ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
42#include <stdio.h> 64#include <stdio.h>
43 65
44#include <assert.h> 66#include <assert.h>
45#include <errno.h> 67#include <errno.h>
46#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
47#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
48#include <sys/time.h> 72#include <sys/time.h>
49#include <time.h> 73#include <time.h>
50 74
51/**/ 75/**/
52 76
111 135
112typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
113typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
115 139
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
117ev_tstamp ev_now;
118int ev_method;
119
120static int have_monotonic; /* runtime */
121
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
123static void (*method_modify)(int fd, int oev, int nev);
124static void (*method_poll)(ev_tstamp timeout);
125 141
126/*****************************************************************************/ 142/*****************************************************************************/
127 143
128ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
129ev_time (void) 178ev_time (void)
130{ 179{
131#if EV_USE_REALTIME 180#if EV_USE_REALTIME
132 struct timespec ts; 181 struct timespec ts;
133 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
137 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 188#endif
140} 189}
141 190
142static ev_tstamp 191inline ev_tstamp
143get_clock (void) 192get_clock (void)
144{ 193{
145#if EV_USE_MONOTONIC 194#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 195 if (expect_true (have_monotonic))
147 { 196 {
150 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
151 } 200 }
152#endif 201#endif
153 202
154 return ev_time (); 203 return ev_time ();
204}
205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
155} 210}
156 211
157#define array_roundsize(base,n) ((n) | 4 & ~3) 212#define array_roundsize(base,n) ((n) | 4 & ~3)
158 213
159#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
171 cur = newcnt; \ 226 cur = newcnt; \
172 } 227 }
173 228
174/*****************************************************************************/ 229/*****************************************************************************/
175 230
176typedef struct
177{
178 struct ev_io *head;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182
183static ANFD *anfds;
184static int anfdmax;
185
186static void 231static void
187anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
188{ 233{
189 while (count--) 234 while (count--)
190 { 235 {
194 239
195 ++base; 240 ++base;
196 } 241 }
197} 242}
198 243
199typedef struct
200{
201 W w;
202 int events;
203} ANPENDING;
204
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void 244static void
209event (W w, int events) 245event (EV_P_ W w, int events)
210{ 246{
211 if (w->pending) 247 if (w->pending)
212 { 248 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
214 return; 250 return;
219 pendings [ABSPRI (w)][w->pending - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
220 pendings [ABSPRI (w)][w->pending - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
221} 257}
222 258
223static void 259static void
224queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
225{ 261{
226 int i; 262 int i;
227 263
228 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type); 265 event (EV_A_ events [i], type);
230} 266}
231 267
232static void 268static void
233fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
234{ 270{
235 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 272 struct ev_io *w;
237 273
238 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
239 { 275 {
240 int ev = w->events & events; 276 int ev = w->events & events;
241 277
242 if (ev) 278 if (ev)
243 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
244 } 280 }
245} 281}
246 282
247/*****************************************************************************/ 283/*****************************************************************************/
248 284
249static int *fdchanges;
250static int fdchangemax, fdchangecnt;
251
252static void 285static void
253fd_reify (void) 286fd_reify (EV_P)
254{ 287{
255 int i; 288 int i;
256 289
257 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
258 { 291 {
260 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 294 struct ev_io *w;
262 295
263 int events = 0; 296 int events = 0;
264 297
265 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
266 events |= w->events; 299 events |= w->events;
267 300
268 anfd->reify = 0; 301 anfd->reify = 0;
269 302
270 if (anfd->events != events) 303 if (anfd->events != events)
271 { 304 {
272 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
273 anfd->events = events; 306 anfd->events = events;
274 } 307 }
275 } 308 }
276 309
277 fdchangecnt = 0; 310 fdchangecnt = 0;
278} 311}
279 312
280static void 313static void
281fd_change (int fd) 314fd_change (EV_P_ int fd)
282{ 315{
283 if (anfds [fd].reify || fdchangecnt < 0) 316 if (anfds [fd].reify || fdchangecnt < 0)
284 return; 317 return;
285 318
286 anfds [fd].reify = 1; 319 anfds [fd].reify = 1;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
290 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
291} 324}
292 325
293static void 326static void
294fd_kill (int fd) 327fd_kill (EV_P_ int fd)
295{ 328{
296 struct ev_io *w; 329 struct ev_io *w;
297 330
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 331 while ((w = (struct ev_io *)anfds [fd].head))
300 { 332 {
301 ev_io_stop (w); 333 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 335 }
304} 336}
305 337
306/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
307static void 339static void
308fd_ebadf (void) 340fd_ebadf (EV_P)
309{ 341{
310 int fd; 342 int fd;
311 343
312 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 345 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
315 fd_kill (fd); 347 fd_kill (EV_A_ fd);
316} 348}
317 349
318/* called on ENOMEM in select/poll to kill some fds and retry */ 350/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 351static void
320fd_enomem (void) 352fd_enomem (EV_P)
321{ 353{
322 int fd = anfdmax; 354 int fd = anfdmax;
323 355
324 while (fd--) 356 while (fd--)
325 if (anfds [fd].events) 357 if (anfds [fd].events)
326 { 358 {
327 close (fd); 359 close (fd);
328 fd_kill (fd); 360 fd_kill (EV_A_ fd);
329 return; 361 return;
330 } 362 }
331} 363}
332 364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
378}
379
333/*****************************************************************************/ 380/*****************************************************************************/
334 381
335static struct ev_timer **timers;
336static int timermax, timercnt;
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void 382static void
342upheap (WT *timers, int k) 383upheap (WT *heap, int k)
343{ 384{
344 WT w = timers [k]; 385 WT w = heap [k];
345 386
346 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
347 { 388 {
348 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
349 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
350 k >>= 1; 391 k >>= 1;
351 } 392 }
352 393
353 timers [k] = w; 394 heap [k] = w;
354 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
355 396
356} 397}
357 398
358static void 399static void
359downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
360{ 401{
361 WT w = timers [k]; 402 WT w = heap [k];
362 403
363 while (k < (N >> 1)) 404 while (k < (N >> 1))
364 { 405 {
365 int j = k << 1; 406 int j = k << 1;
366 407
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
368 ++j; 409 ++j;
369 410
370 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
371 break; 412 break;
372 413
373 timers [k] = timers [j]; 414 heap [k] = heap [j];
374 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
375 k = j; 416 k = j;
376 } 417 }
377 418
378 timers [k] = w; 419 heap [k] = w;
379 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
380} 421}
381 422
382/*****************************************************************************/ 423/*****************************************************************************/
383 424
384typedef struct 425typedef struct
385{ 426{
386 struct ev_signal *head; 427 struct ev_watcher_list *head;
387 sig_atomic_t volatile gotsig; 428 sig_atomic_t volatile gotsig;
388} ANSIG; 429} ANSIG;
389 430
390static ANSIG *signals; 431static ANSIG *signals;
391static int signalmax; 432static int signalmax;
411{ 452{
412 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
413 454
414 if (!gotsig) 455 if (!gotsig)
415 { 456 {
457 int old_errno = errno;
416 gotsig = 1; 458 gotsig = 1;
417 write (sigpipe [1], &signum, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
418 } 461 }
419} 462}
420 463
421static void 464static void
422sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
423{ 466{
424 struct ev_signal *w; 467 struct ev_watcher_list *w;
425 int signum; 468 int signum;
426 469
427 read (sigpipe [0], &revents, 1); 470 read (sigpipe [0], &revents, 1);
428 gotsig = 0; 471 gotsig = 0;
429 472
431 if (signals [signum].gotsig) 474 if (signals [signum].gotsig)
432 { 475 {
433 signals [signum].gotsig = 0; 476 signals [signum].gotsig = 0;
434 477
435 for (w = signals [signum].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
437 } 480 }
438} 481}
439 482
440static void 483static void
441siginit (void) 484siginit (EV_P)
442{ 485{
486#ifndef WIN32
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445 489
446 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
449 494
450 ev_io_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 498}
453 499
454/*****************************************************************************/ 500/*****************************************************************************/
455 501
456static struct ev_idle **idles; 502#ifndef WIN32
457static int idlemax, idlecnt;
458
459static struct ev_prepare **prepares;
460static int preparemax, preparecnt;
461
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466 503
467static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
468static struct ev_signal childev; 505static struct ev_signal childev;
469 506
470#ifndef WCONTINUED 507#ifndef WCONTINUED
471# define WCONTINUED 0 508# define WCONTINUED 0
472#endif 509#endif
473 510
474static void 511static void
475childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
476{ 513{
477 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
478 int pid, status; 529 int pid, status;
479 530
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
482 if (w->pid == pid || !w->pid) 533 /* make sure we are called again until all childs have been reaped */
483 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
484 w->status = status; 535
485 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
486 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
487} 539}
540
541#endif
488 542
489/*****************************************************************************/ 543/*****************************************************************************/
490 544
491#if EV_USE_KQUEUE 545#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 546# include "ev_kqueue.c"
511ev_version_minor (void) 565ev_version_minor (void)
512{ 566{
513 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
514} 568}
515 569
516/* return true if we are running with elevated privileges and ignore env variables */ 570/* return true if we are running with elevated privileges and should ignore env variables */
517static int 571static int
518enable_secure () 572enable_secure (void)
519{ 573{
574#ifdef WIN32
575 return 0;
576#else
520 return getuid () != geteuid () 577 return getuid () != geteuid ()
521 || getgid () != getegid (); 578 || getgid () != getegid ();
579#endif
522} 580}
523 581
524int ev_init (int methods) 582int
583ev_method (EV_P)
525{ 584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
526 if (!ev_method) 591 if (!method)
527 { 592 {
528#if EV_USE_MONOTONIC 593#if EV_USE_MONOTONIC
529 { 594 {
530 struct timespec ts; 595 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 597 have_monotonic = 1;
533 } 598 }
534#endif 599#endif
535 600
536 ev_now = ev_time (); 601 rt_now = ev_time ();
537 now = get_clock (); 602 mn_now = get_clock ();
538 now_floor = now; 603 now_floor = mn_now;
539 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
540
541 if (pipe (sigpipe))
542 return 0;
543 605
544 if (methods == EVMETHOD_AUTO) 606 if (methods == EVMETHOD_AUTO)
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 608 methods = atoi (getenv ("LIBEV_METHODS"));
547 else 609 else
548 methods = EVMETHOD_ANY; 610 methods = EVMETHOD_ANY;
549 611
550 ev_method = 0; 612 method = 0;
551#if EV_USE_KQUEUE 613#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
553#endif 615#endif
554#if EV_USE_EPOLL 616#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
556#endif 618#endif
557#if EV_USE_POLL 619#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
559#endif 621#endif
560#if EV_USE_SELECT 622#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
562#endif 624#endif
625 }
626}
563 627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
564 if (ev_method) 715 if (ev_method (EV_A))
565 { 716 {
566 ev_watcher_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
567 siginit (); 719 siginit (EV_A);
568 720
721#ifndef WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
571 } 727 }
728 else
729 default_loop = 0;
572 } 730 }
573 731
574 return ev_method; 732 return default_loop;
575} 733}
576 734
577/*****************************************************************************/
578
579void 735void
580ev_fork_prepare (void) 736ev_default_destroy (void)
581{ 737{
582 /* nop */ 738#if EV_MULTIPLICITY
583} 739 struct ev_loop *loop = default_loop;
584
585void
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif 740#endif
598 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
599 ev_io_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
600 close (sigpipe [0]); 764 close (sigpipe [0]);
601 close (sigpipe [1]); 765 close (sigpipe [1]);
602 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
603 siginit (); 769 siginit (EV_A);
604} 770}
605 771
606/*****************************************************************************/ 772/*****************************************************************************/
607 773
608static void 774static void
609call_pending (void) 775call_pending (EV_P)
610{ 776{
611 int pri; 777 int pri;
612 778
613 for (pri = NUMPRI; pri--; ) 779 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 780 while (pendingcnt [pri])
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 783
618 if (p->w) 784 if (p->w)
619 { 785 {
620 p->w->pending = 0; 786 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
622 } 788 }
623 } 789 }
624} 790}
625 791
626static void 792static void
627timers_reify (void) 793timers_reify (EV_P)
628{ 794{
629 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
630 { 796 {
631 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
632 798
633 /* first reschedule or stop timer */ 799 /* first reschedule or stop timer */
634 if (w->repeat) 800 if (w->repeat)
635 { 801 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 803 w->at = mn_now + w->repeat;
638 downheap ((WT *)timers, timercnt, 0); 804 downheap ((WT *)timers, timercnt, 0);
639 } 805 }
640 else 806 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 808
643 event ((W)w, EV_TIMEOUT); 809 event (EV_A_ (W)w, EV_TIMEOUT);
644 } 810 }
645} 811}
646 812
647static void 813static void
648periodics_reify (void) 814periodics_reify (EV_P)
649{ 815{
650 while (periodiccnt && periodics [0]->at <= ev_now) 816 while (periodiccnt && periodics [0]->at <= rt_now)
651 { 817 {
652 struct ev_periodic *w = periodics [0]; 818 struct ev_periodic *w = periodics [0];
653 819
654 /* first reschedule or stop timer */ 820 /* first reschedule or stop timer */
655 if (w->interval) 821 if (w->interval)
656 { 822 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 825 downheap ((WT *)periodics, periodiccnt, 0);
660 } 826 }
661 else 827 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 829
664 event ((W)w, EV_PERIODIC); 830 event (EV_A_ (W)w, EV_PERIODIC);
665 } 831 }
666} 832}
667 833
668static void 834static void
669periodics_reschedule (ev_tstamp diff) 835periodics_reschedule (EV_P)
670{ 836{
671 int i; 837 int i;
672 838
673 /* adjust periodics after time jump */ 839 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 840 for (i = 0; i < periodiccnt; ++i)
675 { 841 {
676 struct ev_periodic *w = periodics [i]; 842 struct ev_periodic *w = periodics [i];
677 843
678 if (w->interval) 844 if (w->interval)
679 { 845 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
681 847
682 if (fabs (diff) >= 1e-4) 848 if (fabs (diff) >= 1e-4)
683 { 849 {
684 ev_periodic_stop (w); 850 ev_periodic_stop (EV_A_ w);
685 ev_periodic_start (w); 851 ev_periodic_start (EV_A_ w);
686 852
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 } 854 }
689 } 855 }
690 } 856 }
691} 857}
692 858
693static int 859inline int
694time_update_monotonic (void) 860time_update_monotonic (EV_P)
695{ 861{
696 now = get_clock (); 862 mn_now = get_clock ();
697 863
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
699 { 865 {
700 ev_now = now + diff; 866 rt_now = rtmn_diff + mn_now;
701 return 0; 867 return 0;
702 } 868 }
703 else 869 else
704 { 870 {
705 now_floor = now; 871 now_floor = mn_now;
706 ev_now = ev_time (); 872 rt_now = ev_time ();
707 return 1; 873 return 1;
708 } 874 }
709} 875}
710 876
711static void 877static void
712time_update (void) 878time_update (EV_P)
713{ 879{
714 int i; 880 int i;
715 881
716#if EV_USE_MONOTONIC 882#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 883 if (expect_true (have_monotonic))
718 { 884 {
719 if (time_update_monotonic ()) 885 if (time_update_monotonic (EV_A))
720 { 886 {
721 ev_tstamp odiff = diff; 887 ev_tstamp odiff = rtmn_diff;
722 888
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 { 890 {
725 diff = ev_now - now; 891 rtmn_diff = rt_now - mn_now;
726 892
727 if (fabs (odiff - diff) < MIN_TIMEJUMP) 893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
728 return; /* all is well */ 894 return; /* all is well */
729 895
730 ev_now = ev_time (); 896 rt_now = ev_time ();
731 now = get_clock (); 897 mn_now = get_clock ();
732 now_floor = now; 898 now_floor = mn_now;
733 } 899 }
734 900
735 periodics_reschedule (diff - odiff); 901 periodics_reschedule (EV_A);
736 /* no timer adjustment, as the monotonic clock doesn't jump */ 902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
737 } 904 }
738 } 905 }
739 else 906 else
740#endif 907#endif
741 { 908 {
742 ev_now = ev_time (); 909 rt_now = ev_time ();
743 910
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
745 { 912 {
746 periodics_reschedule (ev_now - now); 913 periodics_reschedule (EV_A);
747 914
748 /* adjust timers. this is easy, as the offset is the same for all */ 915 /* adjust timers. this is easy, as the offset is the same for all */
749 for (i = 0; i < timercnt; ++i) 916 for (i = 0; i < timercnt; ++i)
750 timers [i]->at += diff; 917 timers [i]->at += rt_now - mn_now;
751 } 918 }
752 919
753 now = ev_now; 920 mn_now = rt_now;
754 } 921 }
755} 922}
756 923
757int ev_loop_done; 924void
925ev_ref (EV_P)
926{
927 ++activecnt;
928}
758 929
930void
931ev_unref (EV_P)
932{
933 --activecnt;
934}
935
936static int loop_done;
937
938void
759void ev_loop (int flags) 939ev_loop (EV_P_ int flags)
760{ 940{
761 double block; 941 double block;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
763 943
764 do 944 do
765 { 945 {
766 /* queue check watchers (and execute them) */ 946 /* queue check watchers (and execute them) */
767 if (expect_false (preparecnt)) 947 if (expect_false (preparecnt))
768 { 948 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 950 call_pending (EV_A);
771 } 951 }
772 952
773 /* update fd-related kernel structures */ 953 /* update fd-related kernel structures */
774 fd_reify (); 954 fd_reify (EV_A);
775 955
776 /* calculate blocking time */ 956 /* calculate blocking time */
777 957
778 /* we only need this for !monotonic clockor timers, but as we basically 958 /* we only need this for !monotonic clockor timers, but as we basically
779 always have timers, we just calculate it always */ 959 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC 960#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 961 if (expect_true (have_monotonic))
782 time_update_monotonic (); 962 time_update_monotonic (EV_A);
783 else 963 else
784#endif 964#endif
785 { 965 {
786 ev_now = ev_time (); 966 rt_now = ev_time ();
787 now = ev_now; 967 mn_now = rt_now;
788 } 968 }
789 969
790 if (flags & EVLOOP_NONBLOCK || idlecnt) 970 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.; 971 block = 0.;
792 else 972 else
793 { 973 {
794 block = MAX_BLOCKTIME; 974 block = MAX_BLOCKTIME;
795 975
796 if (timercnt) 976 if (timercnt)
797 { 977 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 978 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
799 if (block > to) block = to; 979 if (block > to) block = to;
800 } 980 }
801 981
802 if (periodiccnt) 982 if (periodiccnt)
803 { 983 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
805 if (block > to) block = to; 985 if (block > to) block = to;
806 } 986 }
807 987
808 if (block < 0.) block = 0.; 988 if (block < 0.) block = 0.;
809 } 989 }
810 990
811 method_poll (block); 991 method_poll (EV_A_ block);
812 992
813 /* update ev_now, do magic */ 993 /* update rt_now, do magic */
814 time_update (); 994 time_update (EV_A);
815 995
816 /* queue pending timers and reschedule them */ 996 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 997 timers_reify (EV_A); /* relative timers called last */
818 periodics_reify (); /* absolute timers called first */ 998 periodics_reify (EV_A); /* absolute timers called first */
819 999
820 /* queue idle watchers unless io or timers are pending */ 1000 /* queue idle watchers unless io or timers are pending */
821 if (!pendingcnt) 1001 if (!pendingcnt)
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
823 1003
824 /* queue check watchers, to be executed first */ 1004 /* queue check watchers, to be executed first */
825 if (checkcnt) 1005 if (checkcnt)
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1007
828 call_pending (); 1008 call_pending (EV_A);
829 } 1009 }
830 while (!ev_loop_done); 1010 while (activecnt && !loop_done);
831 1011
832 if (ev_loop_done != 2) 1012 if (loop_done != 2)
833 ev_loop_done = 0; 1013 loop_done = 0;
1014}
1015
1016void
1017ev_unloop (EV_P_ int how)
1018{
1019 loop_done = how;
834} 1020}
835 1021
836/*****************************************************************************/ 1022/*****************************************************************************/
837 1023
838static void 1024inline void
839wlist_add (WL *head, WL elem) 1025wlist_add (WL *head, WL elem)
840{ 1026{
841 elem->next = *head; 1027 elem->next = *head;
842 *head = elem; 1028 *head = elem;
843} 1029}
844 1030
845static void 1031inline void
846wlist_del (WL *head, WL elem) 1032wlist_del (WL *head, WL elem)
847{ 1033{
848 while (*head) 1034 while (*head)
849 { 1035 {
850 if (*head == elem) 1036 if (*head == elem)
855 1041
856 head = &(*head)->next; 1042 head = &(*head)->next;
857 } 1043 }
858} 1044}
859 1045
860static void 1046inline void
861ev_clear_pending (W w) 1047ev_clear_pending (EV_P_ W w)
862{ 1048{
863 if (w->pending) 1049 if (w->pending)
864 { 1050 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1051 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1052 w->pending = 0;
867 } 1053 }
868} 1054}
869 1055
870static void 1056inline void
871ev_start (W w, int active) 1057ev_start (EV_P_ W w, int active)
872{ 1058{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875 1061
876 w->active = active; 1062 w->active = active;
1063 ev_ref (EV_A);
877} 1064}
878 1065
879static void 1066inline void
880ev_stop (W w) 1067ev_stop (EV_P_ W w)
881{ 1068{
1069 ev_unref (EV_A);
882 w->active = 0; 1070 w->active = 0;
883} 1071}
884 1072
885/*****************************************************************************/ 1073/*****************************************************************************/
886 1074
887void 1075void
888ev_io_start (struct ev_io *w) 1076ev_io_start (EV_P_ struct ev_io *w)
889{ 1077{
890 int fd = w->fd; 1078 int fd = w->fd;
891 1079
892 if (ev_is_active (w)) 1080 if (ev_is_active (w))
893 return; 1081 return;
894 1082
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1083 assert (("ev_io_start called with negative fd", fd >= 0));
896 1084
897 ev_start ((W)w, 1); 1085 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1087 wlist_add ((WL *)&anfds[fd].head, (WL)w);
900 1088
901 fd_change (fd); 1089 fd_change (EV_A_ fd);
902} 1090}
903 1091
904void 1092void
905ev_io_stop (struct ev_io *w) 1093ev_io_stop (EV_P_ struct ev_io *w)
906{ 1094{
907 ev_clear_pending ((W)w); 1095 ev_clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1096 if (!ev_is_active (w))
909 return; 1097 return;
910 1098
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1100 ev_stop (EV_A_ (W)w);
913 1101
914 fd_change (w->fd); 1102 fd_change (EV_A_ w->fd);
915} 1103}
916 1104
917void 1105void
918ev_timer_start (struct ev_timer *w) 1106ev_timer_start (EV_P_ struct ev_timer *w)
919{ 1107{
920 if (ev_is_active (w)) 1108 if (ev_is_active (w))
921 return; 1109 return;
922 1110
923 w->at += now; 1111 w->at += mn_now;
924 1112
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1114
927 ev_start ((W)w, ++timercnt); 1115 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1116 array_needsize (timers, timermax, timercnt, );
929 timers [timercnt - 1] = w; 1117 timers [timercnt - 1] = w;
930 upheap ((WT *)timers, timercnt - 1); 1118 upheap ((WT *)timers, timercnt - 1);
931} 1119}
932 1120
933void 1121void
934ev_timer_stop (struct ev_timer *w) 1122ev_timer_stop (EV_P_ struct ev_timer *w)
935{ 1123{
936 ev_clear_pending ((W)w); 1124 ev_clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1125 if (!ev_is_active (w))
938 return; 1126 return;
939 1127
940 if (w->active < timercnt--) 1128 if (w->active < timercnt--)
941 { 1129 {
943 downheap ((WT *)timers, timercnt, w->active - 1); 1131 downheap ((WT *)timers, timercnt, w->active - 1);
944 } 1132 }
945 1133
946 w->at = w->repeat; 1134 w->at = w->repeat;
947 1135
948 ev_stop ((W)w); 1136 ev_stop (EV_A_ (W)w);
949} 1137}
950 1138
951void 1139void
952ev_timer_again (struct ev_timer *w) 1140ev_timer_again (EV_P_ struct ev_timer *w)
953{ 1141{
954 if (ev_is_active (w)) 1142 if (ev_is_active (w))
955 { 1143 {
956 if (w->repeat) 1144 if (w->repeat)
957 { 1145 {
958 w->at = now + w->repeat; 1146 w->at = mn_now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1147 downheap ((WT *)timers, timercnt, w->active - 1);
960 } 1148 }
961 else 1149 else
962 ev_timer_stop (w); 1150 ev_timer_stop (EV_A_ w);
963 } 1151 }
964 else if (w->repeat) 1152 else if (w->repeat)
965 ev_timer_start (w); 1153 ev_timer_start (EV_A_ w);
966} 1154}
967 1155
968void 1156void
969ev_periodic_start (struct ev_periodic *w) 1157ev_periodic_start (EV_P_ struct ev_periodic *w)
970{ 1158{
971 if (ev_is_active (w)) 1159 if (ev_is_active (w))
972 return; 1160 return;
973 1161
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975 1163
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1164 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval) 1165 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
979 1167
980 ev_start ((W)w, ++periodiccnt); 1168 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1169 array_needsize (periodics, periodicmax, periodiccnt, );
982 periodics [periodiccnt - 1] = w; 1170 periodics [periodiccnt - 1] = w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1171 upheap ((WT *)periodics, periodiccnt - 1);
984} 1172}
985 1173
986void 1174void
987ev_periodic_stop (struct ev_periodic *w) 1175ev_periodic_stop (EV_P_ struct ev_periodic *w)
988{ 1176{
989 ev_clear_pending ((W)w); 1177 ev_clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1178 if (!ev_is_active (w))
991 return; 1179 return;
992 1180
993 if (w->active < periodiccnt--) 1181 if (w->active < periodiccnt--)
994 { 1182 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1183 periodics [w->active - 1] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1184 downheap ((WT *)periodics, periodiccnt, w->active - 1);
997 } 1185 }
998 1186
999 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
1000} 1188}
1001 1189
1002void 1190void
1003ev_signal_start (struct ev_signal *w) 1191ev_idle_start (EV_P_ struct ev_idle *w)
1004{ 1192{
1005 if (ev_is_active (w)) 1193 if (ev_is_active (w))
1006 return; 1194 return;
1007 1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w);
1210}
1211
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255
1256#ifndef SA_RESTART
1257# define SA_RESTART 0
1258#endif
1259
1260void
1261ev_signal_start (EV_P_ struct ev_signal *w)
1262{
1263#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1265#endif
1266 if (ev_is_active (w))
1267 return;
1268
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 1270
1010 ev_start ((W)w, 1); 1271 ev_start (EV_A_ (W)w, 1);
1011 array_needsize (signals, signalmax, w->signum, signals_init); 1272 array_needsize (signals, signalmax, w->signum, signals_init);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1013 1274
1014 if (!w->next) 1275 if (!w->next)
1015 { 1276 {
1016 struct sigaction sa; 1277 struct sigaction sa;
1017 sa.sa_handler = sighandler; 1278 sa.sa_handler = sighandler;
1018 sigfillset (&sa.sa_mask); 1279 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 1281 sigaction (w->signum, &sa, 0);
1021 } 1282 }
1022} 1283}
1023 1284
1024void 1285void
1025ev_signal_stop (struct ev_signal *w) 1286ev_signal_stop (EV_P_ struct ev_signal *w)
1026{ 1287{
1027 ev_clear_pending ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
1029 return; 1290 return;
1030 1291
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
1033 1294
1034 if (!signals [w->signum - 1].head) 1295 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 1296 signal (w->signum, SIG_DFL);
1036} 1297}
1037 1298
1038void 1299void
1039ev_idle_start (struct ev_idle *w) 1300ev_child_start (EV_P_ struct ev_child *w)
1040{ 1301{
1302#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop));
1304#endif
1041 if (ev_is_active (w)) 1305 if (ev_is_active (w))
1042 return; 1306 return;
1043 1307
1044 ev_start ((W)w, ++idlecnt); 1308 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 1310}
1048 1311
1049void 1312void
1050ev_idle_stop (struct ev_idle *w) 1313ev_child_stop (EV_P_ struct ev_child *w)
1051{ 1314{
1052 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 1316 if (ev_is_active (w))
1054 return; 1317 return;
1055 1318
1056 idles [w->active - 1] = idles [--idlecnt];
1057 ev_stop ((W)w);
1058}
1059
1060void
1061ev_prepare_start (struct ev_prepare *w)
1062{
1063 if (ev_is_active (w))
1064 return;
1065
1066 ev_start ((W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, );
1068 prepares [preparecnt - 1] = w;
1069}
1070
1071void
1072ev_prepare_stop (struct ev_prepare *w)
1073{
1074 ev_clear_pending ((W)w);
1075 if (ev_is_active (w))
1076 return;
1077
1078 prepares [w->active - 1] = prepares [--preparecnt];
1079 ev_stop ((W)w);
1080}
1081
1082void
1083ev_check_start (struct ev_check *w)
1084{
1085 if (ev_is_active (w))
1086 return;
1087
1088 ev_start ((W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, );
1090 checks [checkcnt - 1] = w;
1091}
1092
1093void
1094ev_check_stop (struct ev_check *w)
1095{
1096 ev_clear_pending ((W)w);
1097 if (ev_is_active (w))
1098 return;
1099
1100 checks [w->active - 1] = checks [--checkcnt];
1101 ev_stop ((W)w);
1102}
1103
1104void
1105ev_child_start (struct ev_child *w)
1106{
1107 if (ev_is_active (w))
1108 return;
1109
1110 ev_start ((W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112}
1113
1114void
1115ev_child_stop (struct ev_child *w)
1116{
1117 ev_clear_pending ((W)w);
1118 if (ev_is_active (w))
1119 return;
1120
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1123} 1321}
1124 1322
1125/*****************************************************************************/ 1323/*****************************************************************************/
1126 1324
1127struct ev_once 1325struct ev_once
1131 void (*cb)(int revents, void *arg); 1329 void (*cb)(int revents, void *arg);
1132 void *arg; 1330 void *arg;
1133}; 1331};
1134 1332
1135static void 1333static void
1136once_cb (struct ev_once *once, int revents) 1334once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 1335{
1138 void (*cb)(int revents, void *arg) = once->cb; 1336 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 1337 void *arg = once->arg;
1140 1338
1141 ev_io_stop (&once->io); 1339 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 1340 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 1341 free (once);
1144 1342
1145 cb (revents, arg); 1343 cb (revents, arg);
1146} 1344}
1147 1345
1148static void 1346static void
1149once_cb_io (struct ev_io *w, int revents) 1347once_cb_io (EV_P_ struct ev_io *w, int revents)
1150{ 1348{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 1350}
1153 1351
1154static void 1352static void
1155once_cb_to (struct ev_timer *w, int revents) 1353once_cb_to (EV_P_ struct ev_timer *w, int revents)
1156{ 1354{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 1356}
1159 1357
1160void 1358void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 1360{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 1361 struct ev_once *once = malloc (sizeof (struct ev_once));
1164 1362
1165 if (!once) 1363 if (!once)
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1171 1369
1172 ev_watcher_init (&once->io, once_cb_io); 1370 ev_watcher_init (&once->io, once_cb_io);
1173 if (fd >= 0) 1371 if (fd >= 0)
1174 { 1372 {
1175 ev_io_set (&once->io, fd, events); 1373 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 1374 ev_io_start (EV_A_ &once->io);
1177 } 1375 }
1178 1376
1179 ev_watcher_init (&once->to, once_cb_to); 1377 ev_watcher_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 1378 if (timeout >= 0.)
1181 { 1379 {
1182 ev_timer_set (&once->to, timeout, 0.); 1380 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 1381 ev_timer_start (EV_A_ &once->to);
1184 } 1382 }
1185 } 1383 }
1186} 1384}
1187 1385
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 {
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264}
1265
1266#endif
1267
1268
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines