ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.60 by root, Sun Nov 4 18:29:44 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
90# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
91#endif 92#endif
92 93
93#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
95#endif 106#endif
96 107
97#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
99#endif 110#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 130
131#ifdef EV_H
132# include EV_H
133#else
120#include "ev.h" 134# include "ev.h"
135#endif
121 136
122#if __GNUC__ >= 3 137#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 139# define inline inline
125#else 140#else
137typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
139 154
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 156
157#include "ev_win32.c"
158
142/*****************************************************************************/ 159/*****************************************************************************/
143 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
144typedef struct 209typedef struct
145{ 210{
146 struct ev_watcher_list *head; 211 WL head;
147 unsigned char events; 212 unsigned char events;
148 unsigned char reify; 213 unsigned char reify;
149} ANFD; 214} ANFD;
150 215
151typedef struct 216typedef struct
154 int events; 219 int events;
155} ANPENDING; 220} ANPENDING;
156 221
157#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
158 223
159struct ev_loop 224 struct ev_loop
160{ 225 {
226 ev_tstamp ev_rt_now;
161# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
162# include "ev_vars.h" 228 #include "ev_vars.h"
163};
164# undef VAR 229 #undef VAR
230 };
165# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
166 235
167#else 236#else
168 237
238 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 240 #include "ev_vars.h"
171# undef VAR 241 #undef VAR
242
243 static int default_loop;
172 244
173#endif 245#endif
174 246
175/*****************************************************************************/ 247/*****************************************************************************/
176 248
201#endif 273#endif
202 274
203 return ev_time (); 275 return ev_time ();
204} 276}
205 277
278#if EV_MULTIPLICITY
206ev_tstamp 279ev_tstamp
207ev_now (EV_P) 280ev_now (EV_P)
208{ 281{
209 return rt_now; 282 return ev_rt_now;
210} 283}
284#endif
211 285
212#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
213 287
214#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
216 { \ 290 { \
217 int newcnt = cur; \ 291 int newcnt = cur; \
218 do \ 292 do \
219 { \ 293 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 295 } \
222 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
223 \ 297 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 300 cur = newcnt; \
227 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 318
229/*****************************************************************************/ 319/*****************************************************************************/
230 320
231static void 321static void
232anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
239 329
240 ++base; 330 ++base;
241 } 331 }
242} 332}
243 333
244static void 334void
245event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
246{ 336{
337 W w_ = (W)w;
338
247 if (w->pending) 339 if (w_->pending)
248 { 340 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 342 return;
251 } 343 }
252 344
253 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 349}
258 350
259static void 351static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 353{
262 int i; 354 int i;
263 355
264 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
266} 358}
267 359
268static void 360inline void
269fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
270{ 362{
271 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 364 struct ev_io *w;
273 365
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 367 {
276 int ev = w->events & events; 368 int ev = w->events & revents;
277 369
278 if (ev) 370 if (ev)
279 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
280 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
281} 379}
282 380
283/*****************************************************************************/ 381/*****************************************************************************/
284 382
285static void 383static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 397 events |= w->events;
300 398
301 anfd->reify = 0; 399 anfd->reify = 0;
302 400
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 401 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 402 anfd->events = events;
307 }
308 } 403 }
309 404
310 fdchangecnt = 0; 405 fdchangecnt = 0;
311} 406}
312 407
313static void 408static void
314fd_change (EV_P_ int fd) 409fd_change (EV_P_ int fd)
315{ 410{
316 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
317 return; 412 return;
318 413
319 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
320 415
321 ++fdchangecnt; 416 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
324} 419}
325 420
326static void 421static void
327fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
329 struct ev_io *w; 424 struct ev_io *w;
330 425
331 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
332 { 427 {
333 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
336} 441}
337 442
338/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
339static void 444static void
340fd_ebadf (EV_P) 445fd_ebadf (EV_P)
341{ 446{
342 int fd; 447 int fd;
343 448
344 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 450 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 452 fd_kill (EV_A_ fd);
348} 453}
349 454
350/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 456static void
352fd_enomem (EV_P) 457fd_enomem (EV_P)
353{ 458{
354 int fd = anfdmax; 459 int fd;
355 460
356 while (fd--) 461 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 462 if (anfds [fd].events)
358 { 463 {
359 close (fd);
360 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
361 return; 465 return;
362 } 466 }
363} 467}
364 468
365/* susually called after fork if method needs to re-arm all fds from scratch */ 469/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 470static void
367fd_rearm_all (EV_P) 471fd_rearm_all (EV_P)
368{ 472{
369 int fd; 473 int fd;
370 474
385 WT w = heap [k]; 489 WT w = heap [k];
386 490
387 while (k && heap [k >> 1]->at > w->at) 491 while (k && heap [k >> 1]->at > w->at)
388 { 492 {
389 heap [k] = heap [k >> 1]; 493 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 494 ((W)heap [k])->active = k + 1;
391 k >>= 1; 495 k >>= 1;
392 } 496 }
393 497
394 heap [k] = w; 498 heap [k] = w;
395 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
396 500
397} 501}
398 502
399static void 503static void
400downheap (WT *heap, int N, int k) 504downheap (WT *heap, int N, int k)
410 514
411 if (w->at <= heap [j]->at) 515 if (w->at <= heap [j]->at)
412 break; 516 break;
413 517
414 heap [k] = heap [j]; 518 heap [k] = heap [j];
415 heap [k]->active = k + 1; 519 ((W)heap [k])->active = k + 1;
416 k = j; 520 k = j;
417 } 521 }
418 522
419 heap [k] = w; 523 heap [k] = w;
420 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
421} 537}
422 538
423/*****************************************************************************/ 539/*****************************************************************************/
424 540
425typedef struct 541typedef struct
426{ 542{
427 struct ev_watcher_list *head; 543 WL head;
428 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
429} ANSIG; 545} ANSIG;
430 546
431static ANSIG *signals; 547static ANSIG *signals;
432static int signalmax; 548static int signalmax;
448} 564}
449 565
450static void 566static void
451sighandler (int signum) 567sighandler (int signum)
452{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
453 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
454 574
455 if (!gotsig) 575 if (!gotsig)
456 { 576 {
457 int old_errno = errno; 577 int old_errno = errno;
458 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
459 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
460 errno = old_errno; 584 errno = old_errno;
461 } 585 }
462} 586}
463 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
464static void 608static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 610{
467 struct ev_watcher_list *w;
468 int signum; 611 int signum;
469 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
470 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
471 gotsig = 0; 618 gotsig = 0;
472 619
473 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
475 { 622 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 623}
482 624
483static void 625static void
484siginit (EV_P) 626siginit (EV_P)
485{ 627{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 639 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 640}
499 641
500/*****************************************************************************/ 642/*****************************************************************************/
501 643
644static struct ev_child *childs [PID_HASHSIZE];
645
502#ifndef WIN32 646#ifndef WIN32
503 647
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 648static struct ev_signal childev;
506 649
507#ifndef WCONTINUED 650#ifndef WCONTINUED
508# define WCONTINUED 0 651# define WCONTINUED 0
509#endif 652#endif
514 struct ev_child *w; 657 struct ev_child *w;
515 658
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
518 { 661 {
519 w->priority = sw->priority; /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 663 w->rpid = pid;
521 w->rstatus = status; 664 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 666 }
524} 667}
525 668
526static void 669static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 672 int pid, status;
530 673
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 675 {
533 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 678
536 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 681 }
539} 682}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 740 have_monotonic = 1;
598 } 741 }
599#endif 742#endif
600 743
601 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 745 mn_now = get_clock ();
603 now_floor = mn_now; 746 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
605 748
606 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 752 else
610 methods = EVMETHOD_ANY; 753 methods = EVMETHOD_ANY;
611 754
612 method = 0; 755 method = 0;
756#if EV_USE_WIN32
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758#endif
613#if EV_USE_KQUEUE 759#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 761#endif
616#if EV_USE_EPOLL 762#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 767#endif
622#if EV_USE_SELECT 768#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
625 } 774 }
626} 775}
627 776
628void 777void
629loop_destroy (EV_P) 778loop_destroy (EV_P)
630{ 779{
780 int i;
781
782#if EV_USE_WIN32
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784#endif
631#if EV_USE_KQUEUE 785#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 787#endif
634#if EV_USE_EPOLL 788#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 793#endif
640#if EV_USE_SELECT 794#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 796#endif
643 797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
644 method = 0; 809 method = 0;
645 /*TODO*/
646} 810}
647 811
648void 812static void
649loop_fork (EV_P) 813loop_fork (EV_P)
650{ 814{
651 /*TODO*/
652#if EV_USE_EPOLL 815#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 817#endif
655#if EV_USE_KQUEUE 818#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
658} 838}
659 839
660#if EV_MULTIPLICITY 840#if EV_MULTIPLICITY
661struct ev_loop * 841struct ev_loop *
662ev_loop_new (int methods) 842ev_loop_new (int methods)
663{ 843{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
665 847
666 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
667 849
668 if (ev_method (EV_A)) 850 if (ev_method (EV_A))
669 return loop; 851 return loop;
673 855
674void 856void
675ev_loop_destroy (EV_P) 857ev_loop_destroy (EV_P)
676{ 858{
677 loop_destroy (EV_A); 859 loop_destroy (EV_A);
678 free (loop); 860 ev_free (loop);
679} 861}
680 862
681void 863void
682ev_loop_fork (EV_P) 864ev_loop_fork (EV_P)
683{ 865{
684 loop_fork (EV_A); 866 postfork = 1;
685} 867}
686 868
687#endif 869#endif
688 870
689#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 872struct ev_loop *
694#else 873#else
695static int default_loop;
696
697int 874int
698#endif 875#endif
699ev_default_loop (int methods) 876ev_default_loop (int methods)
700{ 877{
701 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
712 889
713 loop_init (EV_A_ methods); 890 loop_init (EV_A_ methods);
714 891
715 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
716 { 893 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 894 siginit (EV_A);
720 895
721#ifndef WIN32 896#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
737{ 912{
738#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 914 struct ev_loop *loop = default_loop;
740#endif 915#endif
741 916
917#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 918 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 919 ev_signal_stop (EV_A_ &childev);
920#endif
744 921
745 ev_ref (EV_A); /* signal watcher */ 922 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 923 ev_io_stop (EV_A_ &sigev);
747 924
748 close (sigpipe [0]); sigpipe [0] = 0; 925 close (sigpipe [0]); sigpipe [0] = 0;
756{ 933{
757#if EV_MULTIPLICITY 934#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 935 struct ev_loop *loop = default_loop;
759#endif 936#endif
760 937
761 loop_fork (EV_A); 938 if (method)
762 939 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 940}
771 941
772/*****************************************************************************/ 942/*****************************************************************************/
943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
773 955
774static void 956static void
775call_pending (EV_P) 957call_pending (EV_P)
776{ 958{
777 int pri; 959 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 965
784 if (p->w) 966 if (p->w)
785 { 967 {
786 p->w->pending = 0; 968 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
788 } 970 }
789 } 971 }
790} 972}
791 973
792static void 974static void
793timers_reify (EV_P) 975timers_reify (EV_P)
794{ 976{
795 while (timercnt && timers [0]->at <= mn_now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 978 {
797 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
980
981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
798 982
799 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
800 if (w->repeat) 984 if (w->repeat)
801 { 985 {
802 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
803 w->at = mn_now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
804 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
805 } 989 }
806 else 990 else
807 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
808 992
809 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
810 } 994 }
811} 995}
812 996
813static void 997static void
814periodics_reify (EV_P) 998periodics_reify (EV_P)
815{ 999{
816 while (periodiccnt && periodics [0]->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
817 { 1001 {
818 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
819 1003
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005
820 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
821 if (w->interval) 1007 if (w->reschedule_cb)
822 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
823 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
824 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
825 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
826 } 1019 }
827 else 1020 else
828 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
829 1022
830 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
831 } 1024 }
832} 1025}
833 1026
834static void 1027static void
835periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
839 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
840 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
841 { 1034 {
842 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
843 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
844 if (w->interval) 1039 else if (w->interval)
845 {
846 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
847
848 if (fabs (diff) >= 1e-4)
849 {
850 ev_periodic_stop (EV_A_ w);
851 ev_periodic_start (EV_A_ w);
852
853 i = 0; /* restart loop, inefficient, but time jumps should be rare */
854 }
855 }
856 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
857} 1046}
858 1047
859inline int 1048inline int
860time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
861{ 1050{
862 mn_now = get_clock (); 1051 mn_now = get_clock ();
863 1052
864 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
865 { 1054 {
866 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
867 return 0; 1056 return 0;
868 } 1057 }
869 else 1058 else
870 { 1059 {
871 now_floor = mn_now; 1060 now_floor = mn_now;
872 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
873 return 1; 1062 return 1;
874 } 1063 }
875} 1064}
876 1065
877static void 1066static void
886 { 1075 {
887 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
888 1077
889 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
890 { 1079 {
891 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
892 1081
893 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
894 return; /* all is well */ 1083 return; /* all is well */
895 1084
896 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
897 mn_now = get_clock (); 1086 mn_now = get_clock ();
898 now_floor = mn_now; 1087 now_floor = mn_now;
899 } 1088 }
900 1089
901 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
904 } 1093 }
905 } 1094 }
906 else 1095 else
907#endif 1096#endif
908 { 1097 {
909 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
910 1099
911 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
912 { 1101 {
913 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
914 1103
915 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
916 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
917 timers [i]->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
918 } 1107 }
919 1108
920 mn_now = rt_now; 1109 mn_now = ev_rt_now;
921 } 1110 }
922} 1111}
923 1112
924void 1113void
925ev_ref (EV_P) 1114ev_ref (EV_P)
948 { 1137 {
949 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
950 call_pending (EV_A); 1139 call_pending (EV_A);
951 } 1140 }
952 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
953 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
954 fd_reify (EV_A); 1147 fd_reify (EV_A);
955 1148
956 /* calculate blocking time */ 1149 /* calculate blocking time */
957 1150
958 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
959 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
960#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
961 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
962 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
963 else 1156 else
964#endif 1157#endif
965 { 1158 {
966 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
967 mn_now = rt_now; 1160 mn_now = ev_rt_now;
968 } 1161 }
969 1162
970 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
971 block = 0.; 1164 block = 0.;
972 else 1165 else
973 { 1166 {
974 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
975 1168
976 if (timercnt) 1169 if (timercnt)
977 { 1170 {
978 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
979 if (block > to) block = to; 1172 if (block > to) block = to;
980 } 1173 }
981 1174
982 if (periodiccnt) 1175 if (periodiccnt)
983 { 1176 {
984 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
985 if (block > to) block = to; 1178 if (block > to) block = to;
986 } 1179 }
987 1180
988 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
989 } 1182 }
990 1183
991 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
992 1185
993 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
994 time_update (EV_A); 1187 time_update (EV_A);
995 1188
996 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
997 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
998 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
999 1192
1000 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
1001 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
1002 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1003 1196
1004 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
1005 if (checkcnt) 1198 if (checkcnt)
1006 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1081 return; 1274 return;
1082 1275
1083 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1084 1277
1085 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1086 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1087 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1088 1281
1089 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1090} 1283}
1091 1284
1106ev_timer_start (EV_P_ struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
1107{ 1300{
1108 if (ev_is_active (w)) 1301 if (ev_is_active (w))
1109 return; 1302 return;
1110 1303
1111 w->at += mn_now; 1304 ((WT)w)->at += mn_now;
1112 1305
1113 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1114 1307
1115 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1116 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1117 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1118 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1119} 1314}
1120 1315
1121void 1316void
1122ev_timer_stop (EV_P_ struct ev_timer *w) 1317ev_timer_stop (EV_P_ struct ev_timer *w)
1123{ 1318{
1124 ev_clear_pending (EV_A_ (W)w); 1319 ev_clear_pending (EV_A_ (W)w);
1125 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
1126 return; 1321 return;
1127 1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
1128 if (w->active < timercnt--) 1325 if (((W)w)->active < timercnt--)
1129 { 1326 {
1130 timers [w->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
1131 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1132 } 1329 }
1133 1330
1134 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
1135 1332
1136 ev_stop (EV_A_ (W)w); 1333 ev_stop (EV_A_ (W)w);
1137} 1334}
1138 1335
1139void 1336void
1140ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1141{ 1338{
1142 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1143 { 1340 {
1144 if (w->repeat) 1341 if (w->repeat)
1145 {
1146 w->at = mn_now + w->repeat;
1147 downheap ((WT *)timers, timercnt, w->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1148 }
1149 else 1343 else
1150 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1151 } 1345 }
1152 else if (w->repeat) 1346 else if (w->repeat)
1153 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1157ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1158{ 1352{
1159 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1160 return; 1354 return;
1161 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1162 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1163
1164 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1165 if (w->interval)
1166 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1167 1364
1168 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1169 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1170 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1171 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1369
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1172} 1371}
1173 1372
1174void 1373void
1175ev_periodic_stop (EV_P_ struct ev_periodic *w) 1374ev_periodic_stop (EV_P_ struct ev_periodic *w)
1176{ 1375{
1177 ev_clear_pending (EV_A_ (W)w); 1376 ev_clear_pending (EV_A_ (W)w);
1178 if (!ev_is_active (w)) 1377 if (!ev_is_active (w))
1179 return; 1378 return;
1180 1379
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381
1181 if (w->active < periodiccnt--) 1382 if (((W)w)->active < periodiccnt--)
1182 { 1383 {
1183 periodics [w->active - 1] = periodics [periodiccnt]; 1384 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1184 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1185 } 1386 }
1186 1387
1187 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1188} 1389}
1189 1390
1190void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1191ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1192{ 1401{
1193 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1194 return; 1403 return;
1195 1404
1196 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1197 array_needsize (idles, idlemax, idlecnt, ); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1198 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1199} 1408}
1200 1409
1201void 1410void
1202ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1203{ 1412{
1204 ev_clear_pending (EV_A_ (W)w); 1413 ev_clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 1414 if (ev_is_active (w))
1206 return; 1415 return;
1207 1416
1208 idles [w->active - 1] = idles [--idlecnt]; 1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1209 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1210} 1419}
1211 1420
1212void 1421void
1213ev_prepare_start (EV_P_ struct ev_prepare *w) 1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1214{ 1423{
1215 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1216 return; 1425 return;
1217 1426
1218 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1219 array_needsize (prepares, preparemax, preparecnt, ); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1220 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1221} 1430}
1222 1431
1223void 1432void
1224ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1225{ 1434{
1226 ev_clear_pending (EV_A_ (W)w); 1435 ev_clear_pending (EV_A_ (W)w);
1227 if (ev_is_active (w)) 1436 if (ev_is_active (w))
1228 return; 1437 return;
1229 1438
1230 prepares [w->active - 1] = prepares [--preparecnt]; 1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1231 ev_stop (EV_A_ (W)w); 1440 ev_stop (EV_A_ (W)w);
1232} 1441}
1233 1442
1234void 1443void
1235ev_check_start (EV_P_ struct ev_check *w) 1444ev_check_start (EV_P_ struct ev_check *w)
1236{ 1445{
1237 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1238 return; 1447 return;
1239 1448
1240 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1241 array_needsize (checks, checkmax, checkcnt, ); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1242 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1243} 1452}
1244 1453
1245void 1454void
1246ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1247{ 1456{
1248 ev_clear_pending (EV_A_ (W)w); 1457 ev_clear_pending (EV_A_ (W)w);
1249 if (ev_is_active (w)) 1458 if (ev_is_active (w))
1250 return; 1459 return;
1251 1460
1252 checks [w->active - 1] = checks [--checkcnt]; 1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1253 ev_stop (EV_A_ (W)w); 1462 ev_stop (EV_A_ (W)w);
1254} 1463}
1255 1464
1256#ifndef SA_RESTART 1465#ifndef SA_RESTART
1257# define SA_RESTART 0 1466# define SA_RESTART 0
1267 return; 1476 return;
1268 1477
1269 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1270 1479
1271 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1272 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1273 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1274 1483
1275 if (!w->next) 1484 if (!((WL)w)->next)
1276 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
1277 struct sigaction sa; 1489 struct sigaction sa;
1278 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
1279 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
1280 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1281 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
1282 } 1495 }
1283} 1496}
1284 1497
1285void 1498void
1286ev_signal_stop (EV_P_ struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
1336 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1337 void *arg = once->arg; 1550 void *arg = once->arg;
1338 1551
1339 ev_io_stop (EV_A_ &once->io); 1552 ev_io_stop (EV_A_ &once->io);
1340 ev_timer_stop (EV_A_ &once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1341 free (once); 1554 ev_free (once);
1342 1555
1343 cb (revents, arg); 1556 cb (revents, arg);
1344} 1557}
1345 1558
1346static void 1559static void
1356} 1569}
1357 1570
1358void 1571void
1359ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1360{ 1573{
1361 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1362 1575
1363 if (!once) 1576 if (!once)
1364 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1365 else 1578 else
1366 { 1579 {
1367 once->cb = cb; 1580 once->cb = cb;
1368 once->arg = arg; 1581 once->arg = arg;
1369 1582
1370 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1371 if (fd >= 0) 1584 if (fd >= 0)
1372 { 1585 {
1373 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1374 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1375 } 1588 }
1376 1589
1377 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1378 if (timeout >= 0.) 1591 if (timeout >= 0.)
1379 { 1592 {
1380 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1381 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1382 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines