3) 340#define array_roundsize(type,n) (((n) | 4) & ~3)
213 341
214#define array_needsize(base,cur,cnt,init) \ 342#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 343 if (expect_false ((cnt) > cur)) \
216 { \ 344 { \
217 int newcnt = cur; \ 345 int newcnt = cur; \
218 do \ 346 do \
219 { \ 347 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 348 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 349 } \
222 while ((cnt) > newcnt); \ 350 while ((cnt) > newcnt); \
223 \ 351 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 352 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 353 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 354 cur = newcnt; \
227 } 355 }
356
357#define array_slim(type,stem) \
358 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
359 { \
360 stem ## max = array_roundsize (stem ## cnt >> 1); \
361 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
362 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
363 }
364
365#define array_free(stem, idx) \
366 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 367
229/*****************************************************************************/ 368/*****************************************************************************/
230 369
231static void 370static void
232anfds_init (ANFD *base, int count) 371anfds_init (ANFD *base, int count)
239 378
240 ++base; 379 ++base;
241 } 380 }
242} 381}
243 382
244static void 383void
245event (EV_P_ W w, int events) 384ev_feed_event (EV_P_ void *w, int revents)
246{ 385{
247 if (w->pending) 386 W w_ = (W)w;
387
388 if (expect_false (w_->pending))
248 { 389 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 390 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 391 return;
251 } 392 }
252 393
253 w->pending = ++pendingcnt [ABSPRI (w)]; 394 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 395 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 396 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 397 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 398}
258 399
259static void 400static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 401queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 402{
262 int i; 403 int i;
263 404
264 for (i = 0; i < eventcnt; ++i) 405 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 406 ev_feed_event (EV_A_ events [i], type);
266} 407}
267 408
268static void 409inline void
269fd_event (EV_P_ int fd, int events) 410fd_event (EV_P_ int fd, int revents)
270{ 411{
271 ANFD *anfd = anfds + fd; 412 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 413 struct ev_io *w;
273 414
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 415 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 416 {
276 int ev = w->events & events; 417 int ev = w->events & revents;
277 418
278 if (ev) 419 if (ev)
279 event (EV_A_ (W)w, ev); 420 ev_feed_event (EV_A_ (W)w, ev);
280 } 421 }
422}
423
424void
425ev_feed_fd_event (EV_P_ int fd, int revents)
426{
427 fd_event (EV_A_ fd, revents);
281} 428}
282 429
283/*****************************************************************************/ 430/*****************************************************************************/
284 431
285static void 432inline void
286fd_reify (EV_P) 433fd_reify (EV_P)
287{ 434{
288 int i; 435 int i;
289 436
290 for (i = 0; i < fdchangecnt; ++i) 437 for (i = 0; i < fdchangecnt; ++i)
296 int events = 0; 443 int events = 0;
297 444
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 445 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 446 events |= w->events;
300 447
448#if EV_SELECT_IS_WINSOCKET
449 if (events)
450 {
451 unsigned long argp;
452 anfd->handle = _get_osfhandle (fd);
453 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
454 }
455#endif
456
301 anfd->reify = 0; 457 anfd->reify = 0;
302 458
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 459 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 460 anfd->events = events;
307 }
308 } 461 }
309 462
310 fdchangecnt = 0; 463 fdchangecnt = 0;
311} 464}
312 465
313static void 466static void
314fd_change (EV_P_ int fd) 467fd_change (EV_P_ int fd)
315{ 468{
316 if (anfds [fd].reify || fdchangecnt < 0) 469 if (expect_false (anfds [fd].reify))
317 return; 470 return;
318 471
319 anfds [fd].reify = 1; 472 anfds [fd].reify = 1;
320 473
321 ++fdchangecnt; 474 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 475 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 476 fdchanges [fdchangecnt - 1] = fd;
324} 477}
325 478
326static void 479static void
327fd_kill (EV_P_ int fd) 480fd_kill (EV_P_ int fd)
329 struct ev_io *w; 482 struct ev_io *w;
330 483
331 while ((w = (struct ev_io *)anfds [fd].head)) 484 while ((w = (struct ev_io *)anfds [fd].head))
332 { 485 {
333 ev_io_stop (EV_A_ w); 486 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 487 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 488 }
489}
490
491inline int
492fd_valid (int fd)
493{
494#ifdef _WIN32
495 return _get_osfhandle (fd) != -1;
496#else
497 return fcntl (fd, F_GETFD) != -1;
498#endif
336} 499}
337 500
338/* called on EBADF to verify fds */ 501/* called on EBADF to verify fds */
339static void 502static void
340fd_ebadf (EV_P) 503fd_ebadf (EV_P)
341{ 504{
342 int fd; 505 int fd;
343 506
344 for (fd = 0; fd < anfdmax; ++fd) 507 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 508 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 509 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 510 fd_kill (EV_A_ fd);
348} 511}
349 512
350/* called on ENOMEM in select/poll to kill some fds and retry */ 513/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 514static void
352fd_enomem (EV_P) 515fd_enomem (EV_P)
353{ 516{
354 int fd = anfdmax; 517 int fd;
355 518
356 while (fd--) 519 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 520 if (anfds [fd].events)
358 { 521 {
359 close (fd);
360 fd_kill (EV_A_ fd); 522 fd_kill (EV_A_ fd);
361 return; 523 return;
362 } 524 }
363} 525}
364 526
365/* susually called after fork if method needs to re-arm all fds from scratch */ 527/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 528static void
367fd_rearm_all (EV_P) 529fd_rearm_all (EV_P)
368{ 530{
369 int fd; 531 int fd;
370 532
385 WT w = heap [k]; 547 WT w = heap [k];
386 548
387 while (k && heap [k >> 1]->at > w->at) 549 while (k && heap [k >> 1]->at > w->at)
388 { 550 {
389 heap [k] = heap [k >> 1]; 551 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 552 ((W)heap [k])->active = k + 1;
391 k >>= 1; 553 k >>= 1;
392 } 554 }
393 555
394 heap [k] = w; 556 heap [k] = w;
395 heap [k]->active = k + 1; 557 ((W)heap [k])->active = k + 1;
396 558
397} 559}
398 560
399static void 561static void
400downheap (WT *heap, int N, int k) 562downheap (WT *heap, int N, int k)
410 572
411 if (w->at <= heap [j]->at) 573 if (w->at <= heap [j]->at)
412 break; 574 break;
413 575
414 heap [k] = heap [j]; 576 heap [k] = heap [j];
415 heap [k]->active = k + 1; 577 ((W)heap [k])->active = k + 1;
416 k = j; 578 k = j;
417 } 579 }
418 580
419 heap [k] = w; 581 heap [k] = w;
420 heap [k]->active = k + 1; 582 ((W)heap [k])->active = k + 1;
583}
584
585inline void
586adjustheap (WT *heap, int N, int k)
587{
588 upheap (heap, k);
589 downheap (heap, N, k);
421} 590}
422 591
423/*****************************************************************************/ 592/*****************************************************************************/
424 593
425typedef struct 594typedef struct
426{ 595{
427 struct ev_watcher_list *head; 596 WL head;
428 sig_atomic_t volatile gotsig; 597 sig_atomic_t volatile gotsig;
429} ANSIG; 598} ANSIG;
430 599
431static ANSIG *signals; 600static ANSIG *signals;
432static int signalmax; 601static int signalmax;
448} 617}
449 618
450static void 619static void
451sighandler (int signum) 620sighandler (int signum)
452{ 621{
622#if _WIN32
623 signal (signum, sighandler);
624#endif
625
453 signals [signum - 1].gotsig = 1; 626 signals [signum - 1].gotsig = 1;
454 627
455 if (!gotsig) 628 if (!gotsig)
456 { 629 {
457 int old_errno = errno; 630 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 632 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 633 errno = old_errno;
461 } 634 }
462} 635}
463 636
637void
638ev_feed_signal_event (EV_P_ int signum)
639{
640 WL w;
641
642#if EV_MULTIPLICITY
643 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
644#endif
645
646 --signum;
647
648 if (signum < 0 || signum >= signalmax)
649 return;
650
651 signals [signum].gotsig = 0;
652
653 for (w = signals [signum].head; w; w = w->next)
654 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
655}
656
464static void 657static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 658sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 659{
467 struct ev_watcher_list *w;
468 int signum; 660 int signum;
469 661
470 read (sigpipe [0], &revents, 1); 662 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 663 gotsig = 0;
472 664
473 for (signum = signalmax; signum--; ) 665 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 666 if (signals [signum].gotsig)
475 { 667 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 668}
477 669
478 for (w = signals [signum].head; w; w = w->next) 670static void
479 event (EV_A_ (W)w, EV_SIGNAL); 671fd_intern (int fd)
480 } 672{
673#ifdef _WIN32
674 int arg = 1;
675 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
676#else
677 fcntl (fd, F_SETFD, FD_CLOEXEC);
678 fcntl (fd, F_SETFL, O_NONBLOCK);
679#endif
481} 680}
482 681
483static void 682static void
484siginit (EV_P) 683siginit (EV_P)
485{ 684{
486#ifndef WIN32 685 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 686 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 687
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 688 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 689 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 690 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 691}
499 692
500/*****************************************************************************/ 693/*****************************************************************************/
501 694
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 695static struct ev_child *childs [PID_HASHSIZE];
696
697#ifndef _WIN32
698
505static struct ev_signal childev; 699static struct ev_signal childev;
506 700
507#ifndef WCONTINUED 701#ifndef WCONTINUED
508# define WCONTINUED 0 702# define WCONTINUED 0
509#endif 703#endif
514 struct ev_child *w; 708 struct ev_child *w;
515 709
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 710 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 711 if (w->pid == pid || !w->pid)
518 { 712 {
519 w->priority = sw->priority; /* need to do it *now* */ 713 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 714 w->rpid = pid;
521 w->rstatus = status; 715 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 716 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 717 }
524} 718}
525 719
526static void 720static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 721childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 723 int pid, status;
530 724
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 725 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 726 {
533 /* make sure we are called again until all childs have been reaped */ 727 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 728 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 729
536 child_reap (EV_A_ sw, pid, pid, status); 730 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 731 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 732 }
539} 733}
540 734
541#endif 735#endif
542 736
543/*****************************************************************************/ 737/*****************************************************************************/
544 738
739#if EV_USE_PORT
740# include "ev_port.c"
741#endif
545#if EV_USE_KQUEUE 742#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 743# include "ev_kqueue.c"
547#endif 744#endif
548#if EV_USE_EPOLL 745#if EV_USE_EPOLL
549# include "ev_epoll.c" 746# include "ev_epoll.c"
569 766
570/* return true if we are running with elevated privileges and should ignore env variables */ 767/* return true if we are running with elevated privileges and should ignore env variables */
571static int 768static int
572enable_secure (void) 769enable_secure (void)
573{ 770{
574#ifdef WIN32 771#ifdef _WIN32
575 return 0; 772 return 0;
576#else 773#else
577 return getuid () != geteuid () 774 return getuid () != geteuid ()
578 || getgid () != getegid (); 775 || getgid () != getegid ();
579#endif 776#endif
580} 777}
581 778
582int 779unsigned int
583ev_method (EV_P) 780ev_method (EV_P)
584{ 781{
585 return method; 782 return method;
586} 783}
587 784
588static void 785static void
589loop_init (EV_P_ int methods) 786loop_init (EV_P_ unsigned int flags)
590{ 787{
591 if (!method) 788 if (!method)
592 { 789 {
593#if EV_USE_MONOTONIC 790#if EV_USE_MONOTONIC
594 { 791 {
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 793 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 794 have_monotonic = 1;
598 } 795 }
599#endif 796#endif
600 797
601 rt_now = ev_time (); 798 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 799 mn_now = get_clock ();
603 now_floor = mn_now; 800 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 801 rtmn_diff = ev_rt_now - mn_now;
605 802
606 if (methods == EVMETHOD_AUTO) 803 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 804 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else 805
610 methods = EVMETHOD_ANY; 806 if (!(flags & 0x0000ffff))
807 flags |= 0x0000ffff;
611 808
612 method = 0; 809 method = 0;
810#if EV_USE_PORT
811 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
812#endif
613#if EV_USE_KQUEUE 813#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 814 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
615#endif 815#endif
616#if EV_USE_EPOLL 816#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 817 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
618#endif 818#endif
619#if EV_USE_POLL 819#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 820 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
621#endif 821#endif
622#if EV_USE_SELECT 822#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 823 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
624#endif 824#endif
625 }
626}
627 825
628void 826 ev_init (&sigev, sigcb);
827 ev_set_priority (&sigev, EV_MAXPRI);
828 }
829}
830
831static void
629loop_destroy (EV_P) 832loop_destroy (EV_P)
630{ 833{
834 int i;
835
836#if EV_USE_PORT
837 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
838#endif
631#if EV_USE_KQUEUE 839#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 840 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 841#endif
634#if EV_USE_EPOLL 842#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 843 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 847#endif
640#if EV_USE_SELECT 848#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 849 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 850#endif
643 851
852 for (i = NUMPRI; i--; )
853 array_free (pending, [i]);
854
855 /* have to use the microsoft-never-gets-it-right macro */
856 array_free (fdchange, EMPTY0);
857 array_free (timer, EMPTY0);
858#if EV_PERIODICS
859 array_free (periodic, EMPTY0);
860#endif
861 array_free (idle, EMPTY0);
862 array_free (prepare, EMPTY0);
863 array_free (check, EMPTY0);
864
644 method = 0; 865 method = 0;
645 /*TODO*/
646} 866}
647 867
648void 868static void
649loop_fork (EV_P) 869loop_fork (EV_P)
650{ 870{
651 /*TODO*/ 871#if EV_USE_PORT
872 if (method == EVMETHOD_PORT ) port_fork (EV_A);
873#endif
874#if EV_USE_KQUEUE
875 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
876#endif
652#if EV_USE_EPOLL 877#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 878 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 879#endif
655#if EV_USE_KQUEUE 880
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 881 if (ev_is_active (&sigev))
657#endif 882 {
883 /* default loop */
884
885 ev_ref (EV_A);
886 ev_io_stop (EV_A_ &sigev);
887 close (sigpipe [0]);
888 close (sigpipe [1]);
889
890 while (pipe (sigpipe))
891 syserr ("(libev) error creating pipe");
892
893 siginit (EV_A);
894 }
895
896 postfork = 0;
658} 897}
659 898
660#if EV_MULTIPLICITY 899#if EV_MULTIPLICITY
661struct ev_loop * 900struct ev_loop *
662ev_loop_new (int methods) 901ev_loop_new (unsigned int flags)
663{ 902{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 903 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 904
905 memset (loop, 0, sizeof (struct ev_loop));
906
666 loop_init (EV_A_ methods); 907 loop_init (EV_A_ flags);
667 908
668 if (ev_method (EV_A)) 909 if (ev_method (EV_A))
669 return loop; 910 return loop;
670 911
671 return 0; 912 return 0;
673 914
674void 915void
675ev_loop_destroy (EV_P) 916ev_loop_destroy (EV_P)
676{ 917{
677 loop_destroy (EV_A); 918 loop_destroy (EV_A);
678 free (loop); 919 ev_free (loop);
679} 920}
680 921
681void 922void
682ev_loop_fork (EV_P) 923ev_loop_fork (EV_P)
683{ 924{
684 loop_fork (EV_A); 925 postfork = 1;
685} 926}
686 927
687#endif 928#endif
688 929
689#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 931struct ev_loop *
932ev_default_loop_init (unsigned int flags)
694#else 933#else
695static int default_loop;
696
697int 934int
935ev_default_loop (unsigned int flags)
698#endif 936#endif
699ev_default_loop (int methods)
700{ 937{
701 if (sigpipe [0] == sigpipe [1]) 938 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 939 if (pipe (sigpipe))
703 return 0; 940 return 0;
704 941
705 if (!default_loop) 942 if (!ev_default_loop_ptr)
706 { 943 {
707#if EV_MULTIPLICITY 944#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 945 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 946#else
710 default_loop = 1; 947 ev_default_loop_ptr = 1;
711#endif 948#endif
712 949
713 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
714 951
715 if (ev_method (EV_A)) 952 if (ev_method (EV_A))
716 { 953 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 954 siginit (EV_A);
720 955
721#ifndef WIN32 956#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 957 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 958 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 959 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 960 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 961#endif
727 } 962 }
728 else 963 else
729 default_loop = 0; 964 ev_default_loop_ptr = 0;
730 } 965 }
731 966
732 return default_loop; 967 return ev_default_loop_ptr;
733} 968}
734 969
735void 970void
736ev_default_destroy (void) 971ev_default_destroy (void)
737{ 972{
738#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 974 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 975#endif
741 976
977#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 978 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 979 ev_signal_stop (EV_A_ &childev);
980#endif
744 981
745 ev_ref (EV_A); /* signal watcher */ 982 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 983 ev_io_stop (EV_A_ &sigev);
747 984
748 close (sigpipe [0]); sigpipe [0] = 0; 985 close (sigpipe [0]); sigpipe [0] = 0;
753 990
754void 991void
755ev_default_fork (void) 992ev_default_fork (void)
756{ 993{
757#if EV_MULTIPLICITY 994#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 995 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 996#endif
760 997
761 loop_fork (EV_A); 998 if (method)
762 999 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1000}
771 1001
772/*****************************************************************************/ 1002/*****************************************************************************/
773 1003
774static void 1004static int
1005any_pending (EV_P)
1006{
1007 int pri;
1008
1009 for (pri = NUMPRI; pri--; )
1010 if (pendingcnt [pri])
1011 return 1;
1012
1013 return 0;
1014}
1015
1016inline void
775call_pending (EV_P) 1017call_pending (EV_P)
776{ 1018{
777 int pri; 1019 int pri;
778 1020
779 for (pri = NUMPRI; pri--; ) 1021 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1022 while (pendingcnt [pri])
781 { 1023 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1024 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1025
784 if (p->w) 1026 if (expect_true (p->w))
785 { 1027 {
786 p->w->pending = 0; 1028 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1029 EV_CB_INVOKE (p->w, p->events);
788 } 1030 }
789 } 1031 }
790} 1032}
791 1033
792static void 1034inline void
793timers_reify (EV_P) 1035timers_reify (EV_P)
794{ 1036{
795 while (timercnt && timers [0]->at <= mn_now) 1037 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1038 {
797 struct ev_timer *w = timers [0]; 1039 struct ev_timer *w = timers [0];
1040
1041 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 1042
799 /* first reschedule or stop timer */ 1043 /* first reschedule or stop timer */
800 if (w->repeat) 1044 if (w->repeat)
801 { 1045 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1046 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1047
803 w->at = mn_now + w->repeat; 1048 ((WT)w)->at += w->repeat;
1049 if (((WT)w)->at < mn_now)
1050 ((WT)w)->at = mn_now;
1051
804 downheap ((WT *)timers, timercnt, 0); 1052 downheap ((WT *)timers, timercnt, 0);
805 } 1053 }
806 else 1054 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1055 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1056
809 event (EV_A_ (W)w, EV_TIMEOUT); 1057 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1058 }
811} 1059}
812 1060
813static void 1061#if EV_PERIODICS
1062inline void
814periodics_reify (EV_P) 1063periodics_reify (EV_P)
815{ 1064{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1065 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
817 { 1066 {
818 struct ev_periodic *w = periodics [0]; 1067 struct ev_periodic *w = periodics [0];
819 1068
1069 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1070
820 /* first reschedule or stop timer */ 1071 /* first reschedule or stop timer */
821 if (w->interval) 1072 if (w->reschedule_cb)
822 { 1073 {
1074 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1075 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1076 downheap ((WT *)periodics, periodiccnt, 0);
1077 }
1078 else if (w->interval)
1079 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1080 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1081 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1082 downheap ((WT *)periodics, periodiccnt, 0);
826 } 1083 }
827 else 1084 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1085 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1086
830 event (EV_A_ (W)w, EV_PERIODIC); 1087 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1088 }
832} 1089}
833 1090
834static void 1091static void
835periodics_reschedule (EV_P) 1092periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1096 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1097 for (i = 0; i < periodiccnt; ++i)
841 { 1098 {
842 struct ev_periodic *w = periodics [i]; 1099 struct ev_periodic *w = periodics [i];
843 1100
1101 if (w->reschedule_cb)
1102 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1103 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1104 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1105 }
1106
1107 /* now rebuild the heap */
1108 for (i = periodiccnt >> 1; i--; )
1109 downheap ((WT *)periodics, periodiccnt, i);
857} 1110}
1111#endif
858 1112
859inline int 1113inline int
860time_update_monotonic (EV_P) 1114time_update_monotonic (EV_P)
861{ 1115{
862 mn_now = get_clock (); 1116 mn_now = get_clock ();
863 1117
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1118 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 { 1119 {
866 rt_now = rtmn_diff + mn_now; 1120 ev_rt_now = rtmn_diff + mn_now;
867 return 0; 1121 return 0;
868 } 1122 }
869 else 1123 else
870 { 1124 {
871 now_floor = mn_now; 1125 now_floor = mn_now;
872 rt_now = ev_time (); 1126 ev_rt_now = ev_time ();
873 return 1; 1127 return 1;
874 } 1128 }
875} 1129}
876 1130
877static void 1131inline void
878time_update (EV_P) 1132time_update (EV_P)
879{ 1133{
880 int i; 1134 int i;
881 1135
882#if EV_USE_MONOTONIC 1136#if EV_USE_MONOTONIC
886 { 1140 {
887 ev_tstamp odiff = rtmn_diff; 1141 ev_tstamp odiff = rtmn_diff;
888 1142
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1143 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 { 1144 {
891 rtmn_diff = rt_now - mn_now; 1145 rtmn_diff = ev_rt_now - mn_now;
892 1146
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1147 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1148 return; /* all is well */
895 1149
896 rt_now = ev_time (); 1150 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1151 mn_now = get_clock ();
898 now_floor = mn_now; 1152 now_floor = mn_now;
899 } 1153 }
900 1154
1155# if EV_PERIODICS
901 periodics_reschedule (EV_A); 1156 periodics_reschedule (EV_A);
1157# endif
902 /* no timer adjustment, as the monotonic clock doesn't jump */ 1158 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1159 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
904 } 1160 }
905 } 1161 }
906 else 1162 else
907#endif 1163#endif
908 { 1164 {
909 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
910 1166
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1167 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 { 1168 {
1169#if EV_PERIODICS
913 periodics_reschedule (EV_A); 1170 periodics_reschedule (EV_A);
1171#endif
914 1172
915 /* adjust timers. this is easy, as the offset is the same for all */ 1173 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1174 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1175 ((WT)timers [i])->at += ev_rt_now - mn_now;
918 } 1176 }
919 1177
920 mn_now = rt_now; 1178 mn_now = ev_rt_now;
921 } 1179 }
922} 1180}
923 1181
924void 1182void
925ev_ref (EV_P) 1183ev_ref (EV_P)
939ev_loop (EV_P_ int flags) 1197ev_loop (EV_P_ int flags)
940{ 1198{
941 double block; 1199 double block;
942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1200 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
943 1201
944 do 1202 while (activecnt)
945 { 1203 {
946 /* queue check watchers (and execute them) */ 1204 /* queue check watchers (and execute them) */
947 if (expect_false (preparecnt)) 1205 if (expect_false (preparecnt))
948 { 1206 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1207 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1208 call_pending (EV_A);
951 } 1209 }
952 1210
1211 /* we might have forked, so reify kernel state if necessary */
1212 if (expect_false (postfork))
1213 loop_fork (EV_A);
1214
953 /* update fd-related kernel structures */ 1215 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1216 fd_reify (EV_A);
955 1217
956 /* calculate blocking time */ 1218 /* calculate blocking time */
957 1219
958 /* we only need this for !monotonic clockor timers, but as we basically 1220 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1221 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1222#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1223 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1224 time_update_monotonic (EV_A);
963 else 1225 else
964#endif 1226#endif
965 { 1227 {
966 rt_now = ev_time (); 1228 ev_rt_now = ev_time ();
967 mn_now = rt_now; 1229 mn_now = ev_rt_now;
968 } 1230 }
969 1231
970 if (flags & EVLOOP_NONBLOCK || idlecnt) 1232 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.; 1233 block = 0.;
972 else 1234 else
973 { 1235 {
974 block = MAX_BLOCKTIME; 1236 block = MAX_BLOCKTIME;
975 1237
976 if (timercnt) 1238 if (timercnt)
977 { 1239 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1240 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1241 if (block > to) block = to;
980 } 1242 }
981 1243
1244#if EV_PERIODICS
982 if (periodiccnt) 1245 if (periodiccnt)
983 { 1246 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1247 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
985 if (block > to) block = to; 1248 if (block > to) block = to;
986 } 1249 }
1250#endif
987 1251
988 if (block < 0.) block = 0.; 1252 if (expect_false (block < 0.)) block = 0.;
989 } 1253 }
990 1254
991 method_poll (EV_A_ block); 1255 method_poll (EV_A_ block);
992 1256
993 /* update rt_now, do magic */ 1257 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1258 time_update (EV_A);
995 1259
996 /* queue pending timers and reschedule them */ 1260 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1261 timers_reify (EV_A); /* relative timers called last */
1262#if EV_PERIODICS
998 periodics_reify (EV_A); /* absolute timers called first */ 1263 periodics_reify (EV_A); /* absolute timers called first */
1264#endif
999 1265
1000 /* queue idle watchers unless io or timers are pending */ 1266 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1267 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1268 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1269
1004 /* queue check watchers, to be executed first */ 1270 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1271 if (expect_false (checkcnt))
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1272 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1007 1273
1008 call_pending (EV_A); 1274 call_pending (EV_A);
1275
1276 if (expect_false (loop_done))
1277 break;
1009 } 1278 }
1010 while (activecnt && !loop_done);
1011 1279
1012 if (loop_done != 2) 1280 if (loop_done != 2)
1013 loop_done = 0; 1281 loop_done = 0;
1014} 1282}
1015 1283
1075void 1343void
1076ev_io_start (EV_P_ struct ev_io *w) 1344ev_io_start (EV_P_ struct ev_io *w)
1077{ 1345{
1078 int fd = w->fd; 1346 int fd = w->fd;
1079 1347
1080 if (ev_is_active (w)) 1348 if (expect_false (ev_is_active (w)))
1081 return; 1349 return;
1082 1350
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1351 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1352
1085 ev_start (EV_A_ (W)w, 1); 1353 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1354 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1355 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1356
1089 fd_change (EV_A_ fd); 1357 fd_change (EV_A_ fd);
1090} 1358}
1091 1359
1092void 1360void
1093ev_io_stop (EV_P_ struct ev_io *w) 1361ev_io_stop (EV_P_ struct ev_io *w)
1094{ 1362{
1095 ev_clear_pending (EV_A_ (W)w); 1363 ev_clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 1364 if (expect_false (!ev_is_active (w)))
1097 return; 1365 return;
1366
1367 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1098 1368
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1369 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 1370 ev_stop (EV_A_ (W)w);
1101 1371
1102 fd_change (EV_A_ w->fd); 1372 fd_change (EV_A_ w->fd);
1103} 1373}
1104 1374
1105void 1375void
1106ev_timer_start (EV_P_ struct ev_timer *w) 1376ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1377{
1108 if (ev_is_active (w)) 1378 if (expect_false (ev_is_active (w)))
1109 return; 1379 return;
1110 1380
1111 w->at += mn_now; 1381 ((WT)w)->at += mn_now;
1112 1382
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1383 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1384
1115 ev_start (EV_A_ (W)w, ++timercnt); 1385 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1386 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1117 timers [timercnt - 1] = w; 1387 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1388 upheap ((WT *)timers, timercnt - 1);
1389
1390 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1391}
1120 1392
1121void 1393void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1394ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1395{
1124 ev_clear_pending (EV_A_ (W)w); 1396 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1397 if (expect_false (!ev_is_active (w)))
1126 return; 1398 return;
1127 1399
1400 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1401
1128 if (w->active < timercnt--) 1402 if (expect_true (((W)w)->active < timercnt--))
1129 { 1403 {
1130 timers [w->active - 1] = timers [timercnt]; 1404 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1406 }
1133 1407
1134 w->at = w->repeat; 1408 ((WT)w)->at -= mn_now;
1135 1409
1136 ev_stop (EV_A_ (W)w); 1410 ev_stop (EV_A_ (W)w);
1137} 1411}
1138 1412
1139void 1413void
1141{ 1415{
1142 if (ev_is_active (w)) 1416 if (ev_is_active (w))
1143 { 1417 {
1144 if (w->repeat) 1418 if (w->repeat)
1145 { 1419 {
1146 w->at = mn_now + w->repeat; 1420 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1421 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1422 }
1149 else 1423 else
1150 ev_timer_stop (EV_A_ w); 1424 ev_timer_stop (EV_A_ w);
1151 } 1425 }
1152 else if (w->repeat) 1426 else if (w->repeat)
1427 {
1428 w->at = w->repeat;
1153 ev_timer_start (EV_A_ w); 1429 ev_timer_start (EV_A_ w);
1430 }
1154} 1431}
1155 1432
1433#if EV_PERIODICS
1156void 1434void
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1435ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1436{
1159 if (ev_is_active (w)) 1437 if (expect_false (ev_is_active (w)))
1160 return; 1438 return;
1161 1439
1440 if (w->reschedule_cb)
1441 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1442 else if (w->interval)
1443 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1444 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1445 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1446 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1447 }
1167 1448
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1449 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1450 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1170 periodics [periodiccnt - 1] = w; 1451 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1452 upheap ((WT *)periodics, periodiccnt - 1);
1453
1454 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1455}
1173 1456
1174void 1457void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1458ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1459{
1177 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1179 return; 1462 return;
1180 1463
1464 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1465
1181 if (w->active < periodiccnt--) 1466 if (expect_true (((W)w)->active < periodiccnt--))
1182 { 1467 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1468 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1469 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1470 }
1186 1471
1187 ev_stop (EV_A_ (W)w); 1472 ev_stop (EV_A_ (W)w);
1188} 1473}
1189 1474
1190void 1475void
1476ev_periodic_again (EV_P_ struct ev_periodic *w)
1477{
1478 /* TODO: use adjustheap and recalculation */
1479 ev_periodic_stop (EV_A_ w);
1480 ev_periodic_start (EV_A_ w);
1481}
1482#endif
1483
1484void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1485ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1486{
1193 if (ev_is_active (w)) 1487 if (expect_false (ev_is_active (w)))
1194 return; 1488 return;
1195 1489
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1490 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1491 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1198 idles [idlecnt - 1] = w; 1492 idles [idlecnt - 1] = w;
1199} 1493}
1200 1494
1201void 1495void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1496ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1497{
1204 ev_clear_pending (EV_A_ (W)w); 1498 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1499 if (expect_false (!ev_is_active (w)))
1206 return; 1500 return;
1207 1501
1208 idles [w->active - 1] = idles [--idlecnt]; 1502 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1503 ev_stop (EV_A_ (W)w);
1210} 1504}
1211 1505
1212void 1506void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1507ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{ 1508{
1215 if (ev_is_active (w)) 1509 if (expect_false (ev_is_active (w)))
1216 return; 1510 return;
1217 1511
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1512 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1513 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1220 prepares [preparecnt - 1] = w; 1514 prepares [preparecnt - 1] = w;
1221} 1515}
1222 1516
1223void 1517void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1518ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{ 1519{
1226 ev_clear_pending (EV_A_ (W)w); 1520 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1521 if (expect_false (!ev_is_active (w)))
1228 return; 1522 return;
1229 1523
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1524 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1525 ev_stop (EV_A_ (W)w);
1232} 1526}
1233 1527
1234void 1528void
1235ev_check_start (EV_P_ struct ev_check *w) 1529ev_check_start (EV_P_ struct ev_check *w)
1236{ 1530{
1237 if (ev_is_active (w)) 1531 if (expect_false (ev_is_active (w)))
1238 return; 1532 return;
1239 1533
1240 ev_start (EV_A_ (W)w, ++checkcnt); 1534 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, ); 1535 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1242 checks [checkcnt - 1] = w; 1536 checks [checkcnt - 1] = w;
1243} 1537}
1244 1538
1245void 1539void
1246ev_check_stop (EV_P_ struct ev_check *w) 1540ev_check_stop (EV_P_ struct ev_check *w)
1247{ 1541{
1248 ev_clear_pending (EV_A_ (W)w); 1542 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1543 if (expect_false (!ev_is_active (w)))
1250 return; 1544 return;
1251 1545
1252 checks [w->active - 1] = checks [--checkcnt]; 1546 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1254} 1548}
1255 1549
1256#ifndef SA_RESTART 1550#ifndef SA_RESTART
1257# define SA_RESTART 0 1551# define SA_RESTART 0
1259 1553
1260void 1554void
1261ev_signal_start (EV_P_ struct ev_signal *w) 1555ev_signal_start (EV_P_ struct ev_signal *w)
1262{ 1556{
1263#if EV_MULTIPLICITY 1557#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1558 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1265#endif 1559#endif
1266 if (ev_is_active (w)) 1560 if (expect_false (ev_is_active (w)))
1267 return; 1561 return;
1268 1562
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1563 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1564
1271 ev_start (EV_A_ (W)w, 1); 1565 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1566 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1567 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1568
1275 if (!w->next) 1569 if (!((WL)w)->next)
1276 { 1570 {
1571#if _WIN32
1572 signal (w->signum, sighandler);
1573#else
1277 struct sigaction sa; 1574 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1575 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1576 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1577 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1578 sigaction (w->signum, &sa, 0);
1579#endif
1282 } 1580 }
1283} 1581}
1284 1582
1285void 1583void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1584ev_signal_stop (EV_P_ struct ev_signal *w)
1287{ 1585{
1288 ev_clear_pending (EV_A_ (W)w); 1586 ev_clear_pending (EV_A_ (W)w);
1289 if (!ev_is_active (w)) 1587 if (expect_false (!ev_is_active (w)))
1290 return; 1588 return;
1291 1589
1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1590 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1293 ev_stop (EV_A_ (W)w); 1591 ev_stop (EV_A_ (W)w);
1294 1592
1298 1596
1299void 1597void
1300ev_child_start (EV_P_ struct ev_child *w) 1598ev_child_start (EV_P_ struct ev_child *w)
1301{ 1599{
1302#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 1602#endif
1305 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1306 return; 1604 return;
1307 1605
1308 ev_start (EV_A_ (W)w, 1); 1606 ev_start (EV_A_ (W)w, 1);
1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1607 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1310} 1608}
1311 1609
1312void 1610void
1313ev_child_stop (EV_P_ struct ev_child *w) 1611ev_child_stop (EV_P_ struct ev_child *w)
1314{ 1612{
1315 ev_clear_pending (EV_A_ (W)w); 1613 ev_clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 1614 if (expect_false (!ev_is_active (w)))
1317 return; 1615 return;
1318 1616
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1617 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1321} 1619}
1336 void (*cb)(int revents, void *arg) = once->cb; 1634 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1635 void *arg = once->arg;
1338 1636
1339 ev_io_stop (EV_A_ &once->io); 1637 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1638 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1639 ev_free (once);
1342 1640
1343 cb (revents, arg); 1641 cb (revents, arg);
1344} 1642}
1345 1643
1346static void 1644static void
1356} 1654}
1357 1655
1358void 1656void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1657ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1658{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1659 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1660
1363 if (!once) 1661 if (expect_false (!once))
1662 {
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1663 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1664 return;
1366 { 1665 }
1666
1367 once->cb = cb; 1667 once->cb = cb;
1368 once->arg = arg; 1668 once->arg = arg;
1369 1669
1370 ev_watcher_init (&once->io, once_cb_io); 1670 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 1671 if (fd >= 0)
1372 { 1672 {
1373 ev_io_set (&once->io, fd, events); 1673 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 1674 ev_io_start (EV_A_ &once->io);
1375 } 1675 }
1376 1676
1377 ev_watcher_init (&once->to, once_cb_to); 1677 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 1678 if (timeout >= 0.)
1379 { 1679 {
1380 ev_timer_set (&once->to, timeout, 0.); 1680 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 1681 ev_timer_start (EV_A_ &once->to);
1382 }
1383 } 1682 }
1384} 1683}
1385 1684
1685#ifdef __cplusplus
1686}
1687#endif
1688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines