ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.70 by root, Tue Nov 6 00:52:32 2007 UTC

92 92
93#ifndef EV_USE_KQUEUE 93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 94# define EV_USE_KQUEUE 0
95#endif 95#endif
96 96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
97#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 106# define EV_USE_REALTIME 1
99#endif 107#endif
100 108
101/**/ 109/**/
137typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
139 147
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 149
150#if WIN32
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155
142/*****************************************************************************/ 156/*****************************************************************************/
143 157
158static void (*syserr_cb)(const char *msg);
159
160void ev_set_syserr_cb (void (*cb)(const char *msg))
161{
162 syserr_cb = cb;
163}
164
165static void
166syserr (const char *msg)
167{
168 if (!msg)
169 msg = "(libev) system error";
170
171 if (syserr_cb)
172 syserr_cb (msg);
173 else
174 {
175 perror (msg);
176 abort ();
177 }
178}
179
180static void *(*alloc)(void *ptr, long size);
181
182void ev_set_allocator (void *(*cb)(void *ptr, long size))
183{
184 alloc = cb;
185}
186
187static void *
188ev_realloc (void *ptr, long size)
189{
190 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
191
192 if (!ptr && size)
193 {
194 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
195 abort ();
196 }
197
198 return ptr;
199}
200
201#define ev_malloc(size) ev_realloc (0, (size))
202#define ev_free(ptr) ev_realloc ((ptr), 0)
203
204/*****************************************************************************/
205
144typedef struct 206typedef struct
145{ 207{
146 struct ev_watcher_list *head; 208 WL head;
147 unsigned char events; 209 unsigned char events;
148 unsigned char reify; 210 unsigned char reify;
149} ANFD; 211} ANFD;
150 212
151typedef struct 213typedef struct
209 return rt_now; 271 return rt_now;
210} 272}
211 273
212#define array_roundsize(base,n) ((n) | 4 & ~3) 274#define array_roundsize(base,n) ((n) | 4 & ~3)
213 275
214#define array_needsize(base,cur,cnt,init) \ 276#define array_needsize(base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 277 if (expect_false ((cnt) > cur)) \
216 { \ 278 { \
217 int newcnt = cur; \ 279 int newcnt = cur; \
218 do \ 280 do \
219 { \ 281 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 282 newcnt = array_roundsize (base, newcnt << 1); \
221 } \ 283 } \
222 while ((cnt) > newcnt); \ 284 while ((cnt) > newcnt); \
223 \ 285 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 286 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \ 287 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 288 cur = newcnt; \
227 } 289 }
290
291#define array_slim(stem) \
292 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
293 { \
294 stem ## max = array_roundsize (stem ## cnt >> 1); \
295 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
296 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
297 }
298
299#define array_free(stem, idx) \
300 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 301
229/*****************************************************************************/ 302/*****************************************************************************/
230 303
231static void 304static void
232anfds_init (ANFD *base, int count) 305anfds_init (ANFD *base, int count)
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 372 events |= w->events;
300 373
301 anfd->reify = 0; 374 anfd->reify = 0;
302 375
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 376 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 377 anfd->events = events;
307 }
308 } 378 }
309 379
310 fdchangecnt = 0; 380 fdchangecnt = 0;
311} 381}
312 382
313static void 383static void
314fd_change (EV_P_ int fd) 384fd_change (EV_P_ int fd)
315{ 385{
316 if (anfds [fd].reify || fdchangecnt < 0) 386 if (anfds [fd].reify)
317 return; 387 return;
318 388
319 anfds [fd].reify = 1; 389 anfds [fd].reify = 1;
320 390
321 ++fdchangecnt; 391 ++fdchangecnt;
349 419
350/* called on ENOMEM in select/poll to kill some fds and retry */ 420/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 421static void
352fd_enomem (EV_P) 422fd_enomem (EV_P)
353{ 423{
354 int fd = anfdmax; 424 int fd;
355 425
356 while (fd--) 426 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 427 if (anfds [fd].events)
358 { 428 {
359 close (fd);
360 fd_kill (EV_A_ fd); 429 fd_kill (EV_A_ fd);
361 return; 430 return;
362 } 431 }
363} 432}
364 433
365/* susually called after fork if method needs to re-arm all fds from scratch */ 434/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 435static void
367fd_rearm_all (EV_P) 436fd_rearm_all (EV_P)
368{ 437{
369 int fd; 438 int fd;
370 439
385 WT w = heap [k]; 454 WT w = heap [k];
386 455
387 while (k && heap [k >> 1]->at > w->at) 456 while (k && heap [k >> 1]->at > w->at)
388 { 457 {
389 heap [k] = heap [k >> 1]; 458 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 459 ((W)heap [k])->active = k + 1;
391 k >>= 1; 460 k >>= 1;
392 } 461 }
393 462
394 heap [k] = w; 463 heap [k] = w;
395 heap [k]->active = k + 1; 464 ((W)heap [k])->active = k + 1;
396 465
397} 466}
398 467
399static void 468static void
400downheap (WT *heap, int N, int k) 469downheap (WT *heap, int N, int k)
410 479
411 if (w->at <= heap [j]->at) 480 if (w->at <= heap [j]->at)
412 break; 481 break;
413 482
414 heap [k] = heap [j]; 483 heap [k] = heap [j];
415 heap [k]->active = k + 1; 484 ((W)heap [k])->active = k + 1;
416 k = j; 485 k = j;
417 } 486 }
418 487
419 heap [k] = w; 488 heap [k] = w;
420 heap [k]->active = k + 1; 489 ((W)heap [k])->active = k + 1;
421} 490}
422 491
423/*****************************************************************************/ 492/*****************************************************************************/
424 493
425typedef struct 494typedef struct
426{ 495{
427 struct ev_watcher_list *head; 496 WL head;
428 sig_atomic_t volatile gotsig; 497 sig_atomic_t volatile gotsig;
429} ANSIG; 498} ANSIG;
430 499
431static ANSIG *signals; 500static ANSIG *signals;
432static int signalmax; 501static int signalmax;
448} 517}
449 518
450static void 519static void
451sighandler (int signum) 520sighandler (int signum)
452{ 521{
522#if WIN32
523 signal (signum, sighandler);
524#endif
525
453 signals [signum - 1].gotsig = 1; 526 signals [signum - 1].gotsig = 1;
454 527
455 if (!gotsig) 528 if (!gotsig)
456 { 529 {
457 int old_errno = errno; 530 int old_errno = errno;
462} 535}
463 536
464static void 537static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 538sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 539{
467 struct ev_watcher_list *w; 540 WL w;
468 int signum; 541 int signum;
469 542
470 read (sigpipe [0], &revents, 1); 543 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 544 gotsig = 0;
472 545
514 struct ev_child *w; 587 struct ev_child *w;
515 588
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 589 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 590 if (w->pid == pid || !w->pid)
518 { 591 {
519 w->priority = sw->priority; /* need to do it *now* */ 592 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 593 w->rpid = pid;
521 w->rstatus = status; 594 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 595 event (EV_A_ (W)w, EV_CHILD);
523 } 596 }
524} 597}
525 598
526static void 599static void
608 methods = atoi (getenv ("LIBEV_METHODS")); 681 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 682 else
610 methods = EVMETHOD_ANY; 683 methods = EVMETHOD_ANY;
611 684
612 method = 0; 685 method = 0;
686#if EV_USE_WIN32
687 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
688#endif
613#if EV_USE_KQUEUE 689#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 690 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 691#endif
616#if EV_USE_EPOLL 692#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 693 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 696 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 697#endif
622#if EV_USE_SELECT 698#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 699 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 700#endif
701
702 ev_watcher_init (&sigev, sigcb);
703 ev_set_priority (&sigev, EV_MAXPRI);
625 } 704 }
626} 705}
627 706
628void 707void
629loop_destroy (EV_P) 708loop_destroy (EV_P)
630{ 709{
710 int i;
711
712#if EV_USE_WIN32
713 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
714#endif
631#if EV_USE_KQUEUE 715#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 716 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 717#endif
634#if EV_USE_EPOLL 718#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 719 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 723#endif
640#if EV_USE_SELECT 724#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 725 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 726#endif
643 727
728 for (i = NUMPRI; i--; )
729 array_free (pending, [i]);
730
731 array_free (fdchange, );
732 array_free (timer, );
733 array_free (periodic, );
734 array_free (idle, );
735 array_free (prepare, );
736 array_free (check, );
737
644 method = 0; 738 method = 0;
645 /*TODO*/
646} 739}
647 740
648void 741static void
649loop_fork (EV_P) 742loop_fork (EV_P)
650{ 743{
651 /*TODO*/
652#if EV_USE_EPOLL 744#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 745 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 746#endif
655#if EV_USE_KQUEUE 747#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 748 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 749#endif
750
751 if (ev_is_active (&sigev))
752 {
753 /* default loop */
754
755 ev_ref (EV_A);
756 ev_io_stop (EV_A_ &sigev);
757 close (sigpipe [0]);
758 close (sigpipe [1]);
759
760 while (pipe (sigpipe))
761 syserr ("(libev) error creating pipe");
762
763 siginit (EV_A);
764 }
765
766 postfork = 0;
658} 767}
659 768
660#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
661struct ev_loop * 770struct ev_loop *
662ev_loop_new (int methods) 771ev_loop_new (int methods)
663{ 772{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 773 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
774
775 memset (loop, 0, sizeof (struct ev_loop));
665 776
666 loop_init (EV_A_ methods); 777 loop_init (EV_A_ methods);
667 778
668 if (ev_method (EV_A)) 779 if (ev_method (EV_A))
669 return loop; 780 return loop;
673 784
674void 785void
675ev_loop_destroy (EV_P) 786ev_loop_destroy (EV_P)
676{ 787{
677 loop_destroy (EV_A); 788 loop_destroy (EV_A);
678 free (loop); 789 ev_free (loop);
679} 790}
680 791
681void 792void
682ev_loop_fork (EV_P) 793ev_loop_fork (EV_P)
683{ 794{
684 loop_fork (EV_A); 795 postfork = 1;
685} 796}
686 797
687#endif 798#endif
688 799
689#if EV_MULTIPLICITY 800#if EV_MULTIPLICITY
712 823
713 loop_init (EV_A_ methods); 824 loop_init (EV_A_ methods);
714 825
715 if (ev_method (EV_A)) 826 if (ev_method (EV_A))
716 { 827 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 828 siginit (EV_A);
720 829
721#ifndef WIN32 830#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 831 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 832 ev_set_priority (&childev, EV_MAXPRI);
756{ 865{
757#if EV_MULTIPLICITY 866#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 867 struct ev_loop *loop = default_loop;
759#endif 868#endif
760 869
761 loop_fork (EV_A); 870 if (method)
762 871 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 872}
771 873
772/*****************************************************************************/ 874/*****************************************************************************/
773 875
774static void 876static void
790} 892}
791 893
792static void 894static void
793timers_reify (EV_P) 895timers_reify (EV_P)
794{ 896{
795 while (timercnt && timers [0]->at <= mn_now) 897 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 898 {
797 struct ev_timer *w = timers [0]; 899 struct ev_timer *w = timers [0];
900
901 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 902
799 /* first reschedule or stop timer */ 903 /* first reschedule or stop timer */
800 if (w->repeat) 904 if (w->repeat)
801 { 905 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 906 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 907 ((WT)w)->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, 0); 908 downheap ((WT *)timers, timercnt, 0);
805 } 909 }
806 else 910 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 911 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 912
811} 915}
812 916
813static void 917static void
814periodics_reify (EV_P) 918periodics_reify (EV_P)
815{ 919{
816 while (periodiccnt && periodics [0]->at <= rt_now) 920 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
817 { 921 {
818 struct ev_periodic *w = periodics [0]; 922 struct ev_periodic *w = periodics [0];
923
924 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
819 925
820 /* first reschedule or stop timer */ 926 /* first reschedule or stop timer */
821 if (w->interval) 927 if (w->interval)
822 { 928 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 929 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 930 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 931 downheap ((WT *)periodics, periodiccnt, 0);
826 } 932 }
827 else 933 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 934 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 935
841 { 947 {
842 struct ev_periodic *w = periodics [i]; 948 struct ev_periodic *w = periodics [i];
843 949
844 if (w->interval) 950 if (w->interval)
845 { 951 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 952 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
847 953
848 if (fabs (diff) >= 1e-4) 954 if (fabs (diff) >= 1e-4)
849 { 955 {
850 ev_periodic_stop (EV_A_ w); 956 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w); 957 ev_periodic_start (EV_A_ w);
912 { 1018 {
913 periodics_reschedule (EV_A); 1019 periodics_reschedule (EV_A);
914 1020
915 /* adjust timers. this is easy, as the offset is the same for all */ 1021 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1022 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1023 ((WT)timers [i])->at += rt_now - mn_now;
918 } 1024 }
919 1025
920 mn_now = rt_now; 1026 mn_now = rt_now;
921 } 1027 }
922} 1028}
948 { 1054 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1055 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1056 call_pending (EV_A);
951 } 1057 }
952 1058
1059 /* we might have forked, so reify kernel state if necessary */
1060 if (expect_false (postfork))
1061 loop_fork (EV_A);
1062
953 /* update fd-related kernel structures */ 1063 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1064 fd_reify (EV_A);
955 1065
956 /* calculate blocking time */ 1066 /* calculate blocking time */
957 1067
973 { 1083 {
974 block = MAX_BLOCKTIME; 1084 block = MAX_BLOCKTIME;
975 1085
976 if (timercnt) 1086 if (timercnt)
977 { 1087 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1088 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1089 if (block > to) block = to;
980 } 1090 }
981 1091
982 if (periodiccnt) 1092 if (periodiccnt)
983 { 1093 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1094 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
985 if (block > to) block = to; 1095 if (block > to) block = to;
986 } 1096 }
987 1097
988 if (block < 0.) block = 0.; 1098 if (block < 0.) block = 0.;
989 } 1099 }
1106ev_timer_start (EV_P_ struct ev_timer *w) 1216ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1217{
1108 if (ev_is_active (w)) 1218 if (ev_is_active (w))
1109 return; 1219 return;
1110 1220
1111 w->at += mn_now; 1221 ((WT)w)->at += mn_now;
1112 1222
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1223 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1224
1115 ev_start (EV_A_ (W)w, ++timercnt); 1225 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1226 array_needsize (timers, timermax, timercnt, );
1117 timers [timercnt - 1] = w; 1227 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1228 upheap ((WT *)timers, timercnt - 1);
1229
1230 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1231}
1120 1232
1121void 1233void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1234ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1235{
1124 ev_clear_pending (EV_A_ (W)w); 1236 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1237 if (!ev_is_active (w))
1126 return; 1238 return;
1127 1239
1240 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1241
1128 if (w->active < timercnt--) 1242 if (((W)w)->active < timercnt--)
1129 { 1243 {
1130 timers [w->active - 1] = timers [timercnt]; 1244 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1246 }
1133 1247
1134 w->at = w->repeat; 1248 ((WT)w)->at = w->repeat;
1135 1249
1136 ev_stop (EV_A_ (W)w); 1250 ev_stop (EV_A_ (W)w);
1137} 1251}
1138 1252
1139void 1253void
1141{ 1255{
1142 if (ev_is_active (w)) 1256 if (ev_is_active (w))
1143 { 1257 {
1144 if (w->repeat) 1258 if (w->repeat)
1145 { 1259 {
1146 w->at = mn_now + w->repeat; 1260 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1261 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1262 }
1149 else 1263 else
1150 ev_timer_stop (EV_A_ w); 1264 ev_timer_stop (EV_A_ w);
1151 } 1265 }
1152 else if (w->repeat) 1266 else if (w->repeat)
1161 1275
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1276 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163 1277
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1278 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval) 1279 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1280 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1167 1281
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1282 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1283 array_needsize (periodics, periodicmax, periodiccnt, );
1170 periodics [periodiccnt - 1] = w; 1284 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1285 upheap ((WT *)periodics, periodiccnt - 1);
1286
1287 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1288}
1173 1289
1174void 1290void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1291ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1292{
1177 ev_clear_pending (EV_A_ (W)w); 1293 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
1179 return; 1295 return;
1180 1296
1297 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1298
1181 if (w->active < periodiccnt--) 1299 if (((W)w)->active < periodiccnt--)
1182 { 1300 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1301 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1302 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1303 }
1186 1304
1187 ev_stop (EV_A_ (W)w); 1305 ev_stop (EV_A_ (W)w);
1188} 1306}
1189 1307
1203{ 1321{
1204 ev_clear_pending (EV_A_ (W)w); 1322 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1323 if (ev_is_active (w))
1206 return; 1324 return;
1207 1325
1208 idles [w->active - 1] = idles [--idlecnt]; 1326 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1327 ev_stop (EV_A_ (W)w);
1210} 1328}
1211 1329
1212void 1330void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1331ev_prepare_start (EV_P_ struct ev_prepare *w)
1225{ 1343{
1226 ev_clear_pending (EV_A_ (W)w); 1344 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1345 if (ev_is_active (w))
1228 return; 1346 return;
1229 1347
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1348 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1349 ev_stop (EV_A_ (W)w);
1232} 1350}
1233 1351
1234void 1352void
1235ev_check_start (EV_P_ struct ev_check *w) 1353ev_check_start (EV_P_ struct ev_check *w)
1247{ 1365{
1248 ev_clear_pending (EV_A_ (W)w); 1366 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1367 if (ev_is_active (w))
1250 return; 1368 return;
1251 1369
1252 checks [w->active - 1] = checks [--checkcnt]; 1370 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1371 ev_stop (EV_A_ (W)w);
1254} 1372}
1255 1373
1256#ifndef SA_RESTART 1374#ifndef SA_RESTART
1257# define SA_RESTART 0 1375# define SA_RESTART 0
1270 1388
1271 ev_start (EV_A_ (W)w, 1); 1389 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1390 array_needsize (signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1391 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1392
1275 if (!w->next) 1393 if (!((WL)w)->next)
1276 { 1394 {
1395#if WIN32
1396 signal (w->signum, sighandler);
1397#else
1277 struct sigaction sa; 1398 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1399 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1400 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1402 sigaction (w->signum, &sa, 0);
1403#endif
1282 } 1404 }
1283} 1405}
1284 1406
1285void 1407void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1408ev_signal_stop (EV_P_ struct ev_signal *w)
1336 void (*cb)(int revents, void *arg) = once->cb; 1458 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1459 void *arg = once->arg;
1338 1460
1339 ev_io_stop (EV_A_ &once->io); 1461 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1462 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1463 ev_free (once);
1342 1464
1343 cb (revents, arg); 1465 cb (revents, arg);
1344} 1466}
1345 1467
1346static void 1468static void
1356} 1478}
1357 1479
1358void 1480void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1482{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1483 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1362 1484
1363 if (!once) 1485 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1486 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1487 else
1366 { 1488 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines