ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h>
70# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
99#endif 159#endif
100 160
101/**/ 161/**/
102 162
103#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
108#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
111#endif 171#endif
112 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
113/**/ 177/**/
114 178
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 183
184#ifdef EV_H
185# include EV_H
186#else
120#include "ev.h" 187# include "ev.h"
188#endif
121 189
122#if __GNUC__ >= 3 190#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 192# define inline static inline
125#else 193#else
126# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
127# define inline static 195# define inline static
128#endif 196#endif
129 197
131#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
132 200
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
136typedef struct ev_watcher *W; 207typedef struct ev_watcher *W;
137typedef struct ev_watcher_list *WL; 208typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 209typedef struct ev_watcher_time *WT;
139 210
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 212
213#ifdef _WIN32
214# include "ev_win32.c"
215#endif
216
142/*****************************************************************************/ 217/*****************************************************************************/
143 218
219static void (*syserr_cb)(const char *msg);
220
221void ev_set_syserr_cb (void (*cb)(const char *msg))
222{
223 syserr_cb = cb;
224}
225
226static void
227syserr (const char *msg)
228{
229 if (!msg)
230 msg = "(libev) system error";
231
232 if (syserr_cb)
233 syserr_cb (msg);
234 else
235 {
236 perror (msg);
237 abort ();
238 }
239}
240
241static void *(*alloc)(void *ptr, long size);
242
243void ev_set_allocator (void *(*cb)(void *ptr, long size))
244{
245 alloc = cb;
246}
247
248static void *
249ev_realloc (void *ptr, long size)
250{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252
253 if (!ptr && size)
254 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort ();
257 }
258
259 return ptr;
260}
261
262#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0)
264
265/*****************************************************************************/
266
144typedef struct 267typedef struct
145{ 268{
146 struct ev_watcher_list *head; 269 WL head;
147 unsigned char events; 270 unsigned char events;
148 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
149} ANFD; 275} ANFD;
150 276
151typedef struct 277typedef struct
152{ 278{
153 W w; 279 W w;
154 int events; 280 int events;
155} ANPENDING; 281} ANPENDING;
156 282
157#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
158 284
159struct ev_loop 285 struct ev_loop
160{ 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
162# include "ev_vars.h" 290 #include "ev_vars.h"
163};
164# undef VAR 291 #undef VAR
292 };
165# include "ev_wrap.h" 293 #include "ev_wrap.h"
294
295 static struct ev_loop default_loop_struct;
296 struct ev_loop *ev_default_loop_ptr;
166 297
167#else 298#else
168 299
300 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 302 #include "ev_vars.h"
171# undef VAR 303 #undef VAR
304
305 static int ev_default_loop_ptr;
172 306
173#endif 307#endif
174 308
175/*****************************************************************************/ 309/*****************************************************************************/
176 310
177inline ev_tstamp 311ev_tstamp
178ev_time (void) 312ev_time (void)
179{ 313{
180#if EV_USE_REALTIME 314#if EV_USE_REALTIME
181 struct timespec ts; 315 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 335#endif
202 336
203 return ev_time (); 337 return ev_time ();
204} 338}
205 339
340#if EV_MULTIPLICITY
206ev_tstamp 341ev_tstamp
207ev_now (EV_P) 342ev_now (EV_P)
208{ 343{
209 return rt_now; 344 return ev_rt_now;
210} 345}
346#endif
211 347
212#define array_roundsize(base,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
213 349
214#define array_needsize(base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
216 { \ 352 { \
217 int newcnt = cur; \ 353 int newcnt = cur; \
218 do \ 354 do \
219 { \ 355 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 356 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 357 } \
222 while ((cnt) > newcnt); \ 358 while ((cnt) > newcnt); \
223 \ 359 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 361 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 362 cur = newcnt; \
227 } 363 }
364
365#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 }
372
373#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 375
229/*****************************************************************************/ 376/*****************************************************************************/
230 377
231static void 378static void
232anfds_init (ANFD *base, int count) 379anfds_init (ANFD *base, int count)
239 386
240 ++base; 387 ++base;
241 } 388 }
242} 389}
243 390
244static void 391void
245event (EV_P_ W w, int events) 392ev_feed_event (EV_P_ void *w, int revents)
246{ 393{
247 if (w->pending) 394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
248 { 397 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 399 return;
251 } 400 }
252 401
253 w->pending = ++pendingcnt [ABSPRI (w)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 406}
258 407
259static void 408static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 409queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 410{
262 int i; 411 int i;
263 412
264 for (i = 0; i < eventcnt; ++i) 413 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 414 ev_feed_event (EV_A_ events [i], type);
266} 415}
267 416
268static void 417inline void
269fd_event (EV_P_ int fd, int events) 418fd_event (EV_P_ int fd, int revents)
270{ 419{
271 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 421 struct ev_io *w;
273 422
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 424 {
276 int ev = w->events & events; 425 int ev = w->events & revents;
277 426
278 if (ev) 427 if (ev)
279 event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
280 } 429 }
430}
431
432void
433ev_feed_fd_event (EV_P_ int fd, int revents)
434{
435 fd_event (EV_A_ fd, revents);
281} 436}
282 437
283/*****************************************************************************/ 438/*****************************************************************************/
284 439
285static void 440inline void
286fd_reify (EV_P) 441fd_reify (EV_P)
287{ 442{
288 int i; 443 int i;
289 444
290 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
296 int events = 0; 451 int events = 0;
297 452
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 454 events |= w->events;
300 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
301 anfd->reify = 0; 465 anfd->reify = 0;
302 466
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 468 anfd->events = events;
307 }
308 } 469 }
309 470
310 fdchangecnt = 0; 471 fdchangecnt = 0;
311} 472}
312 473
313static void 474static void
314fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
315{ 476{
316 if (anfds [fd].reify || fdchangecnt < 0) 477 if (expect_false (anfds [fd].reify))
317 return; 478 return;
318 479
319 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
320 481
321 ++fdchangecnt; 482 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
324} 485}
325 486
326static void 487static void
327fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
329 struct ev_io *w; 490 struct ev_io *w;
330 491
331 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (struct ev_io *)anfds [fd].head))
332 { 493 {
333 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 496 }
497}
498
499inline int
500fd_valid (int fd)
501{
502#ifdef _WIN32
503 return _get_osfhandle (fd) != -1;
504#else
505 return fcntl (fd, F_GETFD) != -1;
506#endif
336} 507}
337 508
338/* called on EBADF to verify fds */ 509/* called on EBADF to verify fds */
339static void 510static void
340fd_ebadf (EV_P) 511fd_ebadf (EV_P)
341{ 512{
342 int fd; 513 int fd;
343 514
344 for (fd = 0; fd < anfdmax; ++fd) 515 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 516 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 517 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 518 fd_kill (EV_A_ fd);
348} 519}
349 520
350/* called on ENOMEM in select/poll to kill some fds and retry */ 521/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 522static void
352fd_enomem (EV_P) 523fd_enomem (EV_P)
353{ 524{
354 int fd = anfdmax; 525 int fd;
355 526
356 while (fd--) 527 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 528 if (anfds [fd].events)
358 { 529 {
359 close (fd);
360 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
361 return; 531 return;
362 } 532 }
363} 533}
364 534
365/* susually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
366static void 536static void
367fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
368{ 538{
369 int fd; 539 int fd;
370 540
385 WT w = heap [k]; 555 WT w = heap [k];
386 556
387 while (k && heap [k >> 1]->at > w->at) 557 while (k && heap [k >> 1]->at > w->at)
388 { 558 {
389 heap [k] = heap [k >> 1]; 559 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
391 k >>= 1; 561 k >>= 1;
392 } 562 }
393 563
394 heap [k] = w; 564 heap [k] = w;
395 heap [k]->active = k + 1; 565 ((W)heap [k])->active = k + 1;
396 566
397} 567}
398 568
399static void 569static void
400downheap (WT *heap, int N, int k) 570downheap (WT *heap, int N, int k)
410 580
411 if (w->at <= heap [j]->at) 581 if (w->at <= heap [j]->at)
412 break; 582 break;
413 583
414 heap [k] = heap [j]; 584 heap [k] = heap [j];
415 heap [k]->active = k + 1; 585 ((W)heap [k])->active = k + 1;
416 k = j; 586 k = j;
417 } 587 }
418 588
419 heap [k] = w; 589 heap [k] = w;
420 heap [k]->active = k + 1; 590 ((W)heap [k])->active = k + 1;
591}
592
593inline void
594adjustheap (WT *heap, int N, int k)
595{
596 upheap (heap, k);
597 downheap (heap, N, k);
421} 598}
422 599
423/*****************************************************************************/ 600/*****************************************************************************/
424 601
425typedef struct 602typedef struct
426{ 603{
427 struct ev_watcher_list *head; 604 WL head;
428 sig_atomic_t volatile gotsig; 605 sig_atomic_t volatile gotsig;
429} ANSIG; 606} ANSIG;
430 607
431static ANSIG *signals; 608static ANSIG *signals;
432static int signalmax; 609static int signalmax;
448} 625}
449 626
450static void 627static void
451sighandler (int signum) 628sighandler (int signum)
452{ 629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
453 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
454 635
455 if (!gotsig) 636 if (!gotsig)
456 { 637 {
457 int old_errno = errno; 638 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 641 errno = old_errno;
461 } 642 }
462} 643}
463 644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
464static void 665static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 667{
467 struct ev_watcher_list *w;
468 int signum; 668 int signum;
469 669
470 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 671 gotsig = 0;
472 672
473 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
475 { 675 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0; 676}
477 677
478 for (w = signals [signum].head; w; w = w->next) 678static void
479 event (EV_A_ (W)w, EV_SIGNAL); 679fd_intern (int fd)
480 } 680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
481} 688}
482 689
483static void 690static void
484siginit (EV_P) 691siginit (EV_P)
485{ 692{
486#ifndef WIN32 693 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 695
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 699}
499 700
500/*****************************************************************************/ 701/*****************************************************************************/
501 702
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE]; 703static struct ev_child *childs [PID_HASHSIZE];
704
705#ifndef _WIN32
706
505static struct ev_signal childev; 707static struct ev_signal childev;
506 708
507#ifndef WCONTINUED 709#ifndef WCONTINUED
508# define WCONTINUED 0 710# define WCONTINUED 0
509#endif 711#endif
514 struct ev_child *w; 716 struct ev_child *w;
515 717
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
518 { 720 {
519 w->priority = sw->priority; /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 722 w->rpid = pid;
521 w->rstatus = status; 723 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 725 }
524} 726}
525 727
526static void 728static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 731 int pid, status;
530 732
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 734 {
533 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 738
536 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 } 741 }
539} 742}
540 743
541#endif 744#endif
542 745
543/*****************************************************************************/ 746/*****************************************************************************/
544 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
545#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 752# include "ev_kqueue.c"
547#endif 753#endif
548#if EV_USE_EPOLL 754#if EV_USE_EPOLL
549# include "ev_epoll.c" 755# include "ev_epoll.c"
569 775
570/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
571static int 777static int
572enable_secure (void) 778enable_secure (void)
573{ 779{
574#ifdef WIN32 780#ifdef _WIN32
575 return 0; 781 return 0;
576#else 782#else
577 return getuid () != geteuid () 783 return getuid () != geteuid ()
578 || getgid () != getegid (); 784 || getgid () != getegid ();
579#endif 785#endif
580} 786}
581 787
582int 788unsigned int
583ev_method (EV_P) 789ev_supported_backends (void)
584{ 790{
585 return method; 791 unsigned int flags = 0;
586}
587 792
588static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
589loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
590{ 804{
591 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_backend (EV_P)
822{
823 return backend;
824}
825
826static void
827loop_init (EV_P_ unsigned int flags)
828{
829 if (!backend)
592 { 830 {
593#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
594 { 832 {
595 struct timespec ts; 833 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 834 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 835 have_monotonic = 1;
598 } 836 }
599#endif 837#endif
600 838
601 rt_now = ev_time (); 839 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 840 mn_now = get_clock ();
603 now_floor = mn_now; 841 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 842 rtmn_diff = ev_rt_now - mn_now;
605 843
606 if (methods == EVMETHOD_AUTO) 844 if (!(flags & EVFLAG_NOENV)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 845 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 847 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else
610 methods = EVMETHOD_ANY;
611 848
612 method = 0; 849 if (!(flags & 0x0000ffffUL))
850 flags |= ev_recommended_backends ();
851
852 backend = 0;
853#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif
613#if EV_USE_KQUEUE 856#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
615#endif 858#endif
616#if EV_USE_EPOLL 859#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 860 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
618#endif 861#endif
619#if EV_USE_POLL 862#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 863 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
621#endif 864#endif
622#if EV_USE_SELECT 865#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
624#endif 867#endif
625 }
626}
627 868
628void 869 ev_init (&sigev, sigcb);
870 ev_set_priority (&sigev, EV_MAXPRI);
871 }
872}
873
874static void
629loop_destroy (EV_P) 875loop_destroy (EV_P)
630{ 876{
877 int i;
878
879#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif
631#if EV_USE_KQUEUE 882#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 883 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
633#endif 884#endif
634#if EV_USE_EPOLL 885#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 886 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
636#endif 887#endif
637#if EV_USE_POLL 888#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 889 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
639#endif 890#endif
640#if EV_USE_SELECT 891#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
642#endif 893#endif
643 894
644 method = 0; 895 for (i = NUMPRI; i--; )
645 /*TODO*/ 896 array_free (pending, [i]);
646}
647 897
648void 898 /* have to use the microsoft-never-gets-it-right macro */
899 array_free (fdchange, EMPTY0);
900 array_free (timer, EMPTY0);
901#if EV_PERIODICS
902 array_free (periodic, EMPTY0);
903#endif
904 array_free (idle, EMPTY0);
905 array_free (prepare, EMPTY0);
906 array_free (check, EMPTY0);
907
908 backend = 0;
909}
910
911static void
649loop_fork (EV_P) 912loop_fork (EV_P)
650{ 913{
651 /*TODO*/ 914#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif
917#if EV_USE_KQUEUE
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif
652#if EV_USE_EPOLL 920#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
654#endif 922#endif
655#if EV_USE_KQUEUE 923
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 924 if (ev_is_active (&sigev))
657#endif 925 {
926 /* default loop */
927
928 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev);
930 close (sigpipe [0]);
931 close (sigpipe [1]);
932
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A);
937 }
938
939 postfork = 0;
658} 940}
659 941
660#if EV_MULTIPLICITY 942#if EV_MULTIPLICITY
661struct ev_loop * 943struct ev_loop *
662ev_loop_new (int methods) 944ev_loop_new (unsigned int flags)
663{ 945{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 947
948 memset (loop, 0, sizeof (struct ev_loop));
949
666 loop_init (EV_A_ methods); 950 loop_init (EV_A_ flags);
667 951
668 if (ev_method (EV_A)) 952 if (ev_backend (EV_A))
669 return loop; 953 return loop;
670 954
671 return 0; 955 return 0;
672} 956}
673 957
674void 958void
675ev_loop_destroy (EV_P) 959ev_loop_destroy (EV_P)
676{ 960{
677 loop_destroy (EV_A); 961 loop_destroy (EV_A);
678 free (loop); 962 ev_free (loop);
679} 963}
680 964
681void 965void
682ev_loop_fork (EV_P) 966ev_loop_fork (EV_P)
683{ 967{
684 loop_fork (EV_A); 968 postfork = 1;
685} 969}
686 970
687#endif 971#endif
688 972
689#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 974struct ev_loop *
975ev_default_loop_init (unsigned int flags)
694#else 976#else
695static int default_loop;
696
697int 977int
978ev_default_loop (unsigned int flags)
698#endif 979#endif
699ev_default_loop (int methods)
700{ 980{
701 if (sigpipe [0] == sigpipe [1]) 981 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 982 if (pipe (sigpipe))
703 return 0; 983 return 0;
704 984
705 if (!default_loop) 985 if (!ev_default_loop_ptr)
706 { 986 {
707#if EV_MULTIPLICITY 987#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 989#else
710 default_loop = 1; 990 ev_default_loop_ptr = 1;
711#endif 991#endif
712 992
713 loop_init (EV_A_ methods); 993 loop_init (EV_A_ flags);
714 994
715 if (ev_method (EV_A)) 995 if (ev_backend (EV_A))
716 { 996 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 997 siginit (EV_A);
720 998
721#ifndef WIN32 999#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 1000 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 1001 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 1002 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1003 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 1004#endif
727 } 1005 }
728 else 1006 else
729 default_loop = 0; 1007 ev_default_loop_ptr = 0;
730 } 1008 }
731 1009
732 return default_loop; 1010 return ev_default_loop_ptr;
733} 1011}
734 1012
735void 1013void
736ev_default_destroy (void) 1014ev_default_destroy (void)
737{ 1015{
738#if EV_MULTIPLICITY 1016#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 1017 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 1018#endif
741 1019
1020#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 1021 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 1022 ev_signal_stop (EV_A_ &childev);
1023#endif
744 1024
745 ev_ref (EV_A); /* signal watcher */ 1025 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 1026 ev_io_stop (EV_A_ &sigev);
747 1027
748 close (sigpipe [0]); sigpipe [0] = 0; 1028 close (sigpipe [0]); sigpipe [0] = 0;
753 1033
754void 1034void
755ev_default_fork (void) 1035ev_default_fork (void)
756{ 1036{
757#if EV_MULTIPLICITY 1037#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 1038 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 1039#endif
760 1040
761 loop_fork (EV_A); 1041 if (backend)
762 1042 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1043}
771 1044
772/*****************************************************************************/ 1045/*****************************************************************************/
773 1046
774static void 1047static int
1048any_pending (EV_P)
1049{
1050 int pri;
1051
1052 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri])
1054 return 1;
1055
1056 return 0;
1057}
1058
1059inline void
775call_pending (EV_P) 1060call_pending (EV_P)
776{ 1061{
777 int pri; 1062 int pri;
778 1063
779 for (pri = NUMPRI; pri--; ) 1064 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1065 while (pendingcnt [pri])
781 { 1066 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1068
784 if (p->w) 1069 if (expect_true (p->w))
785 { 1070 {
786 p->w->pending = 0; 1071 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1072 EV_CB_INVOKE (p->w, p->events);
788 } 1073 }
789 } 1074 }
790} 1075}
791 1076
792static void 1077inline void
793timers_reify (EV_P) 1078timers_reify (EV_P)
794{ 1079{
795 while (timercnt && timers [0]->at <= mn_now) 1080 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1081 {
797 struct ev_timer *w = timers [0]; 1082 struct ev_timer *w = timers [0];
798 1083
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1084 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 1085
801 /* first reschedule or stop timer */ 1086 /* first reschedule or stop timer */
802 if (w->repeat) 1087 if (w->repeat)
803 { 1088 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090
805 w->at = mn_now + w->repeat; 1091 ((WT)w)->at += w->repeat;
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
806 downheap ((WT *)timers, timercnt, 0); 1095 downheap ((WT *)timers, timercnt, 0);
807 } 1096 }
808 else 1097 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1099
811 event (EV_A_ (W)w, EV_TIMEOUT); 1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1101 }
813} 1102}
814 1103
815static void 1104#if EV_PERIODICS
1105inline void
816periodics_reify (EV_P) 1106periodics_reify (EV_P)
817{ 1107{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1109 {
820 struct ev_periodic *w = periodics [0]; 1110 struct ev_periodic *w = periodics [0];
821 1111
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1112 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1113
824 /* first reschedule or stop timer */ 1114 /* first reschedule or stop timer */
825 if (w->interval) 1115 if (w->reschedule_cb)
826 { 1116 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else if (w->interval)
1122 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1125 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1126 }
831 else 1127 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1129
834 event (EV_A_ (W)w, EV_PERIODIC); 1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1131 }
836} 1132}
837 1133
838static void 1134static void
839periodics_reschedule (EV_P) 1135periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1139 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1140 for (i = 0; i < periodiccnt; ++i)
845 { 1141 {
846 struct ev_periodic *w = periodics [i]; 1142 struct ev_periodic *w = periodics [i];
847 1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1146 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
861} 1153}
1154#endif
862 1155
863inline int 1156inline int
864time_update_monotonic (EV_P) 1157time_update_monotonic (EV_P)
865{ 1158{
866 mn_now = get_clock (); 1159 mn_now = get_clock ();
867 1160
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1162 {
870 rt_now = rtmn_diff + mn_now; 1163 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1164 return 0;
872 } 1165 }
873 else 1166 else
874 { 1167 {
875 now_floor = mn_now; 1168 now_floor = mn_now;
876 rt_now = ev_time (); 1169 ev_rt_now = ev_time ();
877 return 1; 1170 return 1;
878 } 1171 }
879} 1172}
880 1173
881static void 1174inline void
882time_update (EV_P) 1175time_update (EV_P)
883{ 1176{
884 int i; 1177 int i;
885 1178
886#if EV_USE_MONOTONIC 1179#if EV_USE_MONOTONIC
890 { 1183 {
891 ev_tstamp odiff = rtmn_diff; 1184 ev_tstamp odiff = rtmn_diff;
892 1185
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1187 {
895 rtmn_diff = rt_now - mn_now; 1188 rtmn_diff = ev_rt_now - mn_now;
896 1189
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1191 return; /* all is well */
899 1192
900 rt_now = ev_time (); 1193 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1194 mn_now = get_clock ();
902 now_floor = mn_now; 1195 now_floor = mn_now;
903 } 1196 }
904 1197
1198# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1199 periodics_reschedule (EV_A);
1200# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1201 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1203 }
909 } 1204 }
910 else 1205 else
911#endif 1206#endif
912 { 1207 {
913 rt_now = ev_time (); 1208 ev_rt_now = ev_time ();
914 1209
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1211 {
1212#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1213 periodics_reschedule (EV_A);
1214#endif
918 1215
919 /* adjust timers. this is easy, as the offset is the same for all */ 1216 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1217 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1219 }
923 1220
924 mn_now = rt_now; 1221 mn_now = ev_rt_now;
925 } 1222 }
926} 1223}
927 1224
928void 1225void
929ev_ref (EV_P) 1226ev_ref (EV_P)
943ev_loop (EV_P_ int flags) 1240ev_loop (EV_P_ int flags)
944{ 1241{
945 double block; 1242 double block;
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
947 1244
948 do 1245 while (activecnt)
949 { 1246 {
950 /* queue check watchers (and execute them) */ 1247 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt)) 1248 if (expect_false (preparecnt))
952 { 1249 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1251 call_pending (EV_A);
955 } 1252 }
956 1253
1254 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork))
1256 loop_fork (EV_A);
1257
957 /* update fd-related kernel structures */ 1258 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1259 fd_reify (EV_A);
959 1260
960 /* calculate blocking time */ 1261 /* calculate blocking time */
961 1262
962 /* we only need this for !monotonic clockor timers, but as we basically 1263 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1264 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1265#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1266 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1267 time_update_monotonic (EV_A);
967 else 1268 else
968#endif 1269#endif
969 { 1270 {
970 rt_now = ev_time (); 1271 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1272 mn_now = ev_rt_now;
972 } 1273 }
973 1274
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1275 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1276 block = 0.;
976 else 1277 else
977 { 1278 {
978 block = MAX_BLOCKTIME; 1279 block = MAX_BLOCKTIME;
979 1280
980 if (timercnt) 1281 if (timercnt)
981 { 1282 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
983 if (block > to) block = to; 1284 if (block > to) block = to;
984 } 1285 }
985 1286
1287#if EV_PERIODICS
986 if (periodiccnt) 1288 if (periodiccnt)
987 { 1289 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
989 if (block > to) block = to; 1291 if (block > to) block = to;
990 } 1292 }
1293#endif
991 1294
992 if (block < 0.) block = 0.; 1295 if (expect_false (block < 0.)) block = 0.;
993 } 1296 }
994 1297
995 method_poll (EV_A_ block); 1298 backend_poll (EV_A_ block);
996 1299
997 /* update rt_now, do magic */ 1300 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1301 time_update (EV_A);
999 1302
1000 /* queue pending timers and reschedule them */ 1303 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1304 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1306 periodics_reify (EV_A); /* absolute timers called first */
1307#endif
1003 1308
1004 /* queue idle watchers unless io or timers are pending */ 1309 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1310 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1312
1008 /* queue check watchers, to be executed first */ 1313 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1314 if (expect_false (checkcnt))
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 1316
1012 call_pending (EV_A); 1317 call_pending (EV_A);
1318
1319 if (expect_false (loop_done))
1320 break;
1013 } 1321 }
1014 while (activecnt && !loop_done);
1015 1322
1016 if (loop_done != 2) 1323 if (loop_done != 2)
1017 loop_done = 0; 1324 loop_done = 0;
1018} 1325}
1019 1326
1079void 1386void
1080ev_io_start (EV_P_ struct ev_io *w) 1387ev_io_start (EV_P_ struct ev_io *w)
1081{ 1388{
1082 int fd = w->fd; 1389 int fd = w->fd;
1083 1390
1084 if (ev_is_active (w)) 1391 if (expect_false (ev_is_active (w)))
1085 return; 1392 return;
1086 1393
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1394 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1395
1089 ev_start (EV_A_ (W)w, 1); 1396 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1398 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1399
1093 fd_change (EV_A_ fd); 1400 fd_change (EV_A_ fd);
1094} 1401}
1095 1402
1096void 1403void
1097ev_io_stop (EV_P_ struct ev_io *w) 1404ev_io_stop (EV_P_ struct ev_io *w)
1098{ 1405{
1099 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1407 if (expect_false (!ev_is_active (w)))
1101 return; 1408 return;
1409
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1102 1411
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1413 ev_stop (EV_A_ (W)w);
1105 1414
1106 fd_change (EV_A_ w->fd); 1415 fd_change (EV_A_ w->fd);
1107} 1416}
1108 1417
1109void 1418void
1110ev_timer_start (EV_P_ struct ev_timer *w) 1419ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1420{
1112 if (ev_is_active (w)) 1421 if (expect_false (ev_is_active (w)))
1113 return; 1422 return;
1114 1423
1115 w->at += mn_now; 1424 ((WT)w)->at += mn_now;
1116 1425
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1427
1119 ev_start (EV_A_ (W)w, ++timercnt); 1428 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1121 timers [timercnt - 1] = w; 1430 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1431 upheap ((WT *)timers, timercnt - 1);
1432
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1434}
1124 1435
1125void 1436void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1437ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1438{
1128 ev_clear_pending (EV_A_ (W)w); 1439 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1440 if (expect_false (!ev_is_active (w)))
1130 return; 1441 return;
1131 1442
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1444
1132 if (w->active < timercnt--) 1445 if (expect_true (((W)w)->active < timercnt--))
1133 { 1446 {
1134 timers [w->active - 1] = timers [timercnt]; 1447 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1449 }
1137 1450
1138 w->at = w->repeat; 1451 ((WT)w)->at -= mn_now;
1139 1452
1140 ev_stop (EV_A_ (W)w); 1453 ev_stop (EV_A_ (W)w);
1141} 1454}
1142 1455
1143void 1456void
1145{ 1458{
1146 if (ev_is_active (w)) 1459 if (ev_is_active (w))
1147 { 1460 {
1148 if (w->repeat) 1461 if (w->repeat)
1149 { 1462 {
1150 w->at = mn_now + w->repeat; 1463 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1465 }
1153 else 1466 else
1154 ev_timer_stop (EV_A_ w); 1467 ev_timer_stop (EV_A_ w);
1155 } 1468 }
1156 else if (w->repeat) 1469 else if (w->repeat)
1470 {
1471 w->at = w->repeat;
1157 ev_timer_start (EV_A_ w); 1472 ev_timer_start (EV_A_ w);
1473 }
1158} 1474}
1159 1475
1476#if EV_PERIODICS
1160void 1477void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1478ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1479{
1163 if (ev_is_active (w)) 1480 if (expect_false (ev_is_active (w)))
1164 return; 1481 return;
1165 1482
1483 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval)
1486 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1488 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1490 }
1171 1491
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1492 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 1494 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1495 upheap ((WT *)periodics, periodiccnt - 1);
1496
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1498}
1177 1499
1178void 1500void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1501ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1502{
1181 ev_clear_pending (EV_A_ (W)w); 1503 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1504 if (expect_false (!ev_is_active (w)))
1183 return; 1505 return;
1184 1506
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1508
1185 if (w->active < periodiccnt--) 1509 if (expect_true (((W)w)->active < periodiccnt--))
1186 { 1510 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1511 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1513 }
1190 1514
1191 ev_stop (EV_A_ (W)w); 1515 ev_stop (EV_A_ (W)w);
1192} 1516}
1193 1517
1194void 1518void
1519ev_periodic_again (EV_P_ struct ev_periodic *w)
1520{
1521 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w);
1524}
1525#endif
1526
1527void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1528ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1529{
1197 if (ev_is_active (w)) 1530 if (expect_false (ev_is_active (w)))
1198 return; 1531 return;
1199 1532
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1533 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1202 idles [idlecnt - 1] = w; 1535 idles [idlecnt - 1] = w;
1203} 1536}
1204 1537
1205void 1538void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1539ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1540{
1208 ev_clear_pending (EV_A_ (W)w); 1541 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1542 if (expect_false (!ev_is_active (w)))
1210 return; 1543 return;
1211 1544
1212 idles [w->active - 1] = idles [--idlecnt]; 1545 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1546 ev_stop (EV_A_ (W)w);
1214} 1547}
1215 1548
1216void 1549void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1550ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1551{
1219 if (ev_is_active (w)) 1552 if (expect_false (ev_is_active (w)))
1220 return; 1553 return;
1221 1554
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1555 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1224 prepares [preparecnt - 1] = w; 1557 prepares [preparecnt - 1] = w;
1225} 1558}
1226 1559
1227void 1560void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1561ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1562{
1230 ev_clear_pending (EV_A_ (W)w); 1563 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1564 if (expect_false (!ev_is_active (w)))
1232 return; 1565 return;
1233 1566
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1567 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1568 ev_stop (EV_A_ (W)w);
1236} 1569}
1237 1570
1238void 1571void
1239ev_check_start (EV_P_ struct ev_check *w) 1572ev_check_start (EV_P_ struct ev_check *w)
1240{ 1573{
1241 if (ev_is_active (w)) 1574 if (expect_false (ev_is_active (w)))
1242 return; 1575 return;
1243 1576
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1577 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1246 checks [checkcnt - 1] = w; 1579 checks [checkcnt - 1] = w;
1247} 1580}
1248 1581
1249void 1582void
1250ev_check_stop (EV_P_ struct ev_check *w) 1583ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1584{
1252 ev_clear_pending (EV_A_ (W)w); 1585 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1586 if (expect_false (!ev_is_active (w)))
1254 return; 1587 return;
1255 1588
1256 checks [w->active - 1] = checks [--checkcnt]; 1589 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1590 ev_stop (EV_A_ (W)w);
1258} 1591}
1259 1592
1260#ifndef SA_RESTART 1593#ifndef SA_RESTART
1261# define SA_RESTART 0 1594# define SA_RESTART 0
1263 1596
1264void 1597void
1265ev_signal_start (EV_P_ struct ev_signal *w) 1598ev_signal_start (EV_P_ struct ev_signal *w)
1266{ 1599{
1267#if EV_MULTIPLICITY 1600#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 1602#endif
1270 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1271 return; 1604 return;
1272 1605
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1607
1275 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1611
1279 if (!w->next) 1612 if (!((WL)w)->next)
1280 { 1613 {
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1281 struct sigaction sa; 1617 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1618 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1619 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1621 sigaction (w->signum, &sa, 0);
1622#endif
1286 } 1623 }
1287} 1624}
1288 1625
1289void 1626void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1627ev_signal_stop (EV_P_ struct ev_signal *w)
1291{ 1628{
1292 ev_clear_pending (EV_A_ (W)w); 1629 ev_clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w)) 1630 if (expect_false (!ev_is_active (w)))
1294 return; 1631 return;
1295 1632
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1297 ev_stop (EV_A_ (W)w); 1634 ev_stop (EV_A_ (W)w);
1298 1635
1302 1639
1303void 1640void
1304ev_child_start (EV_P_ struct ev_child *w) 1641ev_child_start (EV_P_ struct ev_child *w)
1305{ 1642{
1306#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1308#endif 1645#endif
1309 if (ev_is_active (w)) 1646 if (expect_false (ev_is_active (w)))
1310 return; 1647 return;
1311 1648
1312 ev_start (EV_A_ (W)w, 1); 1649 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1314} 1651}
1315 1652
1316void 1653void
1317ev_child_stop (EV_P_ struct ev_child *w) 1654ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1655{
1319 ev_clear_pending (EV_A_ (W)w); 1656 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1657 if (expect_false (!ev_is_active (w)))
1321 return; 1658 return;
1322 1659
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1325} 1662}
1340 void (*cb)(int revents, void *arg) = once->cb; 1677 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1678 void *arg = once->arg;
1342 1679
1343 ev_io_stop (EV_A_ &once->io); 1680 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1681 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1682 ev_free (once);
1346 1683
1347 cb (revents, arg); 1684 cb (revents, arg);
1348} 1685}
1349 1686
1350static void 1687static void
1360} 1697}
1361 1698
1362void 1699void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1701{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1702 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1703
1367 if (!once) 1704 if (expect_false (!once))
1705 {
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1706 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1707 return;
1370 { 1708 }
1709
1371 once->cb = cb; 1710 once->cb = cb;
1372 once->arg = arg; 1711 once->arg = arg;
1373 1712
1374 ev_watcher_init (&once->io, once_cb_io); 1713 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1714 if (fd >= 0)
1376 { 1715 {
1377 ev_io_set (&once->io, fd, events); 1716 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1717 ev_io_start (EV_A_ &once->io);
1379 } 1718 }
1380 1719
1381 ev_watcher_init (&once->to, once_cb_to); 1720 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1721 if (timeout >= 0.)
1383 { 1722 {
1384 ev_timer_set (&once->to, timeout, 0.); 1723 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1724 ev_timer_start (EV_A_ &once->to);
1386 }
1387 } 1725 }
1388} 1726}
1389 1727
1728#ifdef __cplusplus
1729}
1730#endif
1731

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines