ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.45 by root, Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h> 59#include <unistd.h>
113 135
114typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
117 139
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121
122static int have_monotonic; /* runtime */
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 141
128/*****************************************************************************/ 142/*****************************************************************************/
129 143
130ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
131ev_time (void) 178ev_time (void)
132{ 179{
133#if EV_USE_REALTIME 180#if EV_USE_REALTIME
134 struct timespec ts; 181 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 188#endif
142} 189}
143 190
144static ev_tstamp 191inline ev_tstamp
145get_clock (void) 192get_clock (void)
146{ 193{
147#if EV_USE_MONOTONIC 194#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 195 if (expect_true (have_monotonic))
149 { 196 {
152 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
153 } 200 }
154#endif 201#endif
155 202
156 return ev_time (); 203 return ev_time ();
204}
205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
157} 210}
158 211
159#define array_roundsize(base,n) ((n) | 4 & ~3) 212#define array_roundsize(base,n) ((n) | 4 & ~3)
160 213
161#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
173 cur = newcnt; \ 226 cur = newcnt; \
174 } 227 }
175 228
176/*****************************************************************************/ 229/*****************************************************************************/
177 230
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187
188static void 231static void
189anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
190{ 233{
191 while (count--) 234 while (count--)
192 { 235 {
196 239
197 ++base; 240 ++base;
198 } 241 }
199} 242}
200 243
201typedef struct
202{
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void 244static void
211event (W w, int events) 245event (EV_P_ W w, int events)
212{ 246{
213 if (w->pending) 247 if (w->pending)
214 { 248 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
216 return; 250 return;
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 257}
224 258
225static void 259static void
226queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 261{
228 int i; 262 int i;
229 263
230 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 265 event (EV_A_ events [i], type);
232} 266}
233 267
234static void 268static void
235fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
236{ 270{
237 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 272 struct ev_io *w;
239 273
240 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 275 {
242 int ev = w->events & events; 276 int ev = w->events & events;
243 277
244 if (ev) 278 if (ev)
245 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
246 } 280 }
247} 281}
248 282
249/*****************************************************************************/ 283/*****************************************************************************/
250 284
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 285static void
255fd_reify (void) 286fd_reify (EV_P)
256{ 287{
257 int i; 288 int i;
258 289
259 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
260 { 291 {
262 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 294 struct ev_io *w;
264 295
265 int events = 0; 296 int events = 0;
266 297
267 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 299 events |= w->events;
269 300
270 anfd->reify = 0; 301 anfd->reify = 0;
271 302
272 if (anfd->events != events) 303 if (anfd->events != events)
273 { 304 {
274 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 306 anfd->events = events;
276 } 307 }
277 } 308 }
278 309
279 fdchangecnt = 0; 310 fdchangecnt = 0;
280} 311}
281 312
282static void 313static void
283fd_change (int fd) 314fd_change (EV_P_ int fd)
284{ 315{
285 if (anfds [fd].reify || fdchangecnt < 0) 316 if (anfds [fd].reify || fdchangecnt < 0)
286 return; 317 return;
287 318
288 anfds [fd].reify = 1; 319 anfds [fd].reify = 1;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
292 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
293} 324}
294 325
295static void 326static void
296fd_kill (int fd) 327fd_kill (EV_P_ int fd)
297{ 328{
298 struct ev_io *w; 329 struct ev_io *w;
299 330
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 331 while ((w = (struct ev_io *)anfds [fd].head))
302 { 332 {
303 ev_io_stop (w); 333 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 335 }
306} 336}
307 337
308/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
309static void 339static void
310fd_ebadf (void) 340fd_ebadf (EV_P)
311{ 341{
312 int fd; 342 int fd;
313 343
314 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 345 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
317 fd_kill (fd); 347 fd_kill (EV_A_ fd);
318} 348}
319 349
320/* called on ENOMEM in select/poll to kill some fds and retry */ 350/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 351static void
322fd_enomem (void) 352fd_enomem (EV_P)
323{ 353{
324 int fd = anfdmax; 354 int fd = anfdmax;
325 355
326 while (fd--) 356 while (fd--)
327 if (anfds [fd].events) 357 if (anfds [fd].events)
328 { 358 {
329 close (fd); 359 close (fd);
330 fd_kill (fd); 360 fd_kill (EV_A_ fd);
331 return; 361 return;
332 } 362 }
333} 363}
334 364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
378}
379
335/*****************************************************************************/ 380/*****************************************************************************/
336 381
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 382static void
344upheap (WT *timers, int k) 383upheap (WT *heap, int k)
345{ 384{
346 WT w = timers [k]; 385 WT w = heap [k];
347 386
348 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
349 { 388 {
350 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
352 k >>= 1; 391 k >>= 1;
353 } 392 }
354 393
355 timers [k] = w; 394 heap [k] = w;
356 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
357 396
358} 397}
359 398
360static void 399static void
361downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
362{ 401{
363 WT w = timers [k]; 402 WT w = heap [k];
364 403
365 while (k < (N >> 1)) 404 while (k < (N >> 1))
366 { 405 {
367 int j = k << 1; 406 int j = k << 1;
368 407
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 409 ++j;
371 410
372 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
373 break; 412 break;
374 413
375 timers [k] = timers [j]; 414 heap [k] = heap [j];
376 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
377 k = j; 416 k = j;
378 } 417 }
379 418
380 timers [k] = w; 419 heap [k] = w;
381 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
382} 421}
383 422
384/*****************************************************************************/ 423/*****************************************************************************/
385 424
386typedef struct 425typedef struct
387{ 426{
388 struct ev_signal *head; 427 struct ev_watcher_list *head;
389 sig_atomic_t volatile gotsig; 428 sig_atomic_t volatile gotsig;
390} ANSIG; 429} ANSIG;
391 430
392static ANSIG *signals; 431static ANSIG *signals;
393static int signalmax; 432static int signalmax;
413{ 452{
414 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
415 454
416 if (!gotsig) 455 if (!gotsig)
417 { 456 {
457 int old_errno = errno;
418 gotsig = 1; 458 gotsig = 1;
419 write (sigpipe [1], &signum, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
420 } 461 }
421} 462}
422 463
423static void 464static void
424sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 466{
426 struct ev_signal *w; 467 struct ev_watcher_list *w;
427 int signum; 468 int signum;
428 469
429 read (sigpipe [0], &revents, 1); 470 read (sigpipe [0], &revents, 1);
430 gotsig = 0; 471 gotsig = 0;
431 472
433 if (signals [signum].gotsig) 474 if (signals [signum].gotsig)
434 { 475 {
435 signals [signum].gotsig = 0; 476 signals [signum].gotsig = 0;
436 477
437 for (w = signals [signum].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
439 } 480 }
440} 481}
441 482
442static void 483static void
443siginit (void) 484siginit (EV_P)
444{ 485{
445#ifndef WIN32 486#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 489
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 493#endif
453 494
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 498}
457 499
458/*****************************************************************************/ 500/*****************************************************************************/
459 501
460static struct ev_idle **idles; 502#ifndef WIN32
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470 503
471static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
472static struct ev_signal childev; 505static struct ev_signal childev;
473 506
474#ifndef WIN32
475
476#ifndef WCONTINUED 507#ifndef WCONTINUED
477# define WCONTINUED 0 508# define WCONTINUED 0
478#endif 509#endif
479 510
480static void 511static void
481childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 513{
483 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
484 int pid, status; 529 int pid, status;
485 530
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
488 if (w->pid == pid || !w->pid) 533 /* make sure we are called again until all childs have been reaped */
489 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
490 w->status = status; 535
491 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
492 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
493} 539}
494 540
495#endif 541#endif
496 542
497/*****************************************************************************/ 543/*****************************************************************************/
519ev_version_minor (void) 565ev_version_minor (void)
520{ 566{
521 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
522} 568}
523 569
524/* return true if we are running with elevated privileges and ignore env variables */ 570/* return true if we are running with elevated privileges and should ignore env variables */
525static int 571static int
526enable_secure () 572enable_secure (void)
527{ 573{
574#ifdef WIN32
575 return 0;
576#else
528 return getuid () != geteuid () 577 return getuid () != geteuid ()
529 || getgid () != getegid (); 578 || getgid () != getegid ();
579#endif
530} 580}
531 581
532int ev_init (int methods) 582int
583ev_method (EV_P)
533{ 584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
534 if (!ev_method) 591 if (!method)
535 { 592 {
536#if EV_USE_MONOTONIC 593#if EV_USE_MONOTONIC
537 { 594 {
538 struct timespec ts; 595 struct timespec ts;
539 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
540 have_monotonic = 1; 597 have_monotonic = 1;
541 } 598 }
542#endif 599#endif
543 600
544 ev_now = ev_time (); 601 rt_now = ev_time ();
545 now = get_clock (); 602 mn_now = get_clock ();
546 now_floor = now; 603 now_floor = mn_now;
547 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
548
549 if (pipe (sigpipe))
550 return 0;
551 605
552 if (methods == EVMETHOD_AUTO) 606 if (methods == EVMETHOD_AUTO)
553 if (!enable_secure () && getenv ("LIBEV_METHODS")) 607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
554 methods = atoi (getenv ("LIBEV_METHODS")); 608 methods = atoi (getenv ("LIBEV_METHODS"));
555 else 609 else
556 methods = EVMETHOD_ANY; 610 methods = EVMETHOD_ANY;
557 611
558 ev_method = 0; 612 method = 0;
559#if EV_USE_KQUEUE 613#if EV_USE_KQUEUE
560 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
561#endif 615#endif
562#if EV_USE_EPOLL 616#if EV_USE_EPOLL
563 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
564#endif 618#endif
565#if EV_USE_POLL 619#if EV_USE_POLL
566 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
567#endif 621#endif
568#if EV_USE_SELECT 622#if EV_USE_SELECT
569 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
570#endif 624#endif
625 }
626}
571 627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
572 if (ev_method) 715 if (ev_method (EV_A))
573 { 716 {
574 ev_watcher_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
575 siginit (); 719 siginit (EV_A);
576 720
577#ifndef WIN32 721#ifndef WIN32
578 ev_signal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
579 ev_signal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
580#endif 726#endif
581 } 727 }
728 else
729 default_loop = 0;
582 } 730 }
583 731
584 return ev_method; 732 return default_loop;
585} 733}
586 734
587/*****************************************************************************/
588
589void 735void
590ev_fork_prepare (void) 736ev_default_destroy (void)
591{ 737{
592 /* nop */ 738#if EV_MULTIPLICITY
593} 739 struct ev_loop *loop = default_loop;
594
595void
596ev_fork_parent (void)
597{
598 /* nop */
599}
600
601void
602ev_fork_child (void)
603{
604#if EV_USE_EPOLL
605 if (ev_method == EVMETHOD_EPOLL)
606 epoll_postfork_child ();
607#endif 740#endif
608 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
609 ev_io_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
610 close (sigpipe [0]); 764 close (sigpipe [0]);
611 close (sigpipe [1]); 765 close (sigpipe [1]);
612 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
613 siginit (); 769 siginit (EV_A);
614} 770}
615 771
616/*****************************************************************************/ 772/*****************************************************************************/
617 773
618static void 774static void
619call_pending (void) 775call_pending (EV_P)
620{ 776{
621 int pri; 777 int pri;
622 778
623 for (pri = NUMPRI; pri--; ) 779 for (pri = NUMPRI; pri--; )
624 while (pendingcnt [pri]) 780 while (pendingcnt [pri])
626 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
627 783
628 if (p->w) 784 if (p->w)
629 { 785 {
630 p->w->pending = 0; 786 p->w->pending = 0;
631 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
632 } 788 }
633 } 789 }
634} 790}
635 791
636static void 792static void
637timers_reify (void) 793timers_reify (EV_P)
638{ 794{
639 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
640 { 796 {
641 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
642 798
643 /* first reschedule or stop timer */ 799 /* first reschedule or stop timer */
644 if (w->repeat) 800 if (w->repeat)
645 { 801 {
646 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
647 w->at = now + w->repeat; 803 w->at = mn_now + w->repeat;
648 downheap ((WT *)timers, timercnt, 0); 804 downheap ((WT *)timers, timercnt, 0);
649 } 805 }
650 else 806 else
651 ev_timer_stop (w); /* nonrepeating: stop timer */ 807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
652 808
653 event ((W)w, EV_TIMEOUT); 809 event (EV_A_ (W)w, EV_TIMEOUT);
654 } 810 }
655} 811}
656 812
657static void 813static void
658periodics_reify (void) 814periodics_reify (EV_P)
659{ 815{
660 while (periodiccnt && periodics [0]->at <= ev_now) 816 while (periodiccnt && periodics [0]->at <= rt_now)
661 { 817 {
662 struct ev_periodic *w = periodics [0]; 818 struct ev_periodic *w = periodics [0];
663 819
664 /* first reschedule or stop timer */ 820 /* first reschedule or stop timer */
665 if (w->interval) 821 if (w->interval)
666 { 822 {
667 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
668 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
669 downheap ((WT *)periodics, periodiccnt, 0); 825 downheap ((WT *)periodics, periodiccnt, 0);
670 } 826 }
671 else 827 else
672 ev_periodic_stop (w); /* nonrepeating: stop timer */ 828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
673 829
674 event ((W)w, EV_PERIODIC); 830 event (EV_A_ (W)w, EV_PERIODIC);
675 } 831 }
676} 832}
677 833
678static void 834static void
679periodics_reschedule (ev_tstamp diff) 835periodics_reschedule (EV_P)
680{ 836{
681 int i; 837 int i;
682 838
683 /* adjust periodics after time jump */ 839 /* adjust periodics after time jump */
684 for (i = 0; i < periodiccnt; ++i) 840 for (i = 0; i < periodiccnt; ++i)
685 { 841 {
686 struct ev_periodic *w = periodics [i]; 842 struct ev_periodic *w = periodics [i];
687 843
688 if (w->interval) 844 if (w->interval)
689 { 845 {
690 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
691 847
692 if (fabs (diff) >= 1e-4) 848 if (fabs (diff) >= 1e-4)
693 { 849 {
694 ev_periodic_stop (w); 850 ev_periodic_stop (EV_A_ w);
695 ev_periodic_start (w); 851 ev_periodic_start (EV_A_ w);
696 852
697 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
698 } 854 }
699 } 855 }
700 } 856 }
701} 857}
702 858
703static int 859inline int
704time_update_monotonic (void) 860time_update_monotonic (EV_P)
705{ 861{
706 now = get_clock (); 862 mn_now = get_clock ();
707 863
708 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
709 { 865 {
710 ev_now = now + diff; 866 rt_now = rtmn_diff + mn_now;
711 return 0; 867 return 0;
712 } 868 }
713 else 869 else
714 { 870 {
715 now_floor = now; 871 now_floor = mn_now;
716 ev_now = ev_time (); 872 rt_now = ev_time ();
717 return 1; 873 return 1;
718 } 874 }
719} 875}
720 876
721static void 877static void
722time_update (void) 878time_update (EV_P)
723{ 879{
724 int i; 880 int i;
725 881
726#if EV_USE_MONOTONIC 882#if EV_USE_MONOTONIC
727 if (expect_true (have_monotonic)) 883 if (expect_true (have_monotonic))
728 { 884 {
729 if (time_update_monotonic ()) 885 if (time_update_monotonic (EV_A))
730 { 886 {
731 ev_tstamp odiff = diff; 887 ev_tstamp odiff = rtmn_diff;
732 888
733 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 889 for (i = 4; --i; ) /* loop a few times, before making important decisions */
734 { 890 {
735 diff = ev_now - now; 891 rtmn_diff = rt_now - mn_now;
736 892
737 if (fabs (odiff - diff) < MIN_TIMEJUMP) 893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
738 return; /* all is well */ 894 return; /* all is well */
739 895
740 ev_now = ev_time (); 896 rt_now = ev_time ();
741 now = get_clock (); 897 mn_now = get_clock ();
742 now_floor = now; 898 now_floor = mn_now;
743 } 899 }
744 900
745 periodics_reschedule (diff - odiff); 901 periodics_reschedule (EV_A);
746 /* no timer adjustment, as the monotonic clock doesn't jump */ 902 /* no timer adjustment, as the monotonic clock doesn't jump */
903 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
747 } 904 }
748 } 905 }
749 else 906 else
750#endif 907#endif
751 { 908 {
752 ev_now = ev_time (); 909 rt_now = ev_time ();
753 910
754 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
755 { 912 {
756 periodics_reschedule (ev_now - now); 913 periodics_reschedule (EV_A);
757 914
758 /* adjust timers. this is easy, as the offset is the same for all */ 915 /* adjust timers. this is easy, as the offset is the same for all */
759 for (i = 0; i < timercnt; ++i) 916 for (i = 0; i < timercnt; ++i)
760 timers [i]->at += diff; 917 timers [i]->at += rt_now - mn_now;
761 } 918 }
762 919
763 now = ev_now; 920 mn_now = rt_now;
764 } 921 }
765} 922}
766 923
767int ev_loop_done; 924void
925ev_ref (EV_P)
926{
927 ++activecnt;
928}
768 929
930void
931ev_unref (EV_P)
932{
933 --activecnt;
934}
935
936static int loop_done;
937
938void
769void ev_loop (int flags) 939ev_loop (EV_P_ int flags)
770{ 940{
771 double block; 941 double block;
772 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 942 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
773 943
774 do 944 do
775 { 945 {
776 /* queue check watchers (and execute them) */ 946 /* queue check watchers (and execute them) */
777 if (expect_false (preparecnt)) 947 if (expect_false (preparecnt))
778 { 948 {
779 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
780 call_pending (); 950 call_pending (EV_A);
781 } 951 }
782 952
783 /* update fd-related kernel structures */ 953 /* update fd-related kernel structures */
784 fd_reify (); 954 fd_reify (EV_A);
785 955
786 /* calculate blocking time */ 956 /* calculate blocking time */
787 957
788 /* we only need this for !monotonic clockor timers, but as we basically 958 /* we only need this for !monotonic clockor timers, but as we basically
789 always have timers, we just calculate it always */ 959 always have timers, we just calculate it always */
790#if EV_USE_MONOTONIC 960#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 961 if (expect_true (have_monotonic))
792 time_update_monotonic (); 962 time_update_monotonic (EV_A);
793 else 963 else
794#endif 964#endif
795 { 965 {
796 ev_now = ev_time (); 966 rt_now = ev_time ();
797 now = ev_now; 967 mn_now = rt_now;
798 } 968 }
799 969
800 if (flags & EVLOOP_NONBLOCK || idlecnt) 970 if (flags & EVLOOP_NONBLOCK || idlecnt)
801 block = 0.; 971 block = 0.;
802 else 972 else
803 { 973 {
804 block = MAX_BLOCKTIME; 974 block = MAX_BLOCKTIME;
805 975
806 if (timercnt) 976 if (timercnt)
807 { 977 {
808 ev_tstamp to = timers [0]->at - now + method_fudge; 978 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
809 if (block > to) block = to; 979 if (block > to) block = to;
810 } 980 }
811 981
812 if (periodiccnt) 982 if (periodiccnt)
813 { 983 {
814 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
815 if (block > to) block = to; 985 if (block > to) block = to;
816 } 986 }
817 987
818 if (block < 0.) block = 0.; 988 if (block < 0.) block = 0.;
819 } 989 }
820 990
821 method_poll (block); 991 method_poll (EV_A_ block);
822 992
823 /* update ev_now, do magic */ 993 /* update rt_now, do magic */
824 time_update (); 994 time_update (EV_A);
825 995
826 /* queue pending timers and reschedule them */ 996 /* queue pending timers and reschedule them */
827 timers_reify (); /* relative timers called last */ 997 timers_reify (EV_A); /* relative timers called last */
828 periodics_reify (); /* absolute timers called first */ 998 periodics_reify (EV_A); /* absolute timers called first */
829 999
830 /* queue idle watchers unless io or timers are pending */ 1000 /* queue idle watchers unless io or timers are pending */
831 if (!pendingcnt) 1001 if (!pendingcnt)
832 queue_events ((W *)idles, idlecnt, EV_IDLE); 1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
833 1003
834 /* queue check watchers, to be executed first */ 1004 /* queue check watchers, to be executed first */
835 if (checkcnt) 1005 if (checkcnt)
836 queue_events ((W *)checks, checkcnt, EV_CHECK); 1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
837 1007
838 call_pending (); 1008 call_pending (EV_A);
839 } 1009 }
840 while (!ev_loop_done); 1010 while (activecnt && !loop_done);
841 1011
842 if (ev_loop_done != 2) 1012 if (loop_done != 2)
843 ev_loop_done = 0; 1013 loop_done = 0;
1014}
1015
1016void
1017ev_unloop (EV_P_ int how)
1018{
1019 loop_done = how;
844} 1020}
845 1021
846/*****************************************************************************/ 1022/*****************************************************************************/
847 1023
848static void 1024inline void
849wlist_add (WL *head, WL elem) 1025wlist_add (WL *head, WL elem)
850{ 1026{
851 elem->next = *head; 1027 elem->next = *head;
852 *head = elem; 1028 *head = elem;
853} 1029}
854 1030
855static void 1031inline void
856wlist_del (WL *head, WL elem) 1032wlist_del (WL *head, WL elem)
857{ 1033{
858 while (*head) 1034 while (*head)
859 { 1035 {
860 if (*head == elem) 1036 if (*head == elem)
865 1041
866 head = &(*head)->next; 1042 head = &(*head)->next;
867 } 1043 }
868} 1044}
869 1045
870static void 1046inline void
871ev_clear_pending (W w) 1047ev_clear_pending (EV_P_ W w)
872{ 1048{
873 if (w->pending) 1049 if (w->pending)
874 { 1050 {
875 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1051 pendings [ABSPRI (w)][w->pending - 1].w = 0;
876 w->pending = 0; 1052 w->pending = 0;
877 } 1053 }
878} 1054}
879 1055
880static void 1056inline void
881ev_start (W w, int active) 1057ev_start (EV_P_ W w, int active)
882{ 1058{
883 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1059 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
884 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1060 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
885 1061
886 w->active = active; 1062 w->active = active;
1063 ev_ref (EV_A);
887} 1064}
888 1065
889static void 1066inline void
890ev_stop (W w) 1067ev_stop (EV_P_ W w)
891{ 1068{
1069 ev_unref (EV_A);
892 w->active = 0; 1070 w->active = 0;
893} 1071}
894 1072
895/*****************************************************************************/ 1073/*****************************************************************************/
896 1074
897void 1075void
898ev_io_start (struct ev_io *w) 1076ev_io_start (EV_P_ struct ev_io *w)
899{ 1077{
900 int fd = w->fd; 1078 int fd = w->fd;
901 1079
902 if (ev_is_active (w)) 1080 if (ev_is_active (w))
903 return; 1081 return;
904 1082
905 assert (("ev_io_start called with negative fd", fd >= 0)); 1083 assert (("ev_io_start called with negative fd", fd >= 0));
906 1084
907 ev_start ((W)w, 1); 1085 ev_start (EV_A_ (W)w, 1);
908 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
909 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1087 wlist_add ((WL *)&anfds[fd].head, (WL)w);
910 1088
911 fd_change (fd); 1089 fd_change (EV_A_ fd);
912} 1090}
913 1091
914void 1092void
915ev_io_stop (struct ev_io *w) 1093ev_io_stop (EV_P_ struct ev_io *w)
916{ 1094{
917 ev_clear_pending ((W)w); 1095 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1096 if (!ev_is_active (w))
919 return; 1097 return;
920 1098
921 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1099 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
922 ev_stop ((W)w); 1100 ev_stop (EV_A_ (W)w);
923 1101
924 fd_change (w->fd); 1102 fd_change (EV_A_ w->fd);
925} 1103}
926 1104
927void 1105void
928ev_timer_start (struct ev_timer *w) 1106ev_timer_start (EV_P_ struct ev_timer *w)
929{ 1107{
930 if (ev_is_active (w)) 1108 if (ev_is_active (w))
931 return; 1109 return;
932 1110
933 w->at += now; 1111 w->at += mn_now;
934 1112
935 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
936 1114
937 ev_start ((W)w, ++timercnt); 1115 ev_start (EV_A_ (W)w, ++timercnt);
938 array_needsize (timers, timermax, timercnt, ); 1116 array_needsize (timers, timermax, timercnt, );
939 timers [timercnt - 1] = w; 1117 timers [timercnt - 1] = w;
940 upheap ((WT *)timers, timercnt - 1); 1118 upheap ((WT *)timers, timercnt - 1);
941} 1119}
942 1120
943void 1121void
944ev_timer_stop (struct ev_timer *w) 1122ev_timer_stop (EV_P_ struct ev_timer *w)
945{ 1123{
946 ev_clear_pending ((W)w); 1124 ev_clear_pending (EV_A_ (W)w);
947 if (!ev_is_active (w)) 1125 if (!ev_is_active (w))
948 return; 1126 return;
949 1127
950 if (w->active < timercnt--) 1128 if (w->active < timercnt--)
951 { 1129 {
953 downheap ((WT *)timers, timercnt, w->active - 1); 1131 downheap ((WT *)timers, timercnt, w->active - 1);
954 } 1132 }
955 1133
956 w->at = w->repeat; 1134 w->at = w->repeat;
957 1135
958 ev_stop ((W)w); 1136 ev_stop (EV_A_ (W)w);
959} 1137}
960 1138
961void 1139void
962ev_timer_again (struct ev_timer *w) 1140ev_timer_again (EV_P_ struct ev_timer *w)
963{ 1141{
964 if (ev_is_active (w)) 1142 if (ev_is_active (w))
965 { 1143 {
966 if (w->repeat) 1144 if (w->repeat)
967 { 1145 {
968 w->at = now + w->repeat; 1146 w->at = mn_now + w->repeat;
969 downheap ((WT *)timers, timercnt, w->active - 1); 1147 downheap ((WT *)timers, timercnt, w->active - 1);
970 } 1148 }
971 else 1149 else
972 ev_timer_stop (w); 1150 ev_timer_stop (EV_A_ w);
973 } 1151 }
974 else if (w->repeat) 1152 else if (w->repeat)
975 ev_timer_start (w); 1153 ev_timer_start (EV_A_ w);
976} 1154}
977 1155
978void 1156void
979ev_periodic_start (struct ev_periodic *w) 1157ev_periodic_start (EV_P_ struct ev_periodic *w)
980{ 1158{
981 if (ev_is_active (w)) 1159 if (ev_is_active (w))
982 return; 1160 return;
983 1161
984 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
985 1163
986 /* this formula differs from the one in periodic_reify because we do not always round up */ 1164 /* this formula differs from the one in periodic_reify because we do not always round up */
987 if (w->interval) 1165 if (w->interval)
988 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
989 1167
990 ev_start ((W)w, ++periodiccnt); 1168 ev_start (EV_A_ (W)w, ++periodiccnt);
991 array_needsize (periodics, periodicmax, periodiccnt, ); 1169 array_needsize (periodics, periodicmax, periodiccnt, );
992 periodics [periodiccnt - 1] = w; 1170 periodics [periodiccnt - 1] = w;
993 upheap ((WT *)periodics, periodiccnt - 1); 1171 upheap ((WT *)periodics, periodiccnt - 1);
994} 1172}
995 1173
996void 1174void
997ev_periodic_stop (struct ev_periodic *w) 1175ev_periodic_stop (EV_P_ struct ev_periodic *w)
998{ 1176{
999 ev_clear_pending ((W)w); 1177 ev_clear_pending (EV_A_ (W)w);
1000 if (!ev_is_active (w)) 1178 if (!ev_is_active (w))
1001 return; 1179 return;
1002 1180
1003 if (w->active < periodiccnt--) 1181 if (w->active < periodiccnt--)
1004 { 1182 {
1005 periodics [w->active - 1] = periodics [periodiccnt]; 1183 periodics [w->active - 1] = periodics [periodiccnt];
1006 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1184 downheap ((WT *)periodics, periodiccnt, w->active - 1);
1007 } 1185 }
1008 1186
1009 ev_stop ((W)w); 1187 ev_stop (EV_A_ (W)w);
1010} 1188}
1011 1189
1012void 1190void
1013ev_signal_start (struct ev_signal *w) 1191ev_idle_start (EV_P_ struct ev_idle *w)
1014{ 1192{
1015 if (ev_is_active (w)) 1193 if (ev_is_active (w))
1016 return; 1194 return;
1017 1195
1196 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, );
1198 idles [idlecnt - 1] = w;
1199}
1200
1201void
1202ev_idle_stop (EV_P_ struct ev_idle *w)
1203{
1204 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w))
1206 return;
1207
1208 idles [w->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w);
1210}
1211
1212void
1213ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{
1215 if (ev_is_active (w))
1216 return;
1217
1218 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, );
1220 prepares [preparecnt - 1] = w;
1221}
1222
1223void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{
1226 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w))
1228 return;
1229
1230 prepares [w->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w);
1232}
1233
1234void
1235ev_check_start (EV_P_ struct ev_check *w)
1236{
1237 if (ev_is_active (w))
1238 return;
1239
1240 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, );
1242 checks [checkcnt - 1] = w;
1243}
1244
1245void
1246ev_check_stop (EV_P_ struct ev_check *w)
1247{
1248 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w))
1250 return;
1251
1252 checks [w->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w);
1254}
1255
1256#ifndef SA_RESTART
1257# define SA_RESTART 0
1258#endif
1259
1260void
1261ev_signal_start (EV_P_ struct ev_signal *w)
1262{
1263#if EV_MULTIPLICITY
1264 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1265#endif
1266 if (ev_is_active (w))
1267 return;
1268
1018 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1019 1270
1020 ev_start ((W)w, 1); 1271 ev_start (EV_A_ (W)w, 1);
1021 array_needsize (signals, signalmax, w->signum, signals_init); 1272 array_needsize (signals, signalmax, w->signum, signals_init);
1022 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1023 1274
1024 if (!w->next) 1275 if (!w->next)
1025 { 1276 {
1026 struct sigaction sa; 1277 struct sigaction sa;
1027 sa.sa_handler = sighandler; 1278 sa.sa_handler = sighandler;
1028 sigfillset (&sa.sa_mask); 1279 sigfillset (&sa.sa_mask);
1029 sa.sa_flags = 0; 1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1030 sigaction (w->signum, &sa, 0); 1281 sigaction (w->signum, &sa, 0);
1031 } 1282 }
1032} 1283}
1033 1284
1034void 1285void
1035ev_signal_stop (struct ev_signal *w) 1286ev_signal_stop (EV_P_ struct ev_signal *w)
1036{ 1287{
1037 ev_clear_pending ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
1038 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
1039 return; 1290 return;
1040 1291
1041 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1292 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1042 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
1043 1294
1044 if (!signals [w->signum - 1].head) 1295 if (!signals [w->signum - 1].head)
1045 signal (w->signum, SIG_DFL); 1296 signal (w->signum, SIG_DFL);
1046} 1297}
1047 1298
1048void 1299void
1049ev_idle_start (struct ev_idle *w) 1300ev_child_start (EV_P_ struct ev_child *w)
1050{ 1301{
1302#if EV_MULTIPLICITY
1303 assert (("child watchers are only supported in the default loop", loop == default_loop));
1304#endif
1051 if (ev_is_active (w)) 1305 if (ev_is_active (w))
1052 return; 1306 return;
1053 1307
1054 ev_start ((W)w, ++idlecnt); 1308 ev_start (EV_A_ (W)w, 1);
1055 array_needsize (idles, idlemax, idlecnt, ); 1309 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1056 idles [idlecnt - 1] = w;
1057} 1310}
1058 1311
1059void 1312void
1060ev_idle_stop (struct ev_idle *w) 1313ev_child_stop (EV_P_ struct ev_child *w)
1061{ 1314{
1062 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1063 if (ev_is_active (w)) 1316 if (ev_is_active (w))
1064 return; 1317 return;
1065 1318
1066 idles [w->active - 1] = idles [--idlecnt];
1067 ev_stop ((W)w);
1068}
1069
1070void
1071ev_prepare_start (struct ev_prepare *w)
1072{
1073 if (ev_is_active (w))
1074 return;
1075
1076 ev_start ((W)w, ++preparecnt);
1077 array_needsize (prepares, preparemax, preparecnt, );
1078 prepares [preparecnt - 1] = w;
1079}
1080
1081void
1082ev_prepare_stop (struct ev_prepare *w)
1083{
1084 ev_clear_pending ((W)w);
1085 if (ev_is_active (w))
1086 return;
1087
1088 prepares [w->active - 1] = prepares [--preparecnt];
1089 ev_stop ((W)w);
1090}
1091
1092void
1093ev_check_start (struct ev_check *w)
1094{
1095 if (ev_is_active (w))
1096 return;
1097
1098 ev_start ((W)w, ++checkcnt);
1099 array_needsize (checks, checkmax, checkcnt, );
1100 checks [checkcnt - 1] = w;
1101}
1102
1103void
1104ev_check_stop (struct ev_check *w)
1105{
1106 ev_clear_pending ((W)w);
1107 if (ev_is_active (w))
1108 return;
1109
1110 checks [w->active - 1] = checks [--checkcnt];
1111 ev_stop ((W)w);
1112}
1113
1114void
1115ev_child_start (struct ev_child *w)
1116{
1117 if (ev_is_active (w))
1118 return;
1119
1120 ev_start ((W)w, 1);
1121 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122}
1123
1124void
1125ev_child_stop (struct ev_child *w)
1126{
1127 ev_clear_pending ((W)w);
1128 if (ev_is_active (w))
1129 return;
1130
1131 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1319 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1132 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
1133} 1321}
1134 1322
1135/*****************************************************************************/ 1323/*****************************************************************************/
1136 1324
1137struct ev_once 1325struct ev_once
1141 void (*cb)(int revents, void *arg); 1329 void (*cb)(int revents, void *arg);
1142 void *arg; 1330 void *arg;
1143}; 1331};
1144 1332
1145static void 1333static void
1146once_cb (struct ev_once *once, int revents) 1334once_cb (EV_P_ struct ev_once *once, int revents)
1147{ 1335{
1148 void (*cb)(int revents, void *arg) = once->cb; 1336 void (*cb)(int revents, void *arg) = once->cb;
1149 void *arg = once->arg; 1337 void *arg = once->arg;
1150 1338
1151 ev_io_stop (&once->io); 1339 ev_io_stop (EV_A_ &once->io);
1152 ev_timer_stop (&once->to); 1340 ev_timer_stop (EV_A_ &once->to);
1153 free (once); 1341 free (once);
1154 1342
1155 cb (revents, arg); 1343 cb (revents, arg);
1156} 1344}
1157 1345
1158static void 1346static void
1159once_cb_io (struct ev_io *w, int revents) 1347once_cb_io (EV_P_ struct ev_io *w, int revents)
1160{ 1348{
1161 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1349 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1162} 1350}
1163 1351
1164static void 1352static void
1165once_cb_to (struct ev_timer *w, int revents) 1353once_cb_to (EV_P_ struct ev_timer *w, int revents)
1166{ 1354{
1167 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1355 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1168} 1356}
1169 1357
1170void 1358void
1171ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1172{ 1360{
1173 struct ev_once *once = malloc (sizeof (struct ev_once)); 1361 struct ev_once *once = malloc (sizeof (struct ev_once));
1174 1362
1175 if (!once) 1363 if (!once)
1176 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1181 1369
1182 ev_watcher_init (&once->io, once_cb_io); 1370 ev_watcher_init (&once->io, once_cb_io);
1183 if (fd >= 0) 1371 if (fd >= 0)
1184 { 1372 {
1185 ev_io_set (&once->io, fd, events); 1373 ev_io_set (&once->io, fd, events);
1186 ev_io_start (&once->io); 1374 ev_io_start (EV_A_ &once->io);
1187 } 1375 }
1188 1376
1189 ev_watcher_init (&once->to, once_cb_to); 1377 ev_watcher_init (&once->to, once_cb_to);
1190 if (timeout >= 0.) 1378 if (timeout >= 0.)
1191 { 1379 {
1192 ev_timer_set (&once->to, timeout, 0.); 1380 ev_timer_set (&once->to, timeout, 0.);
1193 ev_timer_start (&once->to); 1381 ev_timer_start (EV_A_ &once->to);
1194 } 1382 }
1195 } 1383 }
1196} 1384}
1197 1385
1198/*****************************************************************************/
1199
1200#if 0
1201
1202struct ev_io wio;
1203
1204static void
1205sin_cb (struct ev_io *w, int revents)
1206{
1207 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1208}
1209
1210static void
1211ocb (struct ev_timer *w, int revents)
1212{
1213 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1214 ev_timer_stop (w);
1215 ev_timer_start (w);
1216}
1217
1218static void
1219scb (struct ev_signal *w, int revents)
1220{
1221 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1222 ev_io_stop (&wio);
1223 ev_io_start (&wio);
1224}
1225
1226static void
1227gcb (struct ev_signal *w, int revents)
1228{
1229 fprintf (stderr, "generic %x\n", revents);
1230
1231}
1232
1233int main (void)
1234{
1235 ev_init (0);
1236
1237 ev_io_init (&wio, sin_cb, 0, EV_READ);
1238 ev_io_start (&wio);
1239
1240 struct ev_timer t[10000];
1241
1242#if 0
1243 int i;
1244 for (i = 0; i < 10000; ++i)
1245 {
1246 struct ev_timer *w = t + i;
1247 ev_watcher_init (w, ocb, i);
1248 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1249 ev_timer_start (w);
1250 if (drand48 () < 0.5)
1251 ev_timer_stop (w);
1252 }
1253#endif
1254
1255 struct ev_timer t1;
1256 ev_timer_init (&t1, ocb, 5, 10);
1257 ev_timer_start (&t1);
1258
1259 struct ev_signal sig;
1260 ev_signal_init (&sig, scb, SIGQUIT);
1261 ev_signal_start (&sig);
1262
1263 struct ev_check cw;
1264 ev_check_init (&cw, gcb);
1265 ev_check_start (&cw);
1266
1267 struct ev_idle iw;
1268 ev_idle_init (&iw, gcb);
1269 ev_idle_start (&iw);
1270
1271 ev_loop (0);
1272
1273 return 0;
1274}
1275
1276#endif
1277
1278
1279
1280

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines