ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
90# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
91#endif 92#endif
92 93
93#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
95#endif 106#endif
96 107
97#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
99#endif 110#endif
137typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
139 150
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 152
153#include "ev_win32.c"
154
142/*****************************************************************************/ 155/*****************************************************************************/
143 156
157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
144typedef struct 205typedef struct
145{ 206{
146 struct ev_watcher_list *head; 207 WL head;
147 unsigned char events; 208 unsigned char events;
148 unsigned char reify; 209 unsigned char reify;
149} ANFD; 210} ANFD;
150 211
151typedef struct 212typedef struct
207ev_now (EV_P) 268ev_now (EV_P)
208{ 269{
209 return rt_now; 270 return rt_now;
210} 271}
211 272
212#define array_roundsize(base,n) ((n) | 4 & ~3) 273#define array_roundsize(type,n) ((n) | 4 & ~3)
213 274
214#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 276 if (expect_false ((cnt) > cur)) \
216 { \ 277 { \
217 int newcnt = cur; \ 278 int newcnt = cur; \
218 do \ 279 do \
219 { \ 280 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 281 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 282 } \
222 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
223 \ 284 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 287 cur = newcnt; \
227 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 305
229/*****************************************************************************/ 306/*****************************************************************************/
230 307
231static void 308static void
232anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 326 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return; 327 return;
251 } 328 }
252 329
253 w->pending = ++pendingcnt [ABSPRI (w)]; 330 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 332 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 333 pendings [ABSPRI (w)][w->pending - 1].events = events;
257} 334}
258 335
259static void 336static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 376 events |= w->events;
300 377
301 anfd->reify = 0; 378 anfd->reify = 0;
302 379
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 380 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 381 anfd->events = events;
307 }
308 } 382 }
309 383
310 fdchangecnt = 0; 384 fdchangecnt = 0;
311} 385}
312 386
313static void 387static void
314fd_change (EV_P_ int fd) 388fd_change (EV_P_ int fd)
315{ 389{
316 if (anfds [fd].reify || fdchangecnt < 0) 390 if (anfds [fd].reify)
317 return; 391 return;
318 392
319 anfds [fd].reify = 1; 393 anfds [fd].reify = 1;
320 394
321 ++fdchangecnt; 395 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 396 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 397 fdchanges [fdchangecnt - 1] = fd;
324} 398}
325 399
326static void 400static void
327fd_kill (EV_P_ int fd) 401fd_kill (EV_P_ int fd)
333 ev_io_stop (EV_A_ w); 407 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 409 }
336} 410}
337 411
412static int
413fd_valid (int fd)
414{
415#ifdef WIN32
416 return !!win32_get_osfhandle (fd);
417#else
418 return fcntl (fd, F_GETFD) != -1;
419#endif
420}
421
338/* called on EBADF to verify fds */ 422/* called on EBADF to verify fds */
339static void 423static void
340fd_ebadf (EV_P) 424fd_ebadf (EV_P)
341{ 425{
342 int fd; 426 int fd;
343 427
344 for (fd = 0; fd < anfdmax; ++fd) 428 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 429 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 430 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 431 fd_kill (EV_A_ fd);
348} 432}
349 433
350/* called on ENOMEM in select/poll to kill some fds and retry */ 434/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 435static void
352fd_enomem (EV_P) 436fd_enomem (EV_P)
353{ 437{
354 int fd = anfdmax; 438 int fd;
355 439
356 while (fd--) 440 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 441 if (anfds [fd].events)
358 { 442 {
359 close (fd);
360 fd_kill (EV_A_ fd); 443 fd_kill (EV_A_ fd);
361 return; 444 return;
362 } 445 }
363} 446}
364 447
365/* susually called after fork if method needs to re-arm all fds from scratch */ 448/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 449static void
367fd_rearm_all (EV_P) 450fd_rearm_all (EV_P)
368{ 451{
369 int fd; 452 int fd;
370 453
385 WT w = heap [k]; 468 WT w = heap [k];
386 469
387 while (k && heap [k >> 1]->at > w->at) 470 while (k && heap [k >> 1]->at > w->at)
388 { 471 {
389 heap [k] = heap [k >> 1]; 472 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 473 ((W)heap [k])->active = k + 1;
391 k >>= 1; 474 k >>= 1;
392 } 475 }
393 476
394 heap [k] = w; 477 heap [k] = w;
395 heap [k]->active = k + 1; 478 ((W)heap [k])->active = k + 1;
396 479
397} 480}
398 481
399static void 482static void
400downheap (WT *heap, int N, int k) 483downheap (WT *heap, int N, int k)
410 493
411 if (w->at <= heap [j]->at) 494 if (w->at <= heap [j]->at)
412 break; 495 break;
413 496
414 heap [k] = heap [j]; 497 heap [k] = heap [j];
415 heap [k]->active = k + 1; 498 ((W)heap [k])->active = k + 1;
416 k = j; 499 k = j;
417 } 500 }
418 501
419 heap [k] = w; 502 heap [k] = w;
420 heap [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
421} 504}
422 505
423/*****************************************************************************/ 506/*****************************************************************************/
424 507
425typedef struct 508typedef struct
426{ 509{
427 struct ev_watcher_list *head; 510 WL head;
428 sig_atomic_t volatile gotsig; 511 sig_atomic_t volatile gotsig;
429} ANSIG; 512} ANSIG;
430 513
431static ANSIG *signals; 514static ANSIG *signals;
432static int signalmax; 515static int signalmax;
448} 531}
449 532
450static void 533static void
451sighandler (int signum) 534sighandler (int signum)
452{ 535{
536#if WIN32
537 signal (signum, sighandler);
538#endif
539
453 signals [signum - 1].gotsig = 1; 540 signals [signum - 1].gotsig = 1;
454 541
455 if (!gotsig) 542 if (!gotsig)
456 { 543 {
457 int old_errno = errno; 544 int old_errno = errno;
458 gotsig = 1; 545 gotsig = 1;
546#ifdef WIN32
547 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
548#else
459 write (sigpipe [1], &signum, 1); 549 write (sigpipe [1], &signum, 1);
550#endif
460 errno = old_errno; 551 errno = old_errno;
461 } 552 }
462} 553}
463 554
464static void 555static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 556sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 557{
467 struct ev_watcher_list *w; 558 WL w;
468 int signum; 559 int signum;
469 560
561#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else
470 read (sigpipe [0], &revents, 1); 564 read (sigpipe [0], &revents, 1);
565#endif
471 gotsig = 0; 566 gotsig = 0;
472 567
473 for (signum = signalmax; signum--; ) 568 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 569 if (signals [signum].gotsig)
475 { 570 {
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 592 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 593}
499 594
500/*****************************************************************************/ 595/*****************************************************************************/
501 596
597static struct ev_child *childs [PID_HASHSIZE];
598
502#ifndef WIN32 599#ifndef WIN32
503 600
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 601static struct ev_signal childev;
506 602
507#ifndef WCONTINUED 603#ifndef WCONTINUED
508# define WCONTINUED 0 604# define WCONTINUED 0
509#endif 605#endif
514 struct ev_child *w; 610 struct ev_child *w;
515 611
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 612 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 613 if (w->pid == pid || !w->pid)
518 { 614 {
519 w->priority = sw->priority; /* need to do it *now* */ 615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 616 w->rpid = pid;
521 w->rstatus = status; 617 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 618 event (EV_A_ (W)w, EV_CHILD);
523 } 619 }
524} 620}
525 621
526static void 622static void
608 methods = atoi (getenv ("LIBEV_METHODS")); 704 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 705 else
610 methods = EVMETHOD_ANY; 706 methods = EVMETHOD_ANY;
611 707
612 method = 0; 708 method = 0;
709#if EV_USE_WIN32
710 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
711#endif
613#if EV_USE_KQUEUE 712#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 713 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 714#endif
616#if EV_USE_EPOLL 715#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 716 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 719 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 720#endif
622#if EV_USE_SELECT 721#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 723#endif
724
725 ev_watcher_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI);
625 } 727 }
626} 728}
627 729
628void 730void
629loop_destroy (EV_P) 731loop_destroy (EV_P)
630{ 732{
733 int i;
734
735#if EV_USE_WIN32
736 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
737#endif
631#if EV_USE_KQUEUE 738#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 739 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 740#endif
634#if EV_USE_EPOLL 741#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 742 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 746#endif
640#if EV_USE_SELECT 747#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 748 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 749#endif
643 750
751 for (i = NUMPRI; i--; )
752 array_free (pending, [i]);
753
754 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange);
756 array_free_microshit (timer);
757 array_free_microshit (periodic);
758 array_free_microshit (idle);
759 array_free_microshit (prepare);
760 array_free_microshit (check);
761
644 method = 0; 762 method = 0;
645 /*TODO*/
646} 763}
647 764
648void 765static void
649loop_fork (EV_P) 766loop_fork (EV_P)
650{ 767{
651 /*TODO*/
652#if EV_USE_EPOLL 768#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 769 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 770#endif
655#if EV_USE_KQUEUE 771#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 772 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 773#endif
774
775 if (ev_is_active (&sigev))
776 {
777 /* default loop */
778
779 ev_ref (EV_A);
780 ev_io_stop (EV_A_ &sigev);
781 close (sigpipe [0]);
782 close (sigpipe [1]);
783
784 while (pipe (sigpipe))
785 syserr ("(libev) error creating pipe");
786
787 siginit (EV_A);
788 }
789
790 postfork = 0;
658} 791}
659 792
660#if EV_MULTIPLICITY 793#if EV_MULTIPLICITY
661struct ev_loop * 794struct ev_loop *
662ev_loop_new (int methods) 795ev_loop_new (int methods)
663{ 796{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 797 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
798
799 memset (loop, 0, sizeof (struct ev_loop));
665 800
666 loop_init (EV_A_ methods); 801 loop_init (EV_A_ methods);
667 802
668 if (ev_method (EV_A)) 803 if (ev_method (EV_A))
669 return loop; 804 return loop;
673 808
674void 809void
675ev_loop_destroy (EV_P) 810ev_loop_destroy (EV_P)
676{ 811{
677 loop_destroy (EV_A); 812 loop_destroy (EV_A);
678 free (loop); 813 ev_free (loop);
679} 814}
680 815
681void 816void
682ev_loop_fork (EV_P) 817ev_loop_fork (EV_P)
683{ 818{
684 loop_fork (EV_A); 819 postfork = 1;
685} 820}
686 821
687#endif 822#endif
688 823
689#if EV_MULTIPLICITY 824#if EV_MULTIPLICITY
712 847
713 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
714 849
715 if (ev_method (EV_A)) 850 if (ev_method (EV_A))
716 { 851 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 852 siginit (EV_A);
720 853
721#ifndef WIN32 854#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 855 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 856 ev_set_priority (&childev, EV_MAXPRI);
737{ 870{
738#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 872 struct ev_loop *loop = default_loop;
740#endif 873#endif
741 874
875#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 876 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 877 ev_signal_stop (EV_A_ &childev);
878#endif
744 879
745 ev_ref (EV_A); /* signal watcher */ 880 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 881 ev_io_stop (EV_A_ &sigev);
747 882
748 close (sigpipe [0]); sigpipe [0] = 0; 883 close (sigpipe [0]); sigpipe [0] = 0;
756{ 891{
757#if EV_MULTIPLICITY 892#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 893 struct ev_loop *loop = default_loop;
759#endif 894#endif
760 895
761 loop_fork (EV_A); 896 if (method)
762 897 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 898}
771 899
772/*****************************************************************************/ 900/*****************************************************************************/
901
902static int
903any_pending (EV_P)
904{
905 int pri;
906
907 for (pri = NUMPRI; pri--; )
908 if (pendingcnt [pri])
909 return 1;
910
911 return 0;
912}
773 913
774static void 914static void
775call_pending (EV_P) 915call_pending (EV_P)
776{ 916{
777 int pri; 917 int pri;
790} 930}
791 931
792static void 932static void
793timers_reify (EV_P) 933timers_reify (EV_P)
794{ 934{
795 while (timercnt && timers [0]->at <= mn_now) 935 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 936 {
797 struct ev_timer *w = timers [0]; 937 struct ev_timer *w = timers [0];
938
939 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 940
799 /* first reschedule or stop timer */ 941 /* first reschedule or stop timer */
800 if (w->repeat) 942 if (w->repeat)
801 { 943 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 945 ((WT)w)->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, 0); 946 downheap ((WT *)timers, timercnt, 0);
805 } 947 }
806 else 948 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 950
811} 953}
812 954
813static void 955static void
814periodics_reify (EV_P) 956periodics_reify (EV_P)
815{ 957{
816 while (periodiccnt && periodics [0]->at <= rt_now) 958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
817 { 959 {
818 struct ev_periodic *w = periodics [0]; 960 struct ev_periodic *w = periodics [0];
819 961
962 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963
820 /* first reschedule or stop timer */ 964 /* first reschedule or stop timer */
821 if (w->interval) 965 if (w->reschedule_cb)
822 { 966 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
968
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0);
971 }
972 else if (w->interval)
973 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 976 downheap ((WT *)periodics, periodiccnt, 0);
826 } 977 }
827 else 978 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 980
839 /* adjust periodics after time jump */ 990 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 991 for (i = 0; i < periodiccnt; ++i)
841 { 992 {
842 struct ev_periodic *w = periodics [i]; 993 struct ev_periodic *w = periodics [i];
843 994
995 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now);
844 if (w->interval) 997 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 999 }
1000
1001 /* now rebuild the heap */
1002 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i);
857} 1004}
858 1005
859inline int 1006inline int
860time_update_monotonic (EV_P) 1007time_update_monotonic (EV_P)
861{ 1008{
912 { 1059 {
913 periodics_reschedule (EV_A); 1060 periodics_reschedule (EV_A);
914 1061
915 /* adjust timers. this is easy, as the offset is the same for all */ 1062 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1063 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1064 ((WT)timers [i])->at += rt_now - mn_now;
918 } 1065 }
919 1066
920 mn_now = rt_now; 1067 mn_now = rt_now;
921 } 1068 }
922} 1069}
948 { 1095 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1096 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1097 call_pending (EV_A);
951 } 1098 }
952 1099
1100 /* we might have forked, so reify kernel state if necessary */
1101 if (expect_false (postfork))
1102 loop_fork (EV_A);
1103
953 /* update fd-related kernel structures */ 1104 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1105 fd_reify (EV_A);
955 1106
956 /* calculate blocking time */ 1107 /* calculate blocking time */
957 1108
958 /* we only need this for !monotonic clockor timers, but as we basically 1109 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1110 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1111#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1112 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1113 time_update_monotonic (EV_A);
963 else 1114 else
973 { 1124 {
974 block = MAX_BLOCKTIME; 1125 block = MAX_BLOCKTIME;
975 1126
976 if (timercnt) 1127 if (timercnt)
977 { 1128 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1130 if (block > to) block = to;
980 } 1131 }
981 1132
982 if (periodiccnt) 1133 if (periodiccnt)
983 { 1134 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
985 if (block > to) block = to; 1136 if (block > to) block = to;
986 } 1137 }
987 1138
988 if (block < 0.) block = 0.; 1139 if (block < 0.) block = 0.;
989 } 1140 }
996 /* queue pending timers and reschedule them */ 1147 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1148 timers_reify (EV_A); /* relative timers called last */
998 periodics_reify (EV_A); /* absolute timers called first */ 1149 periodics_reify (EV_A); /* absolute timers called first */
999 1150
1000 /* queue idle watchers unless io or timers are pending */ 1151 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1152 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1154
1004 /* queue check watchers, to be executed first */ 1155 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1156 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1157 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1081 return; 1232 return;
1082 1233
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1234 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1235
1085 ev_start (EV_A_ (W)w, 1); 1236 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1237 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1238 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1239
1089 fd_change (EV_A_ fd); 1240 fd_change (EV_A_ fd);
1090} 1241}
1091 1242
1106ev_timer_start (EV_P_ struct ev_timer *w) 1257ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1258{
1108 if (ev_is_active (w)) 1259 if (ev_is_active (w))
1109 return; 1260 return;
1110 1261
1111 w->at += mn_now; 1262 ((WT)w)->at += mn_now;
1112 1263
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1264 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1265
1115 ev_start (EV_A_ (W)w, ++timercnt); 1266 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1267 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1117 timers [timercnt - 1] = w; 1268 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1269 upheap ((WT *)timers, timercnt - 1);
1270
1271 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1272}
1120 1273
1121void 1274void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1275ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1276{
1124 ev_clear_pending (EV_A_ (W)w); 1277 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1278 if (!ev_is_active (w))
1126 return; 1279 return;
1127 1280
1281 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1282
1128 if (w->active < timercnt--) 1283 if (((W)w)->active < timercnt--)
1129 { 1284 {
1130 timers [w->active - 1] = timers [timercnt]; 1285 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1287 }
1133 1288
1134 w->at = w->repeat; 1289 ((WT)w)->at = w->repeat;
1135 1290
1136 ev_stop (EV_A_ (W)w); 1291 ev_stop (EV_A_ (W)w);
1137} 1292}
1138 1293
1139void 1294void
1141{ 1296{
1142 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1143 { 1298 {
1144 if (w->repeat) 1299 if (w->repeat)
1145 { 1300 {
1146 w->at = mn_now + w->repeat; 1301 ((WT)w)->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1148 } 1303 }
1149 else 1304 else
1150 ev_timer_stop (EV_A_ w); 1305 ev_timer_stop (EV_A_ w);
1151 } 1306 }
1152 else if (w->repeat) 1307 else if (w->repeat)
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1312ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1313{
1159 if (ev_is_active (w)) 1314 if (ev_is_active (w))
1160 return; 1315 return;
1161 1316
1317 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1319 else if (w->interval)
1320 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1322 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 }
1167 1325
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1326 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1170 periodics [periodiccnt - 1] = w; 1328 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1329 upheap ((WT *)periodics, periodiccnt - 1);
1330
1331 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1332}
1173 1333
1174void 1334void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1335ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1336{
1177 ev_clear_pending (EV_A_ (W)w); 1337 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1338 if (!ev_is_active (w))
1179 return; 1339 return;
1180 1340
1341 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1342
1181 if (w->active < periodiccnt--) 1343 if (((W)w)->active < periodiccnt--)
1182 { 1344 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1345 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1346 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1347 }
1186 1348
1187 ev_stop (EV_A_ (W)w); 1349 ev_stop (EV_A_ (W)w);
1188} 1350}
1189 1351
1190void 1352void
1353ev_periodic_again (EV_P_ struct ev_periodic *w)
1354{
1355 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w);
1357}
1358
1359void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1360ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1361{
1193 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1194 return; 1363 return;
1195 1364
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1365 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1366 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1198 idles [idlecnt - 1] = w; 1367 idles [idlecnt - 1] = w;
1199} 1368}
1200 1369
1201void 1370void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1371ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1372{
1204 ev_clear_pending (EV_A_ (W)w); 1373 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1374 if (ev_is_active (w))
1206 return; 1375 return;
1207 1376
1208 idles [w->active - 1] = idles [--idlecnt]; 1377 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1378 ev_stop (EV_A_ (W)w);
1210} 1379}
1211 1380
1212void 1381void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1382ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{ 1383{
1215 if (ev_is_active (w)) 1384 if (ev_is_active (w))
1216 return; 1385 return;
1217 1386
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1387 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1388 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1220 prepares [preparecnt - 1] = w; 1389 prepares [preparecnt - 1] = w;
1221} 1390}
1222 1391
1223void 1392void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1393ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{ 1394{
1226 ev_clear_pending (EV_A_ (W)w); 1395 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1396 if (ev_is_active (w))
1228 return; 1397 return;
1229 1398
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1399 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1400 ev_stop (EV_A_ (W)w);
1232} 1401}
1233 1402
1234void 1403void
1235ev_check_start (EV_P_ struct ev_check *w) 1404ev_check_start (EV_P_ struct ev_check *w)
1236{ 1405{
1237 if (ev_is_active (w)) 1406 if (ev_is_active (w))
1238 return; 1407 return;
1239 1408
1240 ev_start (EV_A_ (W)w, ++checkcnt); 1409 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, ); 1410 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1242 checks [checkcnt - 1] = w; 1411 checks [checkcnt - 1] = w;
1243} 1412}
1244 1413
1245void 1414void
1246ev_check_stop (EV_P_ struct ev_check *w) 1415ev_check_stop (EV_P_ struct ev_check *w)
1247{ 1416{
1248 ev_clear_pending (EV_A_ (W)w); 1417 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1418 if (ev_is_active (w))
1250 return; 1419 return;
1251 1420
1252 checks [w->active - 1] = checks [--checkcnt]; 1421 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1422 ev_stop (EV_A_ (W)w);
1254} 1423}
1255 1424
1256#ifndef SA_RESTART 1425#ifndef SA_RESTART
1257# define SA_RESTART 0 1426# define SA_RESTART 0
1267 return; 1436 return;
1268 1437
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1438 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1439
1271 ev_start (EV_A_ (W)w, 1); 1440 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1441 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1442 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1443
1275 if (!w->next) 1444 if (!((WL)w)->next)
1276 { 1445 {
1446#if WIN32
1447 signal (w->signum, sighandler);
1448#else
1277 struct sigaction sa; 1449 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1450 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1451 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1452 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1453 sigaction (w->signum, &sa, 0);
1454#endif
1282 } 1455 }
1283} 1456}
1284 1457
1285void 1458void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1459ev_signal_stop (EV_P_ struct ev_signal *w)
1336 void (*cb)(int revents, void *arg) = once->cb; 1509 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1510 void *arg = once->arg;
1338 1511
1339 ev_io_stop (EV_A_ &once->io); 1512 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1513 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1514 ev_free (once);
1342 1515
1343 cb (revents, arg); 1516 cb (revents, arg);
1344} 1517}
1345 1518
1346static void 1519static void
1356} 1529}
1357 1530
1358void 1531void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1532ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1533{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1534 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1535
1363 if (!once) 1536 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1537 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1538 else
1366 { 1539 {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines