ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
97#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
98# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
99#endif 213# endif
214#endif
100 215
101/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
102 241
103#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
106#endif 245#endif
108#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
111#endif 250#endif
112 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
113/**/ 283/**/
114 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
119 298
120#include "ev.h"
121
122#if __GNUC__ >= 3 299#if __GNUC__ >= 4
123# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 301# define noinline __attribute__ ((noinline))
125#else 302#else
126# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
127# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
128#endif 308#endif
129 309
130#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
132 319
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
135 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
136typedef struct ev_watcher *W; 326typedef ev_watcher *W;
137typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
139 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
141 342
142/*****************************************************************************/ 343/*****************************************************************************/
143 344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
144typedef struct 410typedef struct
145{ 411{
146 struct ev_watcher_list *head; 412 WL head;
147 unsigned char events; 413 unsigned char events;
148 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
149} ANFD; 418} ANFD;
150 419
151typedef struct 420typedef struct
152{ 421{
153 W w; 422 W w;
154 int events; 423 int events;
155} ANPENDING; 424} ANPENDING;
156 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
157#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
158 434
159struct ev_loop 435 struct ev_loop
160{ 436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
162# include "ev_vars.h" 440 #include "ev_vars.h"
163};
164# undef VAR 441 #undef VAR
442 };
165# include "ev_wrap.h" 443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
166 447
167#else 448#else
168 449
450 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 452 #include "ev_vars.h"
171# undef VAR 453 #undef VAR
454
455 static int ev_default_loop_ptr;
172 456
173#endif 457#endif
174 458
175/*****************************************************************************/ 459/*****************************************************************************/
176 460
177inline ev_tstamp 461ev_tstamp
178ev_time (void) 462ev_time (void)
179{ 463{
180#if EV_USE_REALTIME 464#if EV_USE_REALTIME
181 struct timespec ts; 465 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
186 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
188#endif 472#endif
189} 473}
190 474
191inline ev_tstamp 475ev_tstamp inline_size
192get_clock (void) 476get_clock (void)
193{ 477{
194#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
196 { 480 {
201#endif 485#endif
202 486
203 return ev_time (); 487 return ev_time ();
204} 488}
205 489
490#if EV_MULTIPLICITY
206ev_tstamp 491ev_tstamp
207ev_now (EV_P) 492ev_now (EV_P)
208{ 493{
209 return rt_now; 494 return ev_rt_now;
210} 495}
496#endif
211 497
212#define array_roundsize(base,n) ((n) | 4 & ~3) 498void
213 499ev_sleep (ev_tstamp delay)
214#define array_needsize(base,cur,cnt,init) \ 500{
215 if (expect_false ((cnt) > cur)) \ 501 if (delay > 0.)
216 { \
217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \
226 cur = newcnt; \
227 } 502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
228 522
229/*****************************************************************************/ 523/*****************************************************************************/
230 524
231static void 525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
552
553#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \
555 { \
556 int ocur_ = (cur); \
557 (base) = (type *)array_realloc \
558 (sizeof (type), (base), &(cur), (cnt)); \
559 init ((base) + (ocur_), (cur) - ocur_); \
560 }
561
562#if 0
563#define array_slim(type,stem) \
564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
565 { \
566 stem ## max = array_roundsize (stem ## cnt >> 1); \
567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 }
570#endif
571
572#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
574
575/*****************************************************************************/
576
577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
232anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
233{ 607{
234 while (count--) 608 while (count--)
235 { 609 {
236 base->head = 0; 610 base->head = 0;
239 613
240 ++base; 614 ++base;
241 } 615 }
242} 616}
243 617
244static void 618void inline_speed
245event (EV_P_ W w, int events)
246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
269fd_event (EV_P_ int fd, int events) 619fd_event (EV_P_ int fd, int revents)
270{ 620{
271 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 622 ev_io *w;
273 623
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
275 { 625 {
276 int ev = w->events & events; 626 int ev = w->events & revents;
277 627
278 if (ev) 628 if (ev)
279 event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
280 } 630 }
281} 631}
282 632
283/*****************************************************************************/ 633void
634ev_feed_fd_event (EV_P_ int fd, int revents)
635{
636 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents);
638}
284 639
285static void 640void inline_size
286fd_reify (EV_P) 641fd_reify (EV_P)
287{ 642{
288 int i; 643 int i;
289 644
290 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
291 { 646 {
292 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
294 struct ev_io *w; 649 ev_io *w;
295 650
296 int events = 0; 651 unsigned char events = 0;
297 652
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
299 events |= w->events; 654 events |= (unsigned char)w->events;
300 655
301 anfd->reify = 0; 656#if EV_SELECT_IS_WINSOCKET
302 657 if (events)
303 if (anfd->events != events)
304 { 658 {
305 method_modify (EV_A_ fd, anfd->events, events); 659 unsigned long argp;
306 anfd->events = events; 660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
307 } 666 }
667#endif
668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
673 anfd->reify = 0;
674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
308 } 679 }
309 680
310 fdchangecnt = 0; 681 fdchangecnt = 0;
311} 682}
312 683
313static void 684void inline_size
314fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
315{ 686{
316 if (anfds [fd].reify || fdchangecnt < 0) 687 unsigned char reify = anfds [fd].reify;
317 return;
318
319 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
320 689
690 if (expect_true (!reify))
691 {
321 ++fdchangecnt; 692 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
324} 696}
325 697
326static void 698void inline_speed
327fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
328{ 700{
329 struct ev_io *w; 701 ev_io *w;
330 702
331 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
332 { 704 {
333 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 707 }
708}
709
710int inline_size
711fd_valid (int fd)
712{
713#ifdef _WIN32
714 return _get_osfhandle (fd) != -1;
715#else
716 return fcntl (fd, F_GETFD) != -1;
717#endif
336} 718}
337 719
338/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
339static void 721static void noinline
340fd_ebadf (EV_P) 722fd_ebadf (EV_P)
341{ 723{
342 int fd; 724 int fd;
343 725
344 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 727 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
348} 730}
349 731
350/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 733static void noinline
352fd_enomem (EV_P) 734fd_enomem (EV_P)
353{ 735{
354 int fd = anfdmax; 736 int fd;
355 737
356 while (fd--) 738 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 739 if (anfds [fd].events)
358 { 740 {
359 close (fd);
360 fd_kill (EV_A_ fd); 741 fd_kill (EV_A_ fd);
361 return; 742 return;
362 } 743 }
363} 744}
364 745
365/* susually called after fork if method needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
366static void 747static void noinline
367fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
368{ 749{
369 int fd; 750 int fd;
370 751
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events) 753 if (anfds [fd].events)
374 { 754 {
375 anfds [fd].events = 0; 755 anfds [fd].events = 0;
376 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
377 } 757 }
378} 758}
379 759
380/*****************************************************************************/ 760/*****************************************************************************/
381 761
382static void 762/* towards the root */
763void inline_speed
383upheap (WT *heap, int k) 764upheap (WT *heap, int k)
384{ 765{
385 WT w = heap [k]; 766 WT w = heap [k];
386 767
387 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
388 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
389 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
390 heap [k]->active = k + 1; 777 ((W)heap [k])->active = k;
391 k >>= 1; 778 k = p;
392 } 779 }
393 780
394 heap [k] = w; 781 heap [k] = w;
395 heap [k]->active = k + 1; 782 ((W)heap [k])->active = k;
396
397} 783}
398 784
399static void 785/* away from the root */
786void inline_speed
400downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
401{ 788{
402 WT w = heap [k]; 789 WT w = heap [k];
403 790
404 while (k < (N >> 1)) 791 for (;;)
405 { 792 {
406 int j = k << 1; 793 int c = k << 1;
407 794
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
409 ++j;
410
411 if (w->at <= heap [j]->at)
412 break; 796 break;
413 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
414 heap [k] = heap [j]; 804 heap [k] = heap [c];
415 heap [k]->active = k + 1; 805 ((W)heap [k])->active = k;
806
416 k = j; 807 k = c;
417 } 808 }
418 809
419 heap [k] = w; 810 heap [k] = w;
420 heap [k]->active = k + 1; 811 ((W)heap [k])->active = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
421} 819}
422 820
423/*****************************************************************************/ 821/*****************************************************************************/
424 822
425typedef struct 823typedef struct
426{ 824{
427 struct ev_watcher_list *head; 825 WL head;
428 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
429} ANSIG; 827} ANSIG;
430 828
431static ANSIG *signals; 829static ANSIG *signals;
432static int signalmax; 830static int signalmax;
433 831
434static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
435static sig_atomic_t volatile gotsig;
436static struct ev_io sigev;
437 833
438static void 834void inline_size
439signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
440{ 836{
441 while (count--) 837 while (count--)
442 { 838 {
443 base->head = 0; 839 base->head = 0;
445 841
446 ++base; 842 ++base;
447 } 843 }
448} 844}
449 845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd)
850{
851#ifdef _WIN32
852 int arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
854#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif
858}
859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
450static void 911static void
912pipecb (EV_P_ ev_io *iow, int revents)
913{
914#if EV_USE_EVENTFD
915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
926
927 if (gotsig && ev_is_default_loop (EV_A))
928 {
929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
951}
952
953/*****************************************************************************/
954
955static void
451sighandler (int signum) 956ev_sighandler (int signum)
452{ 957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
453 signals [signum - 1].gotsig = 1; 966 signals [signum - 1].gotsig = 1;
454 967 evpipe_write (EV_A_ &gotsig);
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462} 968}
463 969
464static void 970void noinline
465sigcb (EV_P_ struct ev_io *iow, int revents) 971ev_feed_signal_event (EV_P_ int signum)
466{ 972{
467 struct ev_watcher_list *w; 973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
468 int signum; 979 --signum;
469 980
470 read (sigpipe [0], &revents, 1); 981 if (signum < 0 || signum >= signalmax)
471 gotsig = 0; 982 return;
472 983
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0; 984 signals [signum].gotsig = 0;
477 985
478 for (w = signals [signum].head; w; w = w->next) 986 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL); 987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
480 }
481}
482
483static void
484siginit (EV_P)
485{
486#ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 988}
499 989
500/*****************************************************************************/ 990/*****************************************************************************/
501 991
992static WL childs [EV_PID_HASHSIZE];
993
502#ifndef WIN32 994#ifndef _WIN32
503 995
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
506 1020
507#ifndef WCONTINUED 1021#ifndef WCONTINUED
508# define WCONTINUED 0 1022# define WCONTINUED 0
509#endif 1023#endif
510 1024
511static void 1025static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
528{ 1027{
529 int pid, status; 1028 int pid, status;
530 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
533 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 1040
536 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 }
539} 1044}
540 1045
541#endif 1046#endif
542 1047
543/*****************************************************************************/ 1048/*****************************************************************************/
544 1049
1050#if EV_USE_PORT
1051# include "ev_port.c"
1052#endif
545#if EV_USE_KQUEUE 1053#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 1054# include "ev_kqueue.c"
547#endif 1055#endif
548#if EV_USE_EPOLL 1056#if EV_USE_EPOLL
549# include "ev_epoll.c" 1057# include "ev_epoll.c"
566{ 1074{
567 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
568} 1076}
569 1077
570/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
571static int 1079int inline_size
572enable_secure (void) 1080enable_secure (void)
573{ 1081{
574#ifdef WIN32 1082#ifdef _WIN32
575 return 0; 1083 return 0;
576#else 1084#else
577 return getuid () != geteuid () 1085 return getuid () != geteuid ()
578 || getgid () != getegid (); 1086 || getgid () != getegid ();
579#endif 1087#endif
580} 1088}
581 1089
582int 1090unsigned int
583ev_method (EV_P) 1091ev_supported_backends (void)
584{ 1092{
585 return method; 1093 unsigned int flags = 0;
586}
587 1094
588static void 1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
589loop_init (EV_P_ int methods) 1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
590{ 1106{
591 if (!method) 1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
1159loop_init (EV_P_ unsigned int flags)
1160{
1161 if (!backend)
592 { 1162 {
593#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
594 { 1164 {
595 struct timespec ts; 1165 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 1167 have_monotonic = 1;
598 } 1168 }
599#endif 1169#endif
600 1170
601 rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 1172 mn_now = get_clock ();
603 now_floor = mn_now; 1173 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
605 1175
606 if (methods == EVMETHOD_AUTO) 1176 io_blocktime = 0.;
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else
610 methods = EVMETHOD_ANY;
611 1195
612 method = 0; 1196 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends ();
1198
1199#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif
613#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
615#endif 1204#endif
616#if EV_USE_EPOLL 1205#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
618#endif 1207#endif
619#if EV_USE_POLL 1208#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
621#endif 1210#endif
622#if EV_USE_SELECT 1211#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
624#endif 1213#endif
625 }
626}
627 1214
628void 1215 ev_init (&pipeev, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI);
1217 }
1218}
1219
1220static void noinline
629loop_destroy (EV_P) 1221loop_destroy (EV_P)
630{ 1222{
1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241
1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
1250#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1252#endif
631#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
633#endif 1255#endif
634#if EV_USE_EPOLL 1256#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
636#endif 1258#endif
637#if EV_USE_POLL 1259#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
639#endif 1261#endif
640#if EV_USE_SELECT 1262#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
642#endif 1264#endif
643 1265
644 method = 0; 1266 for (i = NUMPRI; i--; )
645 /*TODO*/ 1267 {
646} 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
647 1273
648void 1274 ev_free (anfds); anfdmax = 0;
1275
1276 /* have to use the microsoft-never-gets-it-right macro */
1277 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY);
1281#endif
1282#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY);
1284#endif
1285 array_free (prepare, EMPTY);
1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
1290
1291 backend = 0;
1292}
1293
1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
649loop_fork (EV_P) 1299loop_fork (EV_P)
650{ 1300{
651 /*TODO*/ 1301#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif
1304#if EV_USE_KQUEUE
1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1306#endif
652#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
654#endif 1309#endif
655#if EV_USE_KQUEUE 1310#if EV_USE_INOTIFY
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1311 infy_fork (EV_A);
657#endif 1312#endif
1313
1314 if (ev_is_active (&pipeev))
1315 {
1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1322
1323 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1333 close (evpipe [0]);
1334 close (evpipe [1]);
1335 }
1336
1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1340 }
1341
1342 postfork = 0;
658} 1343}
659 1344
660#if EV_MULTIPLICITY 1345#if EV_MULTIPLICITY
661struct ev_loop * 1346struct ev_loop *
662ev_loop_new (int methods) 1347ev_loop_new (unsigned int flags)
663{ 1348{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 1350
1351 memset (loop, 0, sizeof (struct ev_loop));
1352
666 loop_init (EV_A_ methods); 1353 loop_init (EV_A_ flags);
667 1354
668 if (ev_method (EV_A)) 1355 if (ev_backend (EV_A))
669 return loop; 1356 return loop;
670 1357
671 return 0; 1358 return 0;
672} 1359}
673 1360
674void 1361void
675ev_loop_destroy (EV_P) 1362ev_loop_destroy (EV_P)
676{ 1363{
677 loop_destroy (EV_A); 1364 loop_destroy (EV_A);
678 free (loop); 1365 ev_free (loop);
679} 1366}
680 1367
681void 1368void
682ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
683{ 1370{
684 loop_fork (EV_A); 1371 postfork = 1; /* must be in line with ev_default_fork */
685} 1372}
686 1373
687#endif 1374#endif
688 1375
689#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 1377struct ev_loop *
1378ev_default_loop_init (unsigned int flags)
694#else 1379#else
695static int default_loop;
696
697int 1380int
1381ev_default_loop (unsigned int flags)
698#endif 1382#endif
699ev_default_loop (int methods)
700{ 1383{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop) 1384 if (!ev_default_loop_ptr)
706 { 1385 {
707#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 1388#else
710 default_loop = 1; 1389 ev_default_loop_ptr = 1;
711#endif 1390#endif
712 1391
713 loop_init (EV_A_ methods); 1392 loop_init (EV_A_ flags);
714 1393
715 if (ev_method (EV_A)) 1394 if (ev_backend (EV_A))
716 { 1395 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721#ifndef WIN32 1396#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 1401#endif
727 } 1402 }
728 else 1403 else
729 default_loop = 0; 1404 ev_default_loop_ptr = 0;
730 } 1405 }
731 1406
732 return default_loop; 1407 return ev_default_loop_ptr;
733} 1408}
734 1409
735void 1410void
736ev_default_destroy (void) 1411ev_default_destroy (void)
737{ 1412{
738#if EV_MULTIPLICITY 1413#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 1414 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 1415#endif
741 1416
1417#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
744 1420#endif
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750 1421
751 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
752} 1423}
753 1424
754void 1425void
755ev_default_fork (void) 1426ev_default_fork (void)
756{ 1427{
757#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 1429 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 1430#endif
760 1431
761 loop_fork (EV_A); 1432 if (backend)
762 1433 postfork = 1; /* must be in line with ev_loop_fork */
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1434}
771 1435
772/*****************************************************************************/ 1436/*****************************************************************************/
773 1437
774static void 1438void
1439ev_invoke (EV_P_ void *w, int revents)
1440{
1441 EV_CB_INVOKE ((W)w, revents);
1442}
1443
1444void inline_speed
775call_pending (EV_P) 1445call_pending (EV_P)
776{ 1446{
777 int pri; 1447 int pri;
778 1448
779 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1450 while (pendingcnt [pri])
781 { 1451 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1453
784 if (p->w) 1454 if (expect_true (p->w))
785 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
786 p->w->pending = 0; 1458 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
788 } 1460 }
789 } 1461 }
790} 1462}
791 1463
792static void 1464void inline_size
793timers_reify (EV_P) 1465timers_reify (EV_P)
794{ 1466{
795 while (timercnt && timers [0]->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
796 { 1468 {
797 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
798 1472
799 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
800 if (w->repeat) 1474 if (w->repeat)
801 { 1475 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
804 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
805 } 1483 }
806 else 1484 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 1486
809 event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 1488 }
811} 1489}
812 1490
813static void 1491#if EV_PERIODIC_ENABLE
1492void inline_size
814periodics_reify (EV_P) 1493periodics_reify (EV_P)
815{ 1494{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
817 { 1496 {
818 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
819 1500
820 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
821 if (w->interval) 1502 if (w->reschedule_cb)
822 { 1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
826 } 1514 }
827 else 1515 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1517
830 event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1519 }
832} 1520}
833 1521
834static void 1522static void noinline
835periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
836{ 1524{
837 int i; 1525 int i;
838 1526
839 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
841 { 1529 {
842 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
843 1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE
1545void inline_size
1546idle_reify (EV_P)
1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
845 { 1553 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1554 if (pendingcnt [pri])
1555 break;
847 1556
848 if (fabs (diff) >= 1e-4) 1557 if (idlecnt [pri])
849 { 1558 {
850 ev_periodic_stop (EV_A_ w); 1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
851 ev_periodic_start (EV_A_ w); 1560 break;
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 } 1561 }
855 } 1562 }
856 } 1563 }
857} 1564}
1565#endif
858 1566
859inline int 1567void inline_speed
860time_update_monotonic (EV_P) 1568time_update (EV_P_ ev_tstamp max_block)
861{
862 mn_now = get_clock ();
863
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 {
866 rt_now = rtmn_diff + mn_now;
867 return 0;
868 }
869 else
870 {
871 now_floor = mn_now;
872 rt_now = ev_time ();
873 return 1;
874 }
875}
876
877static void
878time_update (EV_P)
879{ 1569{
880 int i; 1570 int i;
881 1571
882#if EV_USE_MONOTONIC 1572#if EV_USE_MONOTONIC
883 if (expect_true (have_monotonic)) 1573 if (expect_true (have_monotonic))
884 { 1574 {
885 if (time_update_monotonic (EV_A)) 1575 ev_tstamp odiff = rtmn_diff;
1576
1577 mn_now = get_clock ();
1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
886 { 1582 {
887 ev_tstamp odiff = rtmn_diff; 1583 ev_rt_now = rtmn_diff + mn_now;
1584 return;
1585 }
888 1586
1587 now_floor = mn_now;
1588 ev_rt_now = ev_time ();
1589
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1590 /* loop a few times, before making important decisions.
1591 * on the choice of "4": one iteration isn't enough,
1592 * in case we get preempted during the calls to
1593 * ev_time and get_clock. a second call is almost guaranteed
1594 * to succeed in that case, though. and looping a few more times
1595 * doesn't hurt either as we only do this on time-jumps or
1596 * in the unlikely event of having been preempted here.
1597 */
1598 for (i = 4; --i; )
890 { 1599 {
891 rtmn_diff = rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
892 1601
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1603 return; /* all is well */
895 1604
896 rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1606 mn_now = get_clock ();
898 now_floor = mn_now; 1607 now_floor = mn_now;
899 } 1608 }
900 1609
1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
901 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
902 /* no timer adjustment, as the monotonic clock doesn't jump */ 1625#endif
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
904 } 1629 }
905 }
906 else
907#endif
908 {
909 rt_now = ev_time ();
910 1630
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 {
913 periodics_reschedule (EV_A);
914
915 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now;
918 }
919
920 mn_now = rt_now; 1631 mn_now = ev_rt_now;
921 } 1632 }
922} 1633}
923 1634
924void 1635void
925ev_ref (EV_P) 1636ev_ref (EV_P)
936static int loop_done; 1647static int loop_done;
937 1648
938void 1649void
939ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
940{ 1651{
941 double block; 1652 loop_done = EVUNLOOP_CANCEL;
942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1653
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
943 1655
944 do 1656 do
945 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
946 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
947 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
948 { 1679 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1681 call_pending (EV_A);
951 } 1682 }
952 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1687 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork))
1689 loop_fork (EV_A);
1690
953 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1692 fd_reify (EV_A);
955 1693
956 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
957 1698
958 /* we only need this for !monotonic clockor timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
959 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A);
963 else
964#endif
965 { 1700 {
966 rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
967 mn_now = rt_now; 1702 time_update (EV_A_ 1e100);
968 }
969 1703
970 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.;
972 else
973 {
974 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
975 1705
976 if (timercnt) 1706 if (timercnt)
977 { 1707 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
979 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
980 } 1710 }
981 1711
1712#if EV_PERIODIC_ENABLE
982 if (periodiccnt) 1713 if (periodiccnt)
983 { 1714 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
985 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
986 } 1717 }
1718#endif
987 1719
988 if (block < 0.) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
989 } 1733 }
990 1734
991 method_poll (EV_A_ block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
992 1737
993 /* update rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
995 1741
996 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1744#if EV_PERIODIC_ENABLE
998 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1746#endif
999 1747
1748#if EV_IDLE_ENABLE
1000 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1001 if (!pendingcnt) 1750 idle_reify (EV_A);
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1003 1752
1004 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1754 if (expect_false (checkcnt))
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1007 1756
1008 call_pending (EV_A); 1757 call_pending (EV_A);
1009 } 1758 }
1010 while (activecnt && !loop_done); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1011 1764
1012 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1013 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1014} 1767}
1015 1768
1016void 1769void
1017ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1018{ 1771{
1019 loop_done = how; 1772 loop_done = how;
1020} 1773}
1021 1774
1022/*****************************************************************************/ 1775/*****************************************************************************/
1023 1776
1024inline void 1777void inline_size
1025wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1026{ 1779{
1027 elem->next = *head; 1780 elem->next = *head;
1028 *head = elem; 1781 *head = elem;
1029} 1782}
1030 1783
1031inline void 1784void inline_size
1032wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1033{ 1786{
1034 while (*head) 1787 while (*head)
1035 { 1788 {
1036 if (*head == elem) 1789 if (*head == elem)
1041 1794
1042 head = &(*head)->next; 1795 head = &(*head)->next;
1043 } 1796 }
1044} 1797}
1045 1798
1046inline void 1799void inline_speed
1047ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1048{ 1801{
1049 if (w->pending) 1802 if (w->pending)
1050 { 1803 {
1051 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1052 w->pending = 0; 1805 w->pending = 0;
1053 } 1806 }
1054} 1807}
1055 1808
1056inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1057ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1058{ 1837{
1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1061
1062 w->active = active; 1839 w->active = active;
1063 ev_ref (EV_A); 1840 ev_ref (EV_A);
1064} 1841}
1065 1842
1066inline void 1843void inline_size
1067ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1068{ 1845{
1069 ev_unref (EV_A); 1846 ev_unref (EV_A);
1070 w->active = 0; 1847 w->active = 0;
1071} 1848}
1072 1849
1073/*****************************************************************************/ 1850/*****************************************************************************/
1074 1851
1075void 1852void noinline
1076ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1077{ 1854{
1078 int fd = w->fd; 1855 int fd = w->fd;
1079 1856
1080 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1081 return; 1858 return;
1082 1859
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1861
1085 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1088 1865
1089 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1090} 1868}
1091 1869
1092void 1870void noinline
1093ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1094{ 1872{
1095 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1096 if (!ev_is_active (w)) 1874 if (expect_false (!ev_is_active (w)))
1097 return; 1875 return;
1098 1876
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1878
1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1100 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1101 1881
1102 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1103} 1883}
1104 1884
1105void 1885void noinline
1106ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1107{ 1887{
1108 if (ev_is_active (w)) 1888 if (expect_false (ev_is_active (w)))
1109 return; 1889 return;
1110 1890
1111 w->at += mn_now; 1891 ev_at (w) += mn_now;
1112 1892
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1894
1115 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1117 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1118 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1119}
1120 1899
1121void 1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1901}
1902
1903void noinline
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1123{ 1905{
1124 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1907 if (expect_false (!ev_is_active (w)))
1126 return; 1908 return;
1127 1909
1128 if (w->active < timercnt--) 1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1911
1912 {
1913 int active = ((W)w)->active;
1914
1915 if (expect_true (active < timercnt))
1129 { 1916 {
1130 timers [w->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1918 adjustheap (timers, timercnt, active);
1132 } 1919 }
1133 1920
1134 w->at = w->repeat; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1135 1925
1136 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1137} 1927}
1138 1928
1139void 1929void noinline
1140ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1141{ 1931{
1142 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1143 { 1933 {
1144 if (w->repeat) 1934 if (w->repeat)
1145 { 1935 {
1146 w->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1937 adjustheap (timers, timercnt, ((W)w)->active);
1148 } 1938 }
1149 else 1939 else
1150 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1151 } 1941 }
1152 else if (w->repeat) 1942 else if (w->repeat)
1943 {
1944 ev_at (w) = w->repeat;
1153 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1946 }
1154} 1947}
1155 1948
1156void 1949#if EV_PERIODIC_ENABLE
1950void noinline
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1158{ 1952{
1159 if (ev_is_active (w)) 1953 if (expect_false (ev_is_active (w)))
1160 return; 1954 return;
1161 1955
1956 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval)
1959 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 }
1964 else
1965 ev_at (w) = w->offset;
1167 1966
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1170 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1172}
1173 1971
1174void 1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1973}
1974
1975void noinline
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1176{ 1977{
1177 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1179 return; 1980 return;
1180 1981
1181 if (w->active < periodiccnt--) 1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1983
1984 {
1985 int active = ((W)w)->active;
1986
1987 if (expect_true (active < periodiccnt))
1182 { 1988 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1185 } 1991 }
1992
1993 --periodiccnt;
1994 }
1186 1995
1187 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1188} 1997}
1189 1998
1190void 1999void noinline
1191ev_idle_start (EV_P_ struct ev_idle *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1192{ 2001{
1193 if (ev_is_active (w)) 2002 /* TODO: use adjustheap and recalculation */
1194 return;
1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 2003 ev_periodic_stop (EV_A_ w);
2004 ev_periodic_start (EV_A_ w);
1210} 2005}
1211 2006#endif
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255 2007
1256#ifndef SA_RESTART 2008#ifndef SA_RESTART
1257# define SA_RESTART 0 2009# define SA_RESTART 0
1258#endif 2010#endif
1259 2011
1260void 2012void noinline
1261ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1262{ 2014{
1263#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1265#endif 2017#endif
1266 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
1267 return; 2019 return;
1268 2020
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1271 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1274 2041
1275 if (!w->next) 2042 if (!((WL)w)->next)
1276 { 2043 {
2044#if _WIN32
2045 signal (w->signum, ev_sighandler);
2046#else
1277 struct sigaction sa; 2047 struct sigaction sa;
1278 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1279 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
2052#endif
1282 } 2053 }
1283} 2054}
1284 2055
1285void 2056void noinline
1286ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1287{ 2058{
1288 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1289 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1290 return; 2061 return;
1291 2062
1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1293 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1294 2065
1295 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1296 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1297} 2068}
1298 2069
1299void 2070void
1300ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1301{ 2072{
1302#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1304#endif 2075#endif
1305 if (ev_is_active (w)) 2076 if (expect_false (ev_is_active (w)))
1306 return; 2077 return;
1307 2078
1308 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1310} 2081}
1311 2082
1312void 2083void
1313ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1314{ 2085{
1315 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1316 if (ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1317 return; 2088 return;
1318 2089
1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1320 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1321} 2092}
1322 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ((W)w)->active;
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ((W)w)->active;
2404 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active;
2406 }
2407
2408 ev_stop (EV_A_ (W)w);
2409}
2410
2411void
2412ev_check_start (EV_P_ ev_check *w)
2413{
2414 if (expect_false (ev_is_active (w)))
2415 return;
2416
2417 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w;
2420}
2421
2422void
2423ev_check_stop (EV_P_ ev_check *w)
2424{
2425 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w)))
2427 return;
2428
2429 {
2430 int active = ((W)w)->active;
2431 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active;
2433 }
2434
2435 ev_stop (EV_A_ (W)w);
2436}
2437
2438#if EV_EMBED_ENABLE
2439void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w)
2441{
2442 ev_loop (w->other, EVLOOP_NONBLOCK);
2443}
2444
2445static void
2446embed_io_cb (EV_P_ ev_io *io, int revents)
2447{
2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2449
2450 if (ev_cb (w))
2451 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2452 else
2453 ev_loop (w->other, EVLOOP_NONBLOCK);
2454}
2455
2456static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460
2461 {
2462 struct ev_loop *loop = w->other;
2463
2464 while (fdchangecnt)
2465 {
2466 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 }
2469 }
2470}
2471
2472#if 0
2473static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{
2476 ev_idle_stop (EV_A_ idle);
2477}
2478#endif
2479
2480void
2481ev_embed_start (EV_P_ ev_embed *w)
2482{
2483 if (expect_false (ev_is_active (w)))
2484 return;
2485
2486 {
2487 struct ev_loop *loop = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 }
2491
2492 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io);
2494
2495 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare);
2498
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500
2501 ev_start (EV_A_ (W)w, 1);
2502}
2503
2504void
2505ev_embed_stop (EV_P_ ev_embed *w)
2506{
2507 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w)))
2509 return;
2510
2511 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare);
2513
2514 ev_stop (EV_A_ (W)w);
2515}
2516#endif
2517
2518#if EV_FORK_ENABLE
2519void
2520ev_fork_start (EV_P_ ev_fork *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w;
2528}
2529
2530void
2531ev_fork_stop (EV_P_ ev_fork *w)
2532{
2533 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w)))
2535 return;
2536
2537 {
2538 int active = ((W)w)->active;
2539 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active;
2541 }
2542
2543 ev_stop (EV_A_ (W)w);
2544}
2545#endif
2546
2547#if EV_ASYNC_ENABLE
2548void
2549ev_async_start (EV_P_ ev_async *w)
2550{
2551 if (expect_false (ev_is_active (w)))
2552 return;
2553
2554 evpipe_init (EV_A);
2555
2556 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w;
2559}
2560
2561void
2562ev_async_stop (EV_P_ ev_async *w)
2563{
2564 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w)))
2566 return;
2567
2568 {
2569 int active = ((W)w)->active;
2570 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active;
2572 }
2573
2574 ev_stop (EV_A_ (W)w);
2575}
2576
2577void
2578ev_async_send (EV_P_ ev_async *w)
2579{
2580 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync);
2582}
2583#endif
2584
1323/*****************************************************************************/ 2585/*****************************************************************************/
1324 2586
1325struct ev_once 2587struct ev_once
1326{ 2588{
1327 struct ev_io io; 2589 ev_io io;
1328 struct ev_timer to; 2590 ev_timer to;
1329 void (*cb)(int revents, void *arg); 2591 void (*cb)(int revents, void *arg);
1330 void *arg; 2592 void *arg;
1331}; 2593};
1332 2594
1333static void 2595static void
1336 void (*cb)(int revents, void *arg) = once->cb; 2598 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 2599 void *arg = once->arg;
1338 2600
1339 ev_io_stop (EV_A_ &once->io); 2601 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 2602 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 2603 ev_free (once);
1342 2604
1343 cb (revents, arg); 2605 cb (revents, arg);
1344} 2606}
1345 2607
1346static void 2608static void
1347once_cb_io (EV_P_ struct ev_io *w, int revents) 2609once_cb_io (EV_P_ ev_io *w, int revents)
1348{ 2610{
1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1350} 2612}
1351 2613
1352static void 2614static void
1353once_cb_to (EV_P_ struct ev_timer *w, int revents) 2615once_cb_to (EV_P_ ev_timer *w, int revents)
1354{ 2616{
1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1356} 2618}
1357 2619
1358void 2620void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 2622{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 2623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 2624
1363 if (!once) 2625 if (expect_false (!once))
2626 {
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2627 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 2628 return;
1366 { 2629 }
2630
1367 once->cb = cb; 2631 once->cb = cb;
1368 once->arg = arg; 2632 once->arg = arg;
1369 2633
1370 ev_watcher_init (&once->io, once_cb_io); 2634 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 2635 if (fd >= 0)
1372 { 2636 {
1373 ev_io_set (&once->io, fd, events); 2637 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 2638 ev_io_start (EV_A_ &once->io);
1375 } 2639 }
1376 2640
1377 ev_watcher_init (&once->to, once_cb_to); 2641 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 2642 if (timeout >= 0.)
1379 { 2643 {
1380 ev_timer_set (&once->to, timeout, 0.); 2644 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 2645 ev_timer_start (EV_A_ &once->to);
1382 }
1383 } 2646 }
1384} 2647}
1385 2648
2649#if EV_MULTIPLICITY
2650 #include "ev_wrap.h"
2651#endif
2652
2653#ifdef __cplusplus
2654}
2655#endif
2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines