ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.12 by root, Wed Oct 31 09:23:17 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
14#define HAVE_EPOLL 1 75/**/
15 76
16#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
17# ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
18# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
19# endif 106#endif
20#endif
21 107
22#ifndef HAVE_SELECT
23# define HAVE_SELECT 1
24#endif
25
26#ifndef HAVE_EPOLL
27# define HAVE_EPOLL 0
28#endif
29
30#ifndef HAVE_REALTIME 108#ifndef CLOCK_REALTIME
31# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
32#endif 111#endif
112
113/**/
33 114
34#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
35#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
36 119
37#include "ev.h" 120#include "ev.h"
38 121
39struct ev_watcher { 122#if __GNUC__ >= 3
40 EV_WATCHER (ev_watcher); 123# define expect(expr,value) __builtin_expect ((expr),(value))
41}; 124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
42 129
43struct ev_watcher_list { 130#define expect_false(expr) expect ((expr) != 0, 0)
44 EV_WATCHER_LIST (ev_watcher_list); 131#define expect_true(expr) expect ((expr) != 0, 1)
45};
46 132
47struct ev_watcher_time { 133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
48 EV_WATCHER_TIME (ev_watcher_time); 134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
49};
50 135
51typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
52typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
53typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
54 139
55static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
56ev_tstamp ev_now;
57int ev_method;
58
59static int have_monotonic; /* runtime */
60
61static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
62static void (*method_modify)(int fd, int oev, int nev);
63static void (*method_poll)(ev_tstamp timeout);
64 141
65/*****************************************************************************/ 142/*****************************************************************************/
66 143
67ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
68ev_time (void) 178ev_time (void)
69{ 179{
70#if HAVE_REALTIME 180#if EV_USE_REALTIME
71 struct timespec ts; 181 struct timespec ts;
72 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
73 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
74#else 184#else
75 struct timeval tv; 185 struct timeval tv;
76 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
77 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
78#endif 188#endif
79} 189}
80 190
81static ev_tstamp 191inline ev_tstamp
82get_clock (void) 192get_clock (void)
83{ 193{
84#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
85 if (have_monotonic) 195 if (expect_true (have_monotonic))
86 { 196 {
87 struct timespec ts; 197 struct timespec ts;
88 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
89 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
90 } 200 }
91#endif 201#endif
92 202
93 return ev_time (); 203 return ev_time ();
94} 204}
95 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
96#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
97 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
98 { \ 216 { \
99 int newcnt = cur ? cur << 1 : 16; \ 217 int newcnt = cur; \
100 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
101 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
102 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
103 cur = newcnt; \ 226 cur = newcnt; \
104 } 227 }
105 228
106/*****************************************************************************/ 229/*****************************************************************************/
107 230
108typedef struct
109{
110 struct ev_io *head;
111 unsigned char wev, rev; /* want, received event set */
112} ANFD;
113
114static ANFD *anfds;
115static int anfdmax;
116
117static int *fdchanges;
118static int fdchangemax, fdchangecnt;
119
120static void 231static void
121anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
122{ 233{
123 while (count--) 234 while (count--)
124 { 235 {
125 base->head = 0; 236 base->head = 0;
126 base->wev = base->rev = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
127 ++base; 240 ++base;
128 } 241 }
129} 242}
130 243
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137static ANPENDING *pendings;
138static int pendingmax, pendingcnt;
139
140static void 244static void
141event (W w, int events) 245event (EV_P_ W w, int events)
142{ 246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
143 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
144 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
145 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
146 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
147} 257}
148 258
149static void 259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
150fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
151{ 270{
152 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
153 struct ev_io *w; 272 struct ev_io *w;
154 273
155 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
156 { 275 {
157 int ev = w->events & events; 276 int ev = w->events & events;
158 277
159 if (ev) 278 if (ev)
160 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
161 } 280 }
162} 281}
163 282
283/*****************************************************************************/
284
164static void 285static void
165queue_events (W *events, int eventcnt, int type) 286fd_reify (EV_P)
166{ 287{
167 int i; 288 int i;
168 289
169 for (i = 0; i < eventcnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
170 event (events [i], type); 291 {
292 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295
296 int events = 0;
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events;
307 }
308 }
309
310 fdchangecnt = 0;
311}
312
313static void
314fd_change (EV_P_ int fd)
315{
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324}
325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
338/* called on EBADF to verify fds */
339static void
340fd_ebadf (EV_P)
341{
342 int fd;
343
344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
358 {
359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
171} 378}
172 379
173/*****************************************************************************/ 380/*****************************************************************************/
174 381
175static struct ev_timer **timers;
176static int timermax, timercnt;
177
178static struct ev_periodic **periodics;
179static int periodicmax, periodiccnt;
180
181static void 382static void
182upheap (WT *timers, int k) 383upheap (WT *heap, int k)
183{ 384{
184 WT w = timers [k]; 385 WT w = heap [k];
185 386
186 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
187 { 388 {
188 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
189 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
190 k >>= 1; 391 k >>= 1;
191 } 392 }
192 393
193 timers [k] = w; 394 heap [k] = w;
194 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
195 396
196} 397}
197 398
198static void 399static void
199downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
200{ 401{
201 WT w = timers [k]; 402 WT w = heap [k];
202 403
203 while (k < (N >> 1)) 404 while (k < (N >> 1))
204 { 405 {
205 int j = k << 1; 406 int j = k << 1;
206 407
207 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
208 ++j; 409 ++j;
209 410
210 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
211 break; 412 break;
212 413
213 timers [k] = timers [j]; 414 heap [k] = heap [j];
214 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
215 k = j; 416 k = j;
216 } 417 }
217 418
218 timers [k] = w; 419 heap [k] = w;
219 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
220} 421}
221 422
222/*****************************************************************************/ 423/*****************************************************************************/
223 424
224typedef struct 425typedef struct
225{ 426{
226 struct ev_signal *head; 427 struct ev_watcher_list *head;
227 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
228} ANSIG; 429} ANSIG;
229 430
230static ANSIG *signals; 431static ANSIG *signals;
231static int signalmax; 432static int signalmax;
232 433
233static int sigpipe [2]; 434static int sigpipe [2];
234static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
235static struct ev_io sigev; 436static struct ev_io sigev;
236 437
237static void 438static void
238signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
239{ 440{
240 while (count--) 441 while (count--)
241 { 442 {
242 base->head = 0; 443 base->head = 0;
243 base->gotsig = 0; 444 base->gotsig = 0;
445
244 ++base; 446 ++base;
245 } 447 }
246} 448}
247 449
248static void 450static void
250{ 452{
251 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
252 454
253 if (!gotsig) 455 if (!gotsig)
254 { 456 {
457 int old_errno = errno;
255 gotsig = 1; 458 gotsig = 1;
256 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
257 } 461 }
258} 462}
259 463
260static void 464static void
261sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
262{ 466{
263 struct ev_signal *w; 467 struct ev_watcher_list *w;
264 int sig; 468 int signum;
265 469
470 read (sigpipe [0], &revents, 1);
266 gotsig = 0; 471 gotsig = 0;
267 read (sigpipe [0], &revents, 1);
268 472
269 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
270 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
271 { 475 {
272 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
273 477
274 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
275 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
276 } 480 }
277} 481}
278 482
279static void 483static void
280siginit (void) 484siginit (EV_P)
281{ 485{
486#ifndef WIN32
282 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
283 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
284 489
285 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
286 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
287 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
288 494
289 evio_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
290 evio_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
291} 498}
292 499
293/*****************************************************************************/ 500/*****************************************************************************/
294 501
295static struct ev_idle **idles; 502#ifndef WIN32
296static int idlemax, idlecnt;
297 503
298static struct ev_check **checks; 504static struct ev_child *childs [PID_HASHSIZE];
299static int checkmax, checkcnt; 505static struct ev_signal childev;
506
507#ifndef WCONTINUED
508# define WCONTINUED 0
509#endif
510
511static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539}
540
541#endif
300 542
301/*****************************************************************************/ 543/*****************************************************************************/
302 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
303#if HAVE_EPOLL 548#if EV_USE_EPOLL
304# include "ev_epoll.c" 549# include "ev_epoll.c"
305#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
306#if HAVE_SELECT 554#if EV_USE_SELECT
307# include "ev_select.c" 555# include "ev_select.c"
308#endif 556#endif
309 557
310int ev_init (int flags) 558int
559ev_version_major (void)
311{ 560{
561 return EV_VERSION_MAJOR;
562}
563
564int
565ev_version_minor (void)
566{
567 return EV_VERSION_MINOR;
568}
569
570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
312#if HAVE_MONOTONIC 593#if EV_USE_MONOTONIC
313 { 594 {
314 struct timespec ts; 595 struct timespec ts;
315 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
316 have_monotonic = 1; 597 have_monotonic = 1;
317 } 598 }
318#endif 599#endif
319 600
320 ev_now = ev_time (); 601 rt_now = ev_time ();
321 now = get_clock (); 602 mn_now = get_clock ();
322 diff = ev_now - now; 603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
323 605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
324 if (pipe (sigpipe)) 702 if (pipe (sigpipe))
325 return 0; 703 return 0;
326 704
327 ev_method = EVMETHOD_NONE; 705 if (!default_loop)
328#if HAVE_EPOLL
329 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
330#endif
331#if HAVE_SELECT
332 if (ev_method == EVMETHOD_NONE) select_init (flags);
333#endif
334
335 if (ev_method)
336 { 706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
716 {
337 evw_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
338 siginit (); 719 siginit (EV_A);
339 }
340 720
341 return ev_method; 721#ifndef WIN32
342} 722 ev_signal_init (&childev, childcb, SIGCHLD);
343 723 ev_set_priority (&childev, EV_MAXPRI);
344/*****************************************************************************/ 724 ev_signal_start (EV_A_ &childev);
345 725 ev_unref (EV_A); /* child watcher should not keep loop alive */
346void ev_prefork (void)
347{
348 /* nop */
349}
350
351void ev_postfork_parent (void)
352{
353 /* nop */
354}
355
356void ev_postfork_child (void)
357{
358#if HAVE_EPOLL
359 if (ev_method == EVMETHOD_EPOLL)
360 epoll_postfork_child ();
361#endif 726#endif
727 }
728 else
729 default_loop = 0;
730 }
362 731
732 return default_loop;
733}
734
735void
736ev_default_destroy (void)
737{
738#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
363 evio_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
364 close (sigpipe [0]); 764 close (sigpipe [0]);
365 close (sigpipe [1]); 765 close (sigpipe [1]);
366 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
367 siginit (); 769 siginit (EV_A);
368} 770}
369 771
370/*****************************************************************************/ 772/*****************************************************************************/
371 773
372static void 774static void
373fd_reify (void) 775call_pending (EV_P)
374{ 776{
375 int i; 777 int pri;
376 778
377 for (i = 0; i < fdchangecnt; ++i) 779 for (pri = NUMPRI; pri--; )
378 { 780 while (pendingcnt [pri])
379 int fd = fdchanges [i];
380 ANFD *anfd = anfds + fd;
381 struct ev_io *w;
382
383 int wev = 0;
384
385 for (w = anfd->head; w; w = w->next)
386 wev |= w->events;
387
388 if (anfd->wev != wev)
389 { 781 {
390 method_modify (fd, anfd->wev, wev); 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
391 anfd->wev = wev;
392 }
393 }
394 783
395 fdchangecnt = 0;
396}
397
398static void
399call_pending ()
400{
401 int i;
402
403 for (i = 0; i < pendingcnt; ++i)
404 {
405 ANPENDING *p = pendings + i;
406
407 if (p->w) 784 if (p->w)
408 { 785 {
409 p->w->pending = 0; 786 p->w->pending = 0;
410 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
411 } 788 }
412 } 789 }
413
414 pendingcnt = 0;
415} 790}
416 791
417static void 792static void
418timers_reify () 793timers_reify (EV_P)
419{ 794{
420 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
421 { 796 {
422 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
423 800
424 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
425 if (w->repeat) 802 if (w->repeat)
426 { 803 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
427 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
428 assert (("timer timeout in the past, negative repeat?", w->at > now));
429 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
430 } 807 }
431 else 808 else
432 evtimer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
433 810
434 event ((W)w, EV_TIMEOUT); 811 event (EV_A_ (W)w, EV_TIMEOUT);
435 } 812 }
436} 813}
437 814
438static void 815static void
439periodics_reify () 816periodics_reify (EV_P)
440{ 817{
441 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
442 { 819 {
443 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
444 823
445 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
446 if (w->interval) 825 if (w->interval)
447 { 826 {
448 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
449 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
450 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
451 } 830 }
452 else 831 else
453 evperiodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
454 833
455 event ((W)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
456 } 835 }
457} 836}
458 837
459static void 838static void
460time_jump (ev_tstamp diff) 839periodics_reschedule (EV_P)
461{ 840{
462 int i; 841 int i;
463 842
464 /* adjust periodics */ 843 /* adjust periodics after time jump */
465 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
466 { 845 {
467 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
468 847
469 if (w->interval) 848 if (w->interval)
470 { 849 {
471 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
472 851
473 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
474 { 853 {
475 evperiodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
476 evperiodic_start (w); 855 ev_periodic_start (EV_A_ w);
477 856
478 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
479 } 858 }
480 } 859 }
481 } 860 }
482
483 /* adjust timers. this is easy, as the offset is the same for all */
484 for (i = 0; i < timercnt; ++i)
485 timers [i]->at += diff;
486} 861}
487 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
488static void 881static void
489time_update () 882time_update (EV_P)
490{ 883{
491 int i; 884 int i;
492 885
493 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
494
495 if (have_monotonic) 887 if (expect_true (have_monotonic))
496 { 888 {
497 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
498
499 for (i = 4; --i; ) /* loop a few times, before making important decisions */
500 { 890 {
501 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
502 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
503 896
504 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
505 return; /* all is well */ 898 return; /* all is well */
506 899
507 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
508 } 908 }
509
510 time_jump (diff - odiff);
511 } 909 }
512 else 910 else
911#endif
513 { 912 {
514 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
515 time_jump (ev_now - now);
516 914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 {
917 periodics_reschedule (EV_A);
918
919 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now;
922 }
923
517 now = ev_now; 924 mn_now = rt_now;
518 } 925 }
519} 926}
520 927
521int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
522 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
523void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
524{ 944{
525 double block; 945 double block;
526 ev_loop_done = flags & EVLOOP_ONESHOT; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
527
528 if (checkcnt)
529 {
530 queue_events ((W *)checks, checkcnt, EV_CHECK);
531 call_pending ();
532 }
533 947
534 do 948 do
535 { 949 {
950 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt))
952 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A);
955 }
956
536 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
537 fd_reify (); 958 fd_reify (EV_A);
538 959
539 /* calculate blocking time */ 960 /* calculate blocking time */
540 961
541 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 962 /* we only need this for !monotonic clockor timers, but as we basically
963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
542 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
543 973
544 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
545 block = 0.; 975 block = 0.;
546 else 976 else
547 { 977 {
548 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
549 979
550 if (timercnt) 980 if (timercnt)
551 { 981 {
552 ev_tstamp to = timers [0]->at - get_clock () + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
553 if (block > to) block = to; 983 if (block > to) block = to;
554 } 984 }
555 985
556 if (periodiccnt) 986 if (periodiccnt)
557 { 987 {
558 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
559 if (block > to) block = to; 989 if (block > to) block = to;
560 } 990 }
561 991
562 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
563 } 993 }
564 994
565 method_poll (block); 995 method_poll (EV_A_ block);
566 996
567 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
568 time_update (); 998 time_update (EV_A);
569 999
570 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */
571 periodics_reify (); /* absolute timers first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
572 timers_reify (); /* relative timers second */
573 1003
574 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
575 if (!pendingcnt) 1005 if (!pendingcnt)
576 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
577 1007
578 /* queue check and possibly idle watchers */ 1008 /* queue check watchers, to be executed first */
1009 if (checkcnt)
579 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
580 1011
581 call_pending (); 1012 call_pending (EV_A);
582 } 1013 }
583 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
1015
1016 if (loop_done != 2)
1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
584} 1024}
585 1025
586/*****************************************************************************/ 1026/*****************************************************************************/
587 1027
588static void 1028inline void
589wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
590{ 1030{
591 elem->next = *head; 1031 elem->next = *head;
592 *head = elem; 1032 *head = elem;
593} 1033}
594 1034
595static void 1035inline void
596wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
597{ 1037{
598 while (*head) 1038 while (*head)
599 { 1039 {
600 if (*head == elem) 1040 if (*head == elem)
605 1045
606 head = &(*head)->next; 1046 head = &(*head)->next;
607 } 1047 }
608} 1048}
609 1049
610static void 1050inline void
1051ev_clear_pending (EV_P_ W w)
1052{
1053 if (w->pending)
1054 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1056 w->pending = 0;
1057 }
1058}
1059
1060inline void
611ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
612{ 1062{
613 w->pending = 0; 1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
614 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
615} 1068}
616 1069
617static void 1070inline void
618ev_stop (W w) 1071ev_stop (EV_P_ W w)
619{ 1072{
620 if (w->pending) 1073 ev_unref (EV_A);
621 pendings [w->pending - 1].w = 0;
622
623 w->active = 0; 1074 w->active = 0;
624} 1075}
625 1076
626/*****************************************************************************/ 1077/*****************************************************************************/
627 1078
628void 1079void
629evio_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
630{ 1081{
1082 int fd = w->fd;
1083
631 if (ev_is_active (w)) 1084 if (ev_is_active (w))
632 return; 1085 return;
633 1086
634 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
635 1088
636 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
637 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
638 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
639 1092
640 ++fdchangecnt; 1093 fd_change (EV_A_ fd);
641 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
642 fdchanges [fdchangecnt - 1] = fd;
643} 1094}
644 1095
645void 1096void
646evio_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
647{ 1098{
1099 ev_clear_pending (EV_A_ (W)w);
648 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
649 return; 1101 return;
650 1102
651 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
652 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
653 1105
654 ++fdchangecnt; 1106 fd_change (EV_A_ w->fd);
655 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
656 fdchanges [fdchangecnt - 1] = w->fd;
657} 1107}
658 1108
659
660void 1109void
661evtimer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
662{ 1111{
663 if (ev_is_active (w)) 1112 if (ev_is_active (w))
664 return; 1113 return;
665 1114
666 w->at += now; 1115 w->at += mn_now;
667 1116
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118
668 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
669 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
670 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
671 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
672} 1123}
673 1124
674void 1125void
675evtimer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
676{ 1127{
1128 ev_clear_pending (EV_A_ (W)w);
677 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
678 return; 1130 return;
679 1131
680 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
681 { 1133 {
682 timers [w->active - 1] = timers [timercnt]; 1134 timers [w->active - 1] = timers [timercnt];
683 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
684 } 1136 }
685 1137
1138 w->at = w->repeat;
1139
686 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
687} 1141}
688 1142
689void 1143void
690evperiodic_start (struct ev_periodic *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
691{ 1145{
692 if (ev_is_active (w)) 1146 if (ev_is_active (w))
1147 {
1148 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1);
1152 }
1153 else
1154 ev_timer_stop (EV_A_ w);
1155 }
1156 else if (w->repeat)
1157 ev_timer_start (EV_A_ w);
1158}
1159
1160void
1161ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{
1163 if (ev_is_active (w))
693 return; 1164 return;
1165
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
694 1167
695 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
696 if (w->interval) 1169 if (w->interval)
697 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
698 1171
699 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
700 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
701 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
702 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
703} 1176}
704 1177
705void 1178void
706evperiodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
707{ 1180{
1181 ev_clear_pending (EV_A_ (W)w);
708 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
709 return; 1183 return;
710 1184
711 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
712 { 1186 {
713 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
714 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
715 } 1189 }
716 1190
717 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
718} 1192}
719 1193
720void 1194void
721evsignal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
722{ 1196{
723 if (ev_is_active (w)) 1197 if (ev_is_active (w))
724 return; 1198 return;
725 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
726 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
727 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
728 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
729 1278
730 if (!w->next) 1279 if (!w->next)
731 { 1280 {
732 struct sigaction sa; 1281 struct sigaction sa;
733 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
734 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
735 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
736 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
737 } 1286 }
738} 1287}
739 1288
740void 1289void
741evsignal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
742{ 1291{
1292 ev_clear_pending (EV_A_ (W)w);
743 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
744 return; 1294 return;
745 1295
746 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
747 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
748 1298
749 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
750 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
751} 1301}
752 1302
753void evidle_start (struct ev_idle *w) 1303void
1304ev_child_start (EV_P_ struct ev_child *w)
754{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
755 if (ev_is_active (w)) 1309 if (ev_is_active (w))
756 return; 1310 return;
757 1311
758 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
759 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
760 idles [idlecnt - 1] = w;
761} 1314}
762 1315
763void evidle_stop (struct ev_idle *w) 1316void
1317ev_child_stop (EV_P_ struct ev_child *w)
764{ 1318{
765 idles [w->active - 1] = idles [--idlecnt]; 1319 ev_clear_pending (EV_A_ (W)w);
766 ev_stop ((W)w);
767}
768
769void evcheck_start (struct ev_check *w)
770{
771 if (ev_is_active (w)) 1320 if (ev_is_active (w))
772 return; 1321 return;
773 1322
774 ev_start ((W)w, ++checkcnt); 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
775 array_needsize (checks, checkmax, checkcnt, );
776 checks [checkcnt - 1] = w;
777}
778
779void evcheck_stop (struct ev_check *w)
780{
781 checks [w->active - 1] = checks [--checkcnt];
782 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
783} 1325}
784 1326
785/*****************************************************************************/ 1327/*****************************************************************************/
786 1328
787#if 1 1329struct ev_once
788 1330{
789struct ev_io wio; 1331 struct ev_io io;
790
791static void
792sin_cb (struct ev_io *w, int revents)
793{
794 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
795}
796
797static void
798ocb (struct ev_timer *w, int revents)
799{
800 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
801 evtimer_stop (w);
802 evtimer_start (w);
803}
804
805static void
806scb (struct ev_signal *w, int revents)
807{
808 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
809 evio_stop (&wio);
810 evio_start (&wio);
811}
812
813static void
814gcb (struct ev_signal *w, int revents)
815{
816 fprintf (stderr, "generic %x\n", revents);
817
818}
819
820int main (void)
821{
822 ev_init (0);
823
824 evio_init (&wio, sin_cb, 0, EV_READ);
825 evio_start (&wio);
826
827 struct ev_timer t[10000];
828
829#if 0
830 int i;
831 for (i = 0; i < 10000; ++i)
832 {
833 struct ev_timer *w = t + i;
834 evw_init (w, ocb, i);
835 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
836 evtimer_start (w);
837 if (drand48 () < 0.5)
838 evtimer_stop (w);
839 }
840#endif
841
842 struct ev_timer t1; 1332 struct ev_timer to;
843 evtimer_init (&t1, ocb, 5, 10); 1333 void (*cb)(int revents, void *arg);
844 evtimer_start (&t1); 1334 void *arg;
1335};
845 1336
846 struct ev_signal sig; 1337static void
847 evsignal_init (&sig, scb, SIGQUIT); 1338once_cb (EV_P_ struct ev_once *once, int revents)
848 evsignal_start (&sig); 1339{
1340 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg;
849 1342
850 struct ev_check cw; 1343 ev_io_stop (EV_A_ &once->io);
851 evcheck_init (&cw, gcb); 1344 ev_timer_stop (EV_A_ &once->to);
852 evcheck_start (&cw); 1345 free (once);
853 1346
854 struct ev_idle iw; 1347 cb (revents, arg);
855 evidle_init (&iw, gcb);
856 evidle_start (&iw);
857
858 ev_loop (0);
859
860 return 0;
861} 1348}
862 1349
863#endif 1350static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents)
1352{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1354}
864 1355
1356static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1358{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1360}
865 1361
1362void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{
1365 struct ev_once *once = malloc (sizeof (struct ev_once));
866 1366
1367 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else
1370 {
1371 once->cb = cb;
1372 once->arg = arg;
867 1373
1374 ev_watcher_init (&once->io, once_cb_io);
1375 if (fd >= 0)
1376 {
1377 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io);
1379 }
1380
1381 ev_watcher_init (&once->to, once_cb_to);
1382 if (timeout >= 0.)
1383 {
1384 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to);
1386 }
1387 }
1388}
1389

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines