ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.121 by root, Fri Nov 16 10:37:28 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT)
65# define EV_USE_PORT 1
66# endif
67
55#endif 68#endif
56 69
57#include <math.h> 70#include <math.h>
58#include <stdlib.h> 71#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 72#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 73#include <stddef.h>
63 74
64#include <stdio.h> 75#include <stdio.h>
65 76
66#include <assert.h> 77#include <assert.h>
67#include <errno.h> 78#include <errno.h>
68#include <sys/types.h> 79#include <sys/types.h>
80#include <time.h>
81
82#include <signal.h>
83
69#ifndef WIN32 84#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h>
70# include <sys/wait.h> 87# include <sys/wait.h>
88#else
89# define WIN32_LEAN_AND_MEAN
90# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1
71#endif 93# endif
72#include <sys/time.h> 94#endif
73#include <time.h>
74 95
75/**/ 96/**/
76 97
77#ifndef EV_USE_MONOTONIC 98#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 99# define EV_USE_MONOTONIC 0
100#endif
101
102#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 0
79#endif 104#endif
80 105
81#ifndef EV_USE_SELECT 106#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 107# define EV_USE_SELECT 1
83#endif 108#endif
84 109
85#ifndef EV_USE_POLL 110#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 111# ifdef _WIN32
112# define EV_USE_POLL 0
113# else
114# define EV_USE_POLL 1
115# endif
87#endif 116#endif
88 117
89#ifndef EV_USE_EPOLL 118#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 119# define EV_USE_EPOLL 0
91#endif 120#endif
92 121
93#ifndef EV_USE_KQUEUE 122#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 123# define EV_USE_KQUEUE 0
95#endif 124#endif
96 125
97#ifndef EV_USE_REALTIME 126#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 127# define EV_USE_PORT 0
99#endif 128#endif
100 129
101/**/ 130/**/
131
132/* darwin simply cannot be helped */
133#ifdef __APPLE__
134# undef EV_USE_POLL
135# undef EV_USE_KQUEUE
136#endif
102 137
103#ifndef CLOCK_MONOTONIC 138#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 139# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 140# define EV_USE_MONOTONIC 0
106#endif 141#endif
108#ifndef CLOCK_REALTIME 143#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 144# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 145# define EV_USE_REALTIME 0
111#endif 146#endif
112 147
148#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h>
150#endif
151
113/**/ 152/**/
114 153
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 158
159#ifdef EV_H
160# include EV_H
161#else
120#include "ev.h" 162# include "ev.h"
163#endif
121 164
122#if __GNUC__ >= 3 165#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 166# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 167# define inline inline
125#else 168#else
131#define expect_true(expr) expect ((expr) != 0, 1) 174#define expect_true(expr) expect ((expr) != 0, 1)
132 175
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 177#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 178
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */
181
136typedef struct ev_watcher *W; 182typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 183typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 184typedef struct ev_watcher_time *WT;
139 185
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 187
188#ifdef _WIN32
189# include "ev_win32.c"
190#endif
191
142/*****************************************************************************/ 192/*****************************************************************************/
143 193
194static void (*syserr_cb)(const char *msg);
195
196void ev_set_syserr_cb (void (*cb)(const char *msg))
197{
198 syserr_cb = cb;
199}
200
201static void
202syserr (const char *msg)
203{
204 if (!msg)
205 msg = "(libev) system error";
206
207 if (syserr_cb)
208 syserr_cb (msg);
209 else
210 {
211 perror (msg);
212 abort ();
213 }
214}
215
216static void *(*alloc)(void *ptr, long size);
217
218void ev_set_allocator (void *(*cb)(void *ptr, long size))
219{
220 alloc = cb;
221}
222
223static void *
224ev_realloc (void *ptr, long size)
225{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
227
228 if (!ptr && size)
229 {
230 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
231 abort ();
232 }
233
234 return ptr;
235}
236
237#define ev_malloc(size) ev_realloc (0, (size))
238#define ev_free(ptr) ev_realloc ((ptr), 0)
239
240/*****************************************************************************/
241
144typedef struct 242typedef struct
145{ 243{
146 struct ev_watcher_list *head; 244 WL head;
147 unsigned char events; 245 unsigned char events;
148 unsigned char reify; 246 unsigned char reify;
247#if EV_SELECT_IS_WINSOCKET
248 SOCKET handle;
249#endif
149} ANFD; 250} ANFD;
150 251
151typedef struct 252typedef struct
152{ 253{
153 W w; 254 W w;
154 int events; 255 int events;
155} ANPENDING; 256} ANPENDING;
156 257
157#if EV_MULTIPLICITY 258#if EV_MULTIPLICITY
158 259
159struct ev_loop 260 struct ev_loop
160{ 261 {
262 ev_tstamp ev_rt_now;
263 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 264 #define VAR(name,decl) decl;
162# include "ev_vars.h" 265 #include "ev_vars.h"
163};
164# undef VAR 266 #undef VAR
267 };
165# include "ev_wrap.h" 268 #include "ev_wrap.h"
269
270 static struct ev_loop default_loop_struct;
271 struct ev_loop *ev_default_loop_ptr;
166 272
167#else 273#else
168 274
275 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 276 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 277 #include "ev_vars.h"
171# undef VAR 278 #undef VAR
279
280 static int ev_default_loop_ptr;
172 281
173#endif 282#endif
174 283
175/*****************************************************************************/ 284/*****************************************************************************/
176 285
177inline ev_tstamp 286ev_tstamp
178ev_time (void) 287ev_time (void)
179{ 288{
180#if EV_USE_REALTIME 289#if EV_USE_REALTIME
181 struct timespec ts; 290 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 291 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 310#endif
202 311
203 return ev_time (); 312 return ev_time ();
204} 313}
205 314
315#if EV_MULTIPLICITY
206ev_tstamp 316ev_tstamp
207ev_now (EV_P) 317ev_now (EV_P)
208{ 318{
209 return rt_now; 319 return ev_rt_now;
210} 320}
321#endif
211 322
212#define array_roundsize(base,n) ((n) | 4 & ~3) 323#define array_roundsize(type,n) (((n) | 4) & ~3)
213 324
214#define array_needsize(base,cur,cnt,init) \ 325#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 326 if (expect_false ((cnt) > cur)) \
216 { \ 327 { \
217 int newcnt = cur; \ 328 int newcnt = cur; \
218 do \ 329 do \
219 { \ 330 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 331 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 332 } \
222 while ((cnt) > newcnt); \ 333 while ((cnt) > newcnt); \
223 \ 334 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 336 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 337 cur = newcnt; \
227 } 338 }
339
340#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 }
347
348#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 350
229/*****************************************************************************/ 351/*****************************************************************************/
230 352
231static void 353static void
232anfds_init (ANFD *base, int count) 354anfds_init (ANFD *base, int count)
239 361
240 ++base; 362 ++base;
241 } 363 }
242} 364}
243 365
244static void 366void
245event (EV_P_ W w, int events) 367ev_feed_event (EV_P_ void *w, int revents)
246{ 368{
369 W w_ = (W)w;
370
247 if (w->pending) 371 if (w_->pending)
248 { 372 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 374 return;
251 } 375 }
252 376
253 w->pending = ++pendingcnt [ABSPRI (w)]; 377 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 381}
258 382
259static void 383static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 384queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 385{
262 int i; 386 int i;
263 387
264 for (i = 0; i < eventcnt; ++i) 388 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 389 ev_feed_event (EV_A_ events [i], type);
266} 390}
267 391
268static void 392inline void
269fd_event (EV_P_ int fd, int events) 393fd_event (EV_P_ int fd, int revents)
270{ 394{
271 ANFD *anfd = anfds + fd; 395 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 396 struct ev_io *w;
273 397
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 399 {
276 int ev = w->events & events; 400 int ev = w->events & revents;
277 401
278 if (ev) 402 if (ev)
279 event (EV_A_ (W)w, ev); 403 ev_feed_event (EV_A_ (W)w, ev);
280 } 404 }
405}
406
407void
408ev_feed_fd_event (EV_P_ int fd, int revents)
409{
410 fd_event (EV_A_ fd, revents);
281} 411}
282 412
283/*****************************************************************************/ 413/*****************************************************************************/
284 414
285static void 415static void
296 int events = 0; 426 int events = 0;
297 427
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 429 events |= w->events;
300 430
431#if EV_SELECT_IS_WINSOCKET
432 if (events)
433 {
434 unsigned long argp;
435 anfd->handle = _get_osfhandle (fd);
436 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
437 }
438#endif
439
301 anfd->reify = 0; 440 anfd->reify = 0;
302 441
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 442 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 443 anfd->events = events;
307 }
308 } 444 }
309 445
310 fdchangecnt = 0; 446 fdchangecnt = 0;
311} 447}
312 448
313static void 449static void
314fd_change (EV_P_ int fd) 450fd_change (EV_P_ int fd)
315{ 451{
316 if (anfds [fd].reify || fdchangecnt < 0) 452 if (anfds [fd].reify)
317 return; 453 return;
318 454
319 anfds [fd].reify = 1; 455 anfds [fd].reify = 1;
320 456
321 ++fdchangecnt; 457 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 459 fdchanges [fdchangecnt - 1] = fd;
324} 460}
325 461
326static void 462static void
327fd_kill (EV_P_ int fd) 463fd_kill (EV_P_ int fd)
329 struct ev_io *w; 465 struct ev_io *w;
330 466
331 while ((w = (struct ev_io *)anfds [fd].head)) 467 while ((w = (struct ev_io *)anfds [fd].head))
332 { 468 {
333 ev_io_stop (EV_A_ w); 469 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 471 }
472}
473
474static int
475fd_valid (int fd)
476{
477#ifdef _WIN32
478 return _get_osfhandle (fd) != -1;
479#else
480 return fcntl (fd, F_GETFD) != -1;
481#endif
336} 482}
337 483
338/* called on EBADF to verify fds */ 484/* called on EBADF to verify fds */
339static void 485static void
340fd_ebadf (EV_P) 486fd_ebadf (EV_P)
341{ 487{
342 int fd; 488 int fd;
343 489
344 for (fd = 0; fd < anfdmax; ++fd) 490 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 491 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 492 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 493 fd_kill (EV_A_ fd);
348} 494}
349 495
350/* called on ENOMEM in select/poll to kill some fds and retry */ 496/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 497static void
352fd_enomem (EV_P) 498fd_enomem (EV_P)
353{ 499{
354 int fd = anfdmax; 500 int fd;
355 501
356 while (fd--) 502 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 503 if (anfds [fd].events)
358 { 504 {
359 close (fd);
360 fd_kill (EV_A_ fd); 505 fd_kill (EV_A_ fd);
361 return; 506 return;
362 } 507 }
363} 508}
364 509
365/* susually called after fork if method needs to re-arm all fds from scratch */ 510/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 511static void
367fd_rearm_all (EV_P) 512fd_rearm_all (EV_P)
368{ 513{
369 int fd; 514 int fd;
370 515
385 WT w = heap [k]; 530 WT w = heap [k];
386 531
387 while (k && heap [k >> 1]->at > w->at) 532 while (k && heap [k >> 1]->at > w->at)
388 { 533 {
389 heap [k] = heap [k >> 1]; 534 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
391 k >>= 1; 536 k >>= 1;
392 } 537 }
393 538
394 heap [k] = w; 539 heap [k] = w;
395 heap [k]->active = k + 1; 540 ((W)heap [k])->active = k + 1;
396 541
397} 542}
398 543
399static void 544static void
400downheap (WT *heap, int N, int k) 545downheap (WT *heap, int N, int k)
410 555
411 if (w->at <= heap [j]->at) 556 if (w->at <= heap [j]->at)
412 break; 557 break;
413 558
414 heap [k] = heap [j]; 559 heap [k] = heap [j];
415 heap [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
416 k = j; 561 k = j;
417 } 562 }
418 563
419 heap [k] = w; 564 heap [k] = w;
420 heap [k]->active = k + 1; 565 ((W)heap [k])->active = k + 1;
566}
567
568inline void
569adjustheap (WT *heap, int N, int k)
570{
571 upheap (heap, k);
572 downheap (heap, N, k);
421} 573}
422 574
423/*****************************************************************************/ 575/*****************************************************************************/
424 576
425typedef struct 577typedef struct
426{ 578{
427 struct ev_watcher_list *head; 579 WL head;
428 sig_atomic_t volatile gotsig; 580 sig_atomic_t volatile gotsig;
429} ANSIG; 581} ANSIG;
430 582
431static ANSIG *signals; 583static ANSIG *signals;
432static int signalmax; 584static int signalmax;
448} 600}
449 601
450static void 602static void
451sighandler (int signum) 603sighandler (int signum)
452{ 604{
605#if _WIN32
606 signal (signum, sighandler);
607#endif
608
453 signals [signum - 1].gotsig = 1; 609 signals [signum - 1].gotsig = 1;
454 610
455 if (!gotsig) 611 if (!gotsig)
456 { 612 {
457 int old_errno = errno; 613 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 615 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 616 errno = old_errno;
461 } 617 }
462} 618}
463 619
620void
621ev_feed_signal_event (EV_P_ int signum)
622{
623 WL w;
624
625#if EV_MULTIPLICITY
626 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
627#endif
628
629 --signum;
630
631 if (signum < 0 || signum >= signalmax)
632 return;
633
634 signals [signum].gotsig = 0;
635
636 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638}
639
464static void 640static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 641sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 642{
467 struct ev_watcher_list *w;
468 int signum; 643 int signum;
469 644
470 read (sigpipe [0], &revents, 1); 645 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 646 gotsig = 0;
472 647
473 for (signum = signalmax; signum--; ) 648 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 649 if (signals [signum].gotsig)
475 { 650 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 651}
477 652
478 for (w = signals [signum].head; w; w = w->next) 653inline void
479 event (EV_A_ (W)w, EV_SIGNAL); 654fd_intern (int fd)
480 } 655{
656#ifdef _WIN32
657 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
659#else
660 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif
481} 663}
482 664
483static void 665static void
484siginit (EV_P) 666siginit (EV_P)
485{ 667{
486#ifndef WIN32 668 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 669 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 670
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 671 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 672 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 673 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 674}
499 675
500/*****************************************************************************/ 676/*****************************************************************************/
501 677
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 678static struct ev_child *childs [PID_HASHSIZE];
679
680#ifndef _WIN32
681
505static struct ev_signal childev; 682static struct ev_signal childev;
506 683
507#ifndef WCONTINUED 684#ifndef WCONTINUED
508# define WCONTINUED 0 685# define WCONTINUED 0
509#endif 686#endif
514 struct ev_child *w; 691 struct ev_child *w;
515 692
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 694 if (w->pid == pid || !w->pid)
518 { 695 {
519 w->priority = sw->priority; /* need to do it *now* */ 696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 697 w->rpid = pid;
521 w->rstatus = status; 698 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 700 }
524} 701}
525 702
526static void 703static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 704childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 706 int pid, status;
530 707
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 709 {
533 /* make sure we are called again until all childs have been reaped */ 710 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 712
536 child_reap (EV_A_ sw, pid, pid, status); 713 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 715 }
539} 716}
540 717
541#endif 718#endif
542 719
543/*****************************************************************************/ 720/*****************************************************************************/
544 721
722#if EV_USE_PORT
723# include "ev_port.c"
724#endif
545#if EV_USE_KQUEUE 725#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 726# include "ev_kqueue.c"
547#endif 727#endif
548#if EV_USE_EPOLL 728#if EV_USE_EPOLL
549# include "ev_epoll.c" 729# include "ev_epoll.c"
569 749
570/* return true if we are running with elevated privileges and should ignore env variables */ 750/* return true if we are running with elevated privileges and should ignore env variables */
571static int 751static int
572enable_secure (void) 752enable_secure (void)
573{ 753{
574#ifdef WIN32 754#ifdef _WIN32
575 return 0; 755 return 0;
576#else 756#else
577 return getuid () != geteuid () 757 return getuid () != geteuid ()
578 || getgid () != getegid (); 758 || getgid () != getegid ();
579#endif 759#endif
580} 760}
581 761
582int 762unsigned int
583ev_method (EV_P) 763ev_method (EV_P)
584{ 764{
585 return method; 765 return method;
586} 766}
587 767
588static void 768static void
589loop_init (EV_P_ int methods) 769loop_init (EV_P_ unsigned int flags)
590{ 770{
591 if (!method) 771 if (!method)
592 { 772 {
593#if EV_USE_MONOTONIC 773#if EV_USE_MONOTONIC
594 { 774 {
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 776 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 777 have_monotonic = 1;
598 } 778 }
599#endif 779#endif
600 780
601 rt_now = ev_time (); 781 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 782 mn_now = get_clock ();
603 now_floor = mn_now; 783 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 784 rtmn_diff = ev_rt_now - mn_now;
605 785
606 if (methods == EVMETHOD_AUTO) 786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 787 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else 788
610 methods = EVMETHOD_ANY; 789 if (!(flags & 0x0000ffff))
790 flags |= 0x0000ffff;
611 791
612 method = 0; 792 method = 0;
793#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags);
795#endif
613#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
615#endif 798#endif
616#if EV_USE_EPOLL 799#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
618#endif 801#endif
619#if EV_USE_POLL 802#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
621#endif 804#endif
622#if EV_USE_SELECT 805#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
624#endif 807#endif
808
809 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI);
625 } 811 }
626} 812}
627 813
628void 814void
629loop_destroy (EV_P) 815loop_destroy (EV_P)
630{ 816{
817 int i;
818
819#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A);
821#endif
631#if EV_USE_KQUEUE 822#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 824#endif
634#if EV_USE_EPOLL 825#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 830#endif
640#if EV_USE_SELECT 831#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 832 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 833#endif
643 834
835 for (i = NUMPRI; i--; )
836 array_free (pending, [i]);
837
838 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0);
840 array_free (timer, EMPTY0);
841#if EV_PERIODICS
842 array_free (periodic, EMPTY0);
843#endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0);
846 array_free (check, EMPTY0);
847
644 method = 0; 848 method = 0;
645 /*TODO*/
646} 849}
647 850
648void 851static void
649loop_fork (EV_P) 852loop_fork (EV_P)
650{ 853{
651 /*TODO*/ 854#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A);
856#endif
857#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
859#endif
652#if EV_USE_EPOLL 860#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 862#endif
655#if EV_USE_KQUEUE 863
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 864 if (ev_is_active (&sigev))
657#endif 865 {
866 /* default loop */
867
868 ev_ref (EV_A);
869 ev_io_stop (EV_A_ &sigev);
870 close (sigpipe [0]);
871 close (sigpipe [1]);
872
873 while (pipe (sigpipe))
874 syserr ("(libev) error creating pipe");
875
876 siginit (EV_A);
877 }
878
879 postfork = 0;
658} 880}
659 881
660#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
661struct ev_loop * 883struct ev_loop *
662ev_loop_new (int methods) 884ev_loop_new (unsigned int flags)
663{ 885{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 886 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 887
888 memset (loop, 0, sizeof (struct ev_loop));
889
666 loop_init (EV_A_ methods); 890 loop_init (EV_A_ flags);
667 891
668 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
669 return loop; 893 return loop;
670 894
671 return 0; 895 return 0;
673 897
674void 898void
675ev_loop_destroy (EV_P) 899ev_loop_destroy (EV_P)
676{ 900{
677 loop_destroy (EV_A); 901 loop_destroy (EV_A);
678 free (loop); 902 ev_free (loop);
679} 903}
680 904
681void 905void
682ev_loop_fork (EV_P) 906ev_loop_fork (EV_P)
683{ 907{
684 loop_fork (EV_A); 908 postfork = 1;
685} 909}
686 910
687#endif 911#endif
688 912
689#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 914struct ev_loop *
915ev_default_loop_ (unsigned int flags)
694#else 916#else
695static int default_loop;
696
697int 917int
918ev_default_loop (unsigned int flags)
698#endif 919#endif
699ev_default_loop (int methods)
700{ 920{
701 if (sigpipe [0] == sigpipe [1]) 921 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 922 if (pipe (sigpipe))
703 return 0; 923 return 0;
704 924
705 if (!default_loop) 925 if (!ev_default_loop_ptr)
706 { 926 {
707#if EV_MULTIPLICITY 927#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 928 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 929#else
710 default_loop = 1; 930 ev_default_loop_ptr = 1;
711#endif 931#endif
712 932
713 loop_init (EV_A_ methods); 933 loop_init (EV_A_ flags);
714 934
715 if (ev_method (EV_A)) 935 if (ev_method (EV_A))
716 { 936 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 937 siginit (EV_A);
720 938
721#ifndef WIN32 939#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 940 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 941 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 942 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 943 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 944#endif
727 } 945 }
728 else 946 else
729 default_loop = 0; 947 ev_default_loop_ptr = 0;
730 } 948 }
731 949
732 return default_loop; 950 return ev_default_loop_ptr;
733} 951}
734 952
735void 953void
736ev_default_destroy (void) 954ev_default_destroy (void)
737{ 955{
738#if EV_MULTIPLICITY 956#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 957 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 958#endif
741 959
960#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 961 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 962 ev_signal_stop (EV_A_ &childev);
963#endif
744 964
745 ev_ref (EV_A); /* signal watcher */ 965 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 966 ev_io_stop (EV_A_ &sigev);
747 967
748 close (sigpipe [0]); sigpipe [0] = 0; 968 close (sigpipe [0]); sigpipe [0] = 0;
753 973
754void 974void
755ev_default_fork (void) 975ev_default_fork (void)
756{ 976{
757#if EV_MULTIPLICITY 977#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 978 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 979#endif
760 980
761 loop_fork (EV_A); 981 if (method)
762 982 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 983}
771 984
772/*****************************************************************************/ 985/*****************************************************************************/
986
987static int
988any_pending (EV_P)
989{
990 int pri;
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997}
773 998
774static void 999static void
775call_pending (EV_P) 1000call_pending (EV_P)
776{ 1001{
777 int pri; 1002 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1008
784 if (p->w) 1009 if (p->w)
785 { 1010 {
786 p->w->pending = 0; 1011 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1012 EV_CB_INVOKE (p->w, p->events);
788 } 1013 }
789 } 1014 }
790} 1015}
791 1016
792static void 1017static void
793timers_reify (EV_P) 1018timers_reify (EV_P)
794{ 1019{
795 while (timercnt && timers [0]->at <= mn_now) 1020 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1021 {
797 struct ev_timer *w = timers [0]; 1022 struct ev_timer *w = timers [0];
798 1023
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1024 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 1025
801 /* first reschedule or stop timer */ 1026 /* first reschedule or stop timer */
802 if (w->repeat) 1027 if (w->repeat)
803 { 1028 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1030
805 w->at = mn_now + w->repeat; 1031 ((WT)w)->at += w->repeat;
1032 if (((WT)w)->at < mn_now)
1033 ((WT)w)->at = mn_now;
1034
806 downheap ((WT *)timers, timercnt, 0); 1035 downheap ((WT *)timers, timercnt, 0);
807 } 1036 }
808 else 1037 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1038 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1039
811 event (EV_A_ (W)w, EV_TIMEOUT); 1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1041 }
813} 1042}
814 1043
1044#if EV_PERIODICS
815static void 1045static void
816periodics_reify (EV_P) 1046periodics_reify (EV_P)
817{ 1047{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1049 {
820 struct ev_periodic *w = periodics [0]; 1050 struct ev_periodic *w = periodics [0];
821 1051
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1052 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1053
824 /* first reschedule or stop timer */ 1054 /* first reschedule or stop timer */
825 if (w->interval) 1055 if (w->reschedule_cb)
826 { 1056 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0);
1060 }
1061 else if (w->interval)
1062 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1065 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1066 }
831 else 1067 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1069
834 event (EV_A_ (W)w, EV_PERIODIC); 1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1071 }
836} 1072}
837 1073
838static void 1074static void
839periodics_reschedule (EV_P) 1075periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1079 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1080 for (i = 0; i < periodiccnt; ++i)
845 { 1081 {
846 struct ev_periodic *w = periodics [i]; 1082 struct ev_periodic *w = periodics [i];
847 1083
1084 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1086 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1088 }
1089
1090 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i);
861} 1093}
1094#endif
862 1095
863inline int 1096inline int
864time_update_monotonic (EV_P) 1097time_update_monotonic (EV_P)
865{ 1098{
866 mn_now = get_clock (); 1099 mn_now = get_clock ();
867 1100
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1102 {
870 rt_now = rtmn_diff + mn_now; 1103 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1104 return 0;
872 } 1105 }
873 else 1106 else
874 { 1107 {
875 now_floor = mn_now; 1108 now_floor = mn_now;
876 rt_now = ev_time (); 1109 ev_rt_now = ev_time ();
877 return 1; 1110 return 1;
878 } 1111 }
879} 1112}
880 1113
881static void 1114static void
890 { 1123 {
891 ev_tstamp odiff = rtmn_diff; 1124 ev_tstamp odiff = rtmn_diff;
892 1125
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1127 {
895 rtmn_diff = rt_now - mn_now; 1128 rtmn_diff = ev_rt_now - mn_now;
896 1129
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1131 return; /* all is well */
899 1132
900 rt_now = ev_time (); 1133 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1134 mn_now = get_clock ();
902 now_floor = mn_now; 1135 now_floor = mn_now;
903 } 1136 }
904 1137
1138# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1139 periodics_reschedule (EV_A);
1140# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1141 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1143 }
909 } 1144 }
910 else 1145 else
911#endif 1146#endif
912 { 1147 {
913 rt_now = ev_time (); 1148 ev_rt_now = ev_time ();
914 1149
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1151 {
1152#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1153 periodics_reschedule (EV_A);
1154#endif
918 1155
919 /* adjust timers. this is easy, as the offset is the same for all */ 1156 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1157 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1158 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1159 }
923 1160
924 mn_now = rt_now; 1161 mn_now = ev_rt_now;
925 } 1162 }
926} 1163}
927 1164
928void 1165void
929ev_ref (EV_P) 1166ev_ref (EV_P)
943ev_loop (EV_P_ int flags) 1180ev_loop (EV_P_ int flags)
944{ 1181{
945 double block; 1182 double block;
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
947 1184
948 do 1185 while (activecnt)
949 { 1186 {
950 /* queue check watchers (and execute them) */ 1187 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt)) 1188 if (expect_false (preparecnt))
952 { 1189 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1191 call_pending (EV_A);
955 } 1192 }
956 1193
1194 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork))
1196 loop_fork (EV_A);
1197
957 /* update fd-related kernel structures */ 1198 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1199 fd_reify (EV_A);
959 1200
960 /* calculate blocking time */ 1201 /* calculate blocking time */
961 1202
962 /* we only need this for !monotonic clockor timers, but as we basically 1203 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1204 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1205#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1206 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1207 time_update_monotonic (EV_A);
967 else 1208 else
968#endif 1209#endif
969 { 1210 {
970 rt_now = ev_time (); 1211 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1212 mn_now = ev_rt_now;
972 } 1213 }
973 1214
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1216 block = 0.;
976 else 1217 else
977 { 1218 {
978 block = MAX_BLOCKTIME; 1219 block = MAX_BLOCKTIME;
979 1220
980 if (timercnt) 1221 if (timercnt)
981 { 1222 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1224 if (block > to) block = to;
984 } 1225 }
985 1226
1227#if EV_PERIODICS
986 if (periodiccnt) 1228 if (periodiccnt)
987 { 1229 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1231 if (block > to) block = to;
990 } 1232 }
1233#endif
991 1234
992 if (block < 0.) block = 0.; 1235 if (block < 0.) block = 0.;
993 } 1236 }
994 1237
995 method_poll (EV_A_ block); 1238 method_poll (EV_A_ block);
996 1239
997 /* update rt_now, do magic */ 1240 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1241 time_update (EV_A);
999 1242
1000 /* queue pending timers and reschedule them */ 1243 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1244 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1246 periodics_reify (EV_A); /* absolute timers called first */
1247#endif
1003 1248
1004 /* queue idle watchers unless io or timers are pending */ 1249 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1250 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1252
1008 /* queue check watchers, to be executed first */ 1253 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1254 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 1256
1012 call_pending (EV_A); 1257 call_pending (EV_A);
1258
1259 if (loop_done)
1260 break;
1013 } 1261 }
1014 while (activecnt && !loop_done);
1015 1262
1016 if (loop_done != 2) 1263 if (loop_done != 2)
1017 loop_done = 0; 1264 loop_done = 0;
1018} 1265}
1019 1266
1085 return; 1332 return;
1086 1333
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1334 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1335
1089 ev_start (EV_A_ (W)w, 1); 1336 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1337 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1338 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1339
1093 fd_change (EV_A_ fd); 1340 fd_change (EV_A_ fd);
1094} 1341}
1095 1342
1098{ 1345{
1099 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
1101 return; 1348 return;
1102 1349
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1352 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1353 ev_stop (EV_A_ (W)w);
1105 1354
1106 fd_change (EV_A_ w->fd); 1355 fd_change (EV_A_ w->fd);
1107} 1356}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1359ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1360{
1112 if (ev_is_active (w)) 1361 if (ev_is_active (w))
1113 return; 1362 return;
1114 1363
1115 w->at += mn_now; 1364 ((WT)w)->at += mn_now;
1116 1365
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1367
1119 ev_start (EV_A_ (W)w, ++timercnt); 1368 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1121 timers [timercnt - 1] = w; 1370 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1371 upheap ((WT *)timers, timercnt - 1);
1372
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1374}
1124 1375
1125void 1376void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1377ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1378{
1128 ev_clear_pending (EV_A_ (W)w); 1379 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1380 if (!ev_is_active (w))
1130 return; 1381 return;
1131 1382
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1384
1132 if (w->active < timercnt--) 1385 if (((W)w)->active < timercnt--)
1133 { 1386 {
1134 timers [w->active - 1] = timers [timercnt]; 1387 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1389 }
1137 1390
1138 w->at = w->repeat; 1391 ((WT)w)->at -= mn_now;
1139 1392
1140 ev_stop (EV_A_ (W)w); 1393 ev_stop (EV_A_ (W)w);
1141} 1394}
1142 1395
1143void 1396void
1145{ 1398{
1146 if (ev_is_active (w)) 1399 if (ev_is_active (w))
1147 { 1400 {
1148 if (w->repeat) 1401 if (w->repeat)
1149 { 1402 {
1150 w->at = mn_now + w->repeat; 1403 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1404 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1405 }
1153 else 1406 else
1154 ev_timer_stop (EV_A_ w); 1407 ev_timer_stop (EV_A_ w);
1155 } 1408 }
1156 else if (w->repeat) 1409 else if (w->repeat)
1410 {
1411 w->at = w->repeat;
1157 ev_timer_start (EV_A_ w); 1412 ev_timer_start (EV_A_ w);
1413 }
1158} 1414}
1159 1415
1416#if EV_PERIODICS
1160void 1417void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1418ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1419{
1163 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1164 return; 1421 return;
1165 1422
1423 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval)
1426 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1428 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1430 }
1171 1431
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1432 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 1434 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1435 upheap ((WT *)periodics, periodiccnt - 1);
1436
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1438}
1177 1439
1178void 1440void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1441ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1442{
1181 ev_clear_pending (EV_A_ (W)w); 1443 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1444 if (!ev_is_active (w))
1183 return; 1445 return;
1184 1446
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1448
1185 if (w->active < periodiccnt--) 1449 if (((W)w)->active < periodiccnt--)
1186 { 1450 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1451 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1453 }
1190 1454
1191 ev_stop (EV_A_ (W)w); 1455 ev_stop (EV_A_ (W)w);
1192} 1456}
1193 1457
1194void 1458void
1459ev_periodic_again (EV_P_ struct ev_periodic *w)
1460{
1461 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w);
1464}
1465#endif
1466
1467void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1468ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1469{
1197 if (ev_is_active (w)) 1470 if (ev_is_active (w))
1198 return; 1471 return;
1199 1472
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1473 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1202 idles [idlecnt - 1] = w; 1475 idles [idlecnt - 1] = w;
1203} 1476}
1204 1477
1205void 1478void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1479ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1480{
1208 ev_clear_pending (EV_A_ (W)w); 1481 ev_clear_pending (EV_A_ (W)w);
1482 if (!ev_is_active (w))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1209 if (ev_is_active (w)) 1492 if (ev_is_active (w))
1210 return; 1493 return;
1211 1494
1212 idles [w->active - 1] = idles [--idlecnt]; 1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (!ev_is_active (w))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1213 ev_stop (EV_A_ (W)w); 1508 ev_stop (EV_A_ (W)w);
1214} 1509}
1215 1510
1216void 1511void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1512ev_check_start (EV_P_ struct ev_check *w)
1218{ 1513{
1219 if (ev_is_active (w)) 1514 if (ev_is_active (w))
1220 return; 1515 return;
1221 1516
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1517 ev_start (EV_A_ (W)w, ++checkcnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1224 prepares [preparecnt - 1] = w; 1519 checks [checkcnt - 1] = w;
1225} 1520}
1226 1521
1227void 1522void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1523ev_check_stop (EV_P_ struct ev_check *w)
1229{ 1524{
1230 ev_clear_pending (EV_A_ (W)w); 1525 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1526 if (!ev_is_active (w))
1232 return; 1527 return;
1233 1528
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt]; 1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1530 ev_stop (EV_A_ (W)w);
1258} 1531}
1259 1532
1260#ifndef SA_RESTART 1533#ifndef SA_RESTART
1261# define SA_RESTART 0 1534# define SA_RESTART 0
1263 1536
1264void 1537void
1265ev_signal_start (EV_P_ struct ev_signal *w) 1538ev_signal_start (EV_P_ struct ev_signal *w)
1266{ 1539{
1267#if EV_MULTIPLICITY 1540#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 1542#endif
1270 if (ev_is_active (w)) 1543 if (ev_is_active (w))
1271 return; 1544 return;
1272 1545
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1546 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1547
1275 ev_start (EV_A_ (W)w, 1); 1548 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1549 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1550 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1551
1279 if (!w->next) 1552 if (!((WL)w)->next)
1280 { 1553 {
1554#if _WIN32
1555 signal (w->signum, sighandler);
1556#else
1281 struct sigaction sa; 1557 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1558 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1559 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1560 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1561 sigaction (w->signum, &sa, 0);
1562#endif
1286 } 1563 }
1287} 1564}
1288 1565
1289void 1566void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1567ev_signal_stop (EV_P_ struct ev_signal *w)
1302 1579
1303void 1580void
1304ev_child_start (EV_P_ struct ev_child *w) 1581ev_child_start (EV_P_ struct ev_child *w)
1305{ 1582{
1306#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1308#endif 1585#endif
1309 if (ev_is_active (w)) 1586 if (ev_is_active (w))
1310 return; 1587 return;
1311 1588
1312 ev_start (EV_A_ (W)w, 1); 1589 ev_start (EV_A_ (W)w, 1);
1315 1592
1316void 1593void
1317ev_child_stop (EV_P_ struct ev_child *w) 1594ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1595{
1319 ev_clear_pending (EV_A_ (W)w); 1596 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1597 if (!ev_is_active (w))
1321 return; 1598 return;
1322 1599
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1601 ev_stop (EV_A_ (W)w);
1325} 1602}
1340 void (*cb)(int revents, void *arg) = once->cb; 1617 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1618 void *arg = once->arg;
1342 1619
1343 ev_io_stop (EV_A_ &once->io); 1620 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1621 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1622 ev_free (once);
1346 1623
1347 cb (revents, arg); 1624 cb (revents, arg);
1348} 1625}
1349 1626
1350static void 1627static void
1360} 1637}
1361 1638
1362void 1639void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1640ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1641{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1642 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1643
1367 if (!once) 1644 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1645 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1646 else
1370 { 1647 {
1371 once->cb = cb; 1648 once->cb = cb;
1372 once->arg = arg; 1649 once->arg = arg;
1373 1650
1374 ev_watcher_init (&once->io, once_cb_io); 1651 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1652 if (fd >= 0)
1376 { 1653 {
1377 ev_io_set (&once->io, fd, events); 1654 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1655 ev_io_start (EV_A_ &once->io);
1379 } 1656 }
1380 1657
1381 ev_watcher_init (&once->to, once_cb_to); 1658 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1659 if (timeout >= 0.)
1383 { 1660 {
1384 ev_timer_set (&once->to, timeout, 0.); 1661 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1662 ev_timer_start (EV_A_ &once->to);
1386 } 1663 }
1387 } 1664 }
1388} 1665}
1389 1666
1667#ifdef __cplusplus
1668}
1669#endif
1670

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines