ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
58#include <stdlib.h> 102#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 103#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 104#include <stddef.h>
63 105
64#include <stdio.h> 106#include <stdio.h>
65 107
66#include <assert.h> 108#include <assert.h>
67#include <errno.h> 109#include <errno.h>
68#include <sys/types.h> 110#include <sys/types.h>
111#include <time.h>
112
113#include <signal.h>
114
69#ifndef WIN32 115#ifndef _WIN32
116# include <sys/time.h>
70# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
71#endif 124# endif
72#include <sys/time.h> 125#endif
73#include <time.h>
74 126
75/**/ 127/**/
76 128
77#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
79#endif 135#endif
80 136
81#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
83#endif 139#endif
84 140
85#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
87#endif 147#endif
88 148
89#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
91#endif 151#endif
92 152
93#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
95#endif 155#endif
96 156
97#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
159#endif
160
161#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1
164# else
165# define EV_PID_HASHSIZE 16
166# endif
99#endif 167#endif
100 168
101/**/ 169/**/
102 170
103#ifndef CLOCK_MONOTONIC 171#ifndef CLOCK_MONOTONIC
108#ifndef CLOCK_REALTIME 176#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 177# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
111#endif 179#endif
112 180
181#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h>
183#endif
184
113/**/ 185/**/
114 186
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
119 190
191#ifdef EV_H
192# include EV_H
193#else
120#include "ev.h" 194# include "ev.h"
195#endif
121 196
122#if __GNUC__ >= 3 197#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 198# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
124# define inline inline 201# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
125#else 207#else
126# define expect(expr,value) (expr) 208# define expect(expr,value) (expr)
209# define inline_speed static
127# define inline static 210# define inline_size static
211# define noinline
128#endif 212#endif
129 213
130#define expect_false(expr) expect ((expr) != 0, 0) 214#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1) 215#define expect_true(expr) expect ((expr) != 0, 1)
132 216
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 218#define ABSPRI(w) ((w)->priority - EV_MINPRI)
135 219
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */
222
136typedef struct ev_watcher *W; 223typedef ev_watcher *W;
137typedef struct ev_watcher_list *WL; 224typedef ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 225typedef ev_watcher_time *WT;
139 226
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 228
229#ifdef _WIN32
230# include "ev_win32.c"
231#endif
232
142/*****************************************************************************/ 233/*****************************************************************************/
143 234
235static void (*syserr_cb)(const char *msg);
236
237void
238ev_set_syserr_cb (void (*cb)(const char *msg))
239{
240 syserr_cb = cb;
241}
242
243static void noinline
244syserr (const char *msg)
245{
246 if (!msg)
247 msg = "(libev) system error";
248
249 if (syserr_cb)
250 syserr_cb (msg);
251 else
252 {
253 perror (msg);
254 abort ();
255 }
256}
257
258static void *(*alloc)(void *ptr, long size);
259
260void
261ev_set_allocator (void *(*cb)(void *ptr, long size))
262{
263 alloc = cb;
264}
265
266static void *
267ev_realloc (void *ptr, long size)
268{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
270
271 if (!ptr && size)
272 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort ();
275 }
276
277 return ptr;
278}
279
280#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0)
282
283/*****************************************************************************/
284
144typedef struct 285typedef struct
145{ 286{
146 struct ev_watcher_list *head; 287 WL head;
147 unsigned char events; 288 unsigned char events;
148 unsigned char reify; 289 unsigned char reify;
290#if EV_SELECT_IS_WINSOCKET
291 SOCKET handle;
292#endif
149} ANFD; 293} ANFD;
150 294
151typedef struct 295typedef struct
152{ 296{
153 W w; 297 W w;
154 int events; 298 int events;
155} ANPENDING; 299} ANPENDING;
156 300
157#if EV_MULTIPLICITY 301#if EV_MULTIPLICITY
158 302
159struct ev_loop 303 struct ev_loop
160{ 304 {
305 ev_tstamp ev_rt_now;
306 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 307 #define VAR(name,decl) decl;
162# include "ev_vars.h" 308 #include "ev_vars.h"
163};
164# undef VAR 309 #undef VAR
310 };
165# include "ev_wrap.h" 311 #include "ev_wrap.h"
312
313 static struct ev_loop default_loop_struct;
314 struct ev_loop *ev_default_loop_ptr;
166 315
167#else 316#else
168 317
318 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 319 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 320 #include "ev_vars.h"
171# undef VAR 321 #undef VAR
322
323 static int ev_default_loop_ptr;
172 324
173#endif 325#endif
174 326
175/*****************************************************************************/ 327/*****************************************************************************/
176 328
177inline ev_tstamp 329ev_tstamp
178ev_time (void) 330ev_time (void)
179{ 331{
180#if EV_USE_REALTIME 332#if EV_USE_REALTIME
181 struct timespec ts; 333 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 334 clock_gettime (CLOCK_REALTIME, &ts);
186 gettimeofday (&tv, 0); 338 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6; 339 return tv.tv_sec + tv.tv_usec * 1e-6;
188#endif 340#endif
189} 341}
190 342
191inline ev_tstamp 343ev_tstamp inline_size
192get_clock (void) 344get_clock (void)
193{ 345{
194#if EV_USE_MONOTONIC 346#if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic)) 347 if (expect_true (have_monotonic))
196 { 348 {
201#endif 353#endif
202 354
203 return ev_time (); 355 return ev_time ();
204} 356}
205 357
358#if EV_MULTIPLICITY
206ev_tstamp 359ev_tstamp
207ev_now (EV_P) 360ev_now (EV_P)
208{ 361{
209 return rt_now; 362 return ev_rt_now;
210} 363}
364#endif
211 365
212#define array_roundsize(base,n) ((n) | 4 & ~3) 366#define array_roundsize(type,n) (((n) | 4) & ~3)
213 367
214#define array_needsize(base,cur,cnt,init) \ 368#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 369 if (expect_false ((cnt) > cur)) \
216 { \ 370 { \
217 int newcnt = cur; \ 371 int newcnt = cur; \
218 do \ 372 do \
219 { \ 373 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 374 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 375 } \
222 while ((cnt) > newcnt); \ 376 while ((cnt) > newcnt); \
223 \ 377 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 379 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 380 cur = newcnt; \
227 } 381 }
382
383#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 }
390
391#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 393
229/*****************************************************************************/ 394/*****************************************************************************/
230 395
231static void 396void noinline
397ev_feed_event (EV_P_ void *w, int revents)
398{
399 W w_ = (W)w;
400
401 if (expect_false (w_->pending))
402 {
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
404 return;
405 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411}
412
413void inline_size
414queue_events (EV_P_ W *events, int eventcnt, int type)
415{
416 int i;
417
418 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type);
420}
421
422/*****************************************************************************/
423
424void inline_size
232anfds_init (ANFD *base, int count) 425anfds_init (ANFD *base, int count)
233{ 426{
234 while (count--) 427 while (count--)
235 { 428 {
236 base->head = 0; 429 base->head = 0;
239 432
240 ++base; 433 ++base;
241 } 434 }
242} 435}
243 436
244static void 437void inline_speed
245event (EV_P_ W w, int events)
246{
247 if (w->pending)
248 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
251 }
252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
269fd_event (EV_P_ int fd, int events) 438fd_event (EV_P_ int fd, int revents)
270{ 439{
271 ANFD *anfd = anfds + fd; 440 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 441 ev_io *w;
273 442
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
275 { 444 {
276 int ev = w->events & events; 445 int ev = w->events & revents;
277 446
278 if (ev) 447 if (ev)
279 event (EV_A_ (W)w, ev); 448 ev_feed_event (EV_A_ (W)w, ev);
280 } 449 }
281} 450}
282 451
283/*****************************************************************************/ 452void
453ev_feed_fd_event (EV_P_ int fd, int revents)
454{
455 fd_event (EV_A_ fd, revents);
456}
284 457
285static void 458void inline_size
286fd_reify (EV_P) 459fd_reify (EV_P)
287{ 460{
288 int i; 461 int i;
289 462
290 for (i = 0; i < fdchangecnt; ++i) 463 for (i = 0; i < fdchangecnt; ++i)
291 { 464 {
292 int fd = fdchanges [i]; 465 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd; 466 ANFD *anfd = anfds + fd;
294 struct ev_io *w; 467 ev_io *w;
295 468
296 int events = 0; 469 int events = 0;
297 470
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
299 events |= w->events; 472 events |= w->events;
300 473
474#if EV_SELECT_IS_WINSOCKET
475 if (events)
476 {
477 unsigned long argp;
478 anfd->handle = _get_osfhandle (fd);
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 }
481#endif
482
301 anfd->reify = 0; 483 anfd->reify = 0;
302 484
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 485 backend_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 486 anfd->events = events;
307 }
308 } 487 }
309 488
310 fdchangecnt = 0; 489 fdchangecnt = 0;
311} 490}
312 491
313static void 492void inline_size
314fd_change (EV_P_ int fd) 493fd_change (EV_P_ int fd)
315{ 494{
316 if (anfds [fd].reify || fdchangecnt < 0) 495 if (expect_false (anfds [fd].reify))
317 return; 496 return;
318 497
319 anfds [fd].reify = 1; 498 anfds [fd].reify = 1;
320 499
321 ++fdchangecnt; 500 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 502 fdchanges [fdchangecnt - 1] = fd;
324} 503}
325 504
326static void 505void inline_speed
327fd_kill (EV_P_ int fd) 506fd_kill (EV_P_ int fd)
328{ 507{
329 struct ev_io *w; 508 ev_io *w;
330 509
331 while ((w = (struct ev_io *)anfds [fd].head)) 510 while ((w = (ev_io *)anfds [fd].head))
332 { 511 {
333 ev_io_stop (EV_A_ w); 512 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 514 }
515}
516
517int inline_size
518fd_valid (int fd)
519{
520#ifdef _WIN32
521 return _get_osfhandle (fd) != -1;
522#else
523 return fcntl (fd, F_GETFD) != -1;
524#endif
336} 525}
337 526
338/* called on EBADF to verify fds */ 527/* called on EBADF to verify fds */
339static void 528static void noinline
340fd_ebadf (EV_P) 529fd_ebadf (EV_P)
341{ 530{
342 int fd; 531 int fd;
343 532
344 for (fd = 0; fd < anfdmax; ++fd) 533 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 534 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 535 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 536 fd_kill (EV_A_ fd);
348} 537}
349 538
350/* called on ENOMEM in select/poll to kill some fds and retry */ 539/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 540static void noinline
352fd_enomem (EV_P) 541fd_enomem (EV_P)
353{ 542{
354 int fd = anfdmax; 543 int fd;
355 544
356 while (fd--) 545 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 546 if (anfds [fd].events)
358 { 547 {
359 close (fd);
360 fd_kill (EV_A_ fd); 548 fd_kill (EV_A_ fd);
361 return; 549 return;
362 } 550 }
363} 551}
364 552
365/* susually called after fork if method needs to re-arm all fds from scratch */ 553/* usually called after fork if backend needs to re-arm all fds from scratch */
366static void 554static void noinline
367fd_rearm_all (EV_P) 555fd_rearm_all (EV_P)
368{ 556{
369 int fd; 557 int fd;
370 558
371 /* this should be highly optimised to not do anything but set a flag */ 559 /* this should be highly optimised to not do anything but set a flag */
377 } 565 }
378} 566}
379 567
380/*****************************************************************************/ 568/*****************************************************************************/
381 569
382static void 570void inline_speed
383upheap (WT *heap, int k) 571upheap (WT *heap, int k)
384{ 572{
385 WT w = heap [k]; 573 WT w = heap [k];
386 574
387 while (k && heap [k >> 1]->at > w->at) 575 while (k && heap [k >> 1]->at > w->at)
388 { 576 {
389 heap [k] = heap [k >> 1]; 577 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 578 ((W)heap [k])->active = k + 1;
391 k >>= 1; 579 k >>= 1;
392 } 580 }
393 581
394 heap [k] = w; 582 heap [k] = w;
395 heap [k]->active = k + 1; 583 ((W)heap [k])->active = k + 1;
396 584
397} 585}
398 586
399static void 587void inline_speed
400downheap (WT *heap, int N, int k) 588downheap (WT *heap, int N, int k)
401{ 589{
402 WT w = heap [k]; 590 WT w = heap [k];
403 591
404 while (k < (N >> 1)) 592 while (k < (N >> 1))
410 598
411 if (w->at <= heap [j]->at) 599 if (w->at <= heap [j]->at)
412 break; 600 break;
413 601
414 heap [k] = heap [j]; 602 heap [k] = heap [j];
415 heap [k]->active = k + 1; 603 ((W)heap [k])->active = k + 1;
416 k = j; 604 k = j;
417 } 605 }
418 606
419 heap [k] = w; 607 heap [k] = w;
420 heap [k]->active = k + 1; 608 ((W)heap [k])->active = k + 1;
609}
610
611void inline_size
612adjustheap (WT *heap, int N, int k)
613{
614 upheap (heap, k);
615 downheap (heap, N, k);
421} 616}
422 617
423/*****************************************************************************/ 618/*****************************************************************************/
424 619
425typedef struct 620typedef struct
426{ 621{
427 struct ev_watcher_list *head; 622 WL head;
428 sig_atomic_t volatile gotsig; 623 sig_atomic_t volatile gotsig;
429} ANSIG; 624} ANSIG;
430 625
431static ANSIG *signals; 626static ANSIG *signals;
432static int signalmax; 627static int signalmax;
433 628
434static int sigpipe [2]; 629static int sigpipe [2];
435static sig_atomic_t volatile gotsig; 630static sig_atomic_t volatile gotsig;
436static struct ev_io sigev; 631static ev_io sigev;
437 632
438static void 633void inline_size
439signals_init (ANSIG *base, int count) 634signals_init (ANSIG *base, int count)
440{ 635{
441 while (count--) 636 while (count--)
442 { 637 {
443 base->head = 0; 638 base->head = 0;
448} 643}
449 644
450static void 645static void
451sighandler (int signum) 646sighandler (int signum)
452{ 647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
453 signals [signum - 1].gotsig = 1; 652 signals [signum - 1].gotsig = 1;
454 653
455 if (!gotsig) 654 if (!gotsig)
456 { 655 {
457 int old_errno = errno; 656 int old_errno = errno;
459 write (sigpipe [1], &signum, 1); 658 write (sigpipe [1], &signum, 1);
460 errno = old_errno; 659 errno = old_errno;
461 } 660 }
462} 661}
463 662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
464static void 683static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 684sigcb (EV_P_ ev_io *iow, int revents)
466{ 685{
467 struct ev_watcher_list *w;
468 int signum; 686 int signum;
469 687
470 read (sigpipe [0], &revents, 1); 688 read (sigpipe [0], &revents, 1);
471 gotsig = 0; 689 gotsig = 0;
472 690
473 for (signum = signalmax; signum--; ) 691 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 692 if (signals [signum].gotsig)
475 { 693 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 694}
482 695
483static void 696void inline_size
697fd_intern (int fd)
698{
699#ifdef _WIN32
700 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif
706}
707
708static void noinline
484siginit (EV_P) 709siginit (EV_P)
485{ 710{
486#ifndef WIN32 711 fd_intern (sigpipe [0]);
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 712 fd_intern (sigpipe [1]);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494 713
495 ev_io_set (&sigev, sigpipe [0], EV_READ); 714 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev); 715 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 716 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 717}
499 718
500/*****************************************************************************/ 719/*****************************************************************************/
501 720
721static ev_child *childs [EV_PID_HASHSIZE];
722
502#ifndef WIN32 723#ifndef _WIN32
503 724
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 725static ev_signal childev;
726
727void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
729{
730 ev_child *w;
731
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
733 if (w->pid == pid || !w->pid)
734 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
736 w->rpid = pid;
737 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 }
740}
506 741
507#ifndef WCONTINUED 742#ifndef WCONTINUED
508# define WCONTINUED 0 743# define WCONTINUED 0
509#endif 744#endif
510 745
511static void 746static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 747childcb (EV_P_ ev_signal *sw, int revents)
528{ 748{
529 int pid, status; 749 int pid, status;
530 750
751 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 752 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 753 if (!WCONTINUED
754 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return;
757
533 /* make sure we are called again until all childs have been reaped */ 758 /* make sure we are called again until all childs have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 761
536 child_reap (EV_A_ sw, pid, pid, status); 762 child_reap (EV_A_ sw, pid, pid, status);
763 if (EV_PID_HASHSIZE > 1)
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 }
539} 765}
540 766
541#endif 767#endif
542 768
543/*****************************************************************************/ 769/*****************************************************************************/
544 770
771#if EV_USE_PORT
772# include "ev_port.c"
773#endif
545#if EV_USE_KQUEUE 774#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 775# include "ev_kqueue.c"
547#endif 776#endif
548#if EV_USE_EPOLL 777#if EV_USE_EPOLL
549# include "ev_epoll.c" 778# include "ev_epoll.c"
566{ 795{
567 return EV_VERSION_MINOR; 796 return EV_VERSION_MINOR;
568} 797}
569 798
570/* return true if we are running with elevated privileges and should ignore env variables */ 799/* return true if we are running with elevated privileges and should ignore env variables */
571static int 800int inline_size
572enable_secure (void) 801enable_secure (void)
573{ 802{
574#ifdef WIN32 803#ifdef _WIN32
575 return 0; 804 return 0;
576#else 805#else
577 return getuid () != geteuid () 806 return getuid () != geteuid ()
578 || getgid () != getegid (); 807 || getgid () != getegid ();
579#endif 808#endif
580} 809}
581 810
582int 811unsigned int
583ev_method (EV_P) 812ev_supported_backends (void)
584{ 813{
585 return method; 814 unsigned int flags = 0;
815
816 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
817 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
818 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
819 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
820 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
821
822 return flags;
823}
824
825unsigned int
826ev_recommended_backends (void)
827{
828 unsigned int flags = ev_supported_backends ();
829
830#ifndef __NetBSD__
831 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE;
834#endif
835#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation
837 flags &= ~EVBACKEND_POLL;
838#endif
839
840 return flags;
841}
842
843unsigned int
844ev_embeddable_backends (void)
845{
846 return EVBACKEND_EPOLL
847 | EVBACKEND_KQUEUE
848 | EVBACKEND_PORT;
849}
850
851unsigned int
852ev_backend (EV_P)
853{
854 return backend;
586} 855}
587 856
588static void 857static void
589loop_init (EV_P_ int methods) 858loop_init (EV_P_ unsigned int flags)
590{ 859{
591 if (!method) 860 if (!backend)
592 { 861 {
593#if EV_USE_MONOTONIC 862#if EV_USE_MONOTONIC
594 { 863 {
595 struct timespec ts; 864 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 865 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 866 have_monotonic = 1;
598 } 867 }
599#endif 868#endif
600 869
601 rt_now = ev_time (); 870 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 871 mn_now = get_clock ();
603 now_floor = mn_now; 872 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 873 rtmn_diff = ev_rt_now - mn_now;
605 874
606 if (methods == EVMETHOD_AUTO) 875 if (!(flags & EVFLAG_NOENV)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 876 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 878 flags = atoi (getenv ("LIBEV_FLAGS"));
609 else
610 methods = EVMETHOD_ANY;
611 879
612 method = 0; 880 if (!(flags & 0x0000ffffUL))
881 flags |= ev_recommended_backends ();
882
883 backend = 0;
884#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif
613#if EV_USE_KQUEUE 887#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
615#endif 889#endif
616#if EV_USE_EPOLL 890#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 891 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
618#endif 892#endif
619#if EV_USE_POLL 893#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 894 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
621#endif 895#endif
622#if EV_USE_SELECT 896#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
624#endif 898#endif
625 }
626}
627 899
628void 900 ev_init (&sigev, sigcb);
901 ev_set_priority (&sigev, EV_MAXPRI);
902 }
903}
904
905static void
629loop_destroy (EV_P) 906loop_destroy (EV_P)
630{ 907{
908 int i;
909
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif
631#if EV_USE_KQUEUE 913#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
633#endif 915#endif
634#if EV_USE_EPOLL 916#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
636#endif 918#endif
637#if EV_USE_POLL 919#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 920 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
639#endif 921#endif
640#if EV_USE_SELECT 922#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
642#endif 924#endif
643 925
644 method = 0; 926 for (i = NUMPRI; i--; )
645 /*TODO*/ 927 array_free (pending, [i]);
646}
647 928
648void 929 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0);
931 array_free (timer, EMPTY0);
932#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0);
934#endif
935 array_free (idle, EMPTY0);
936 array_free (prepare, EMPTY0);
937 array_free (check, EMPTY0);
938
939 backend = 0;
940}
941
942static void
649loop_fork (EV_P) 943loop_fork (EV_P)
650{ 944{
651 /*TODO*/ 945#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif
948#if EV_USE_KQUEUE
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif
652#if EV_USE_EPOLL 951#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
654#endif 953#endif
655#if EV_USE_KQUEUE 954
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 955 if (ev_is_active (&sigev))
657#endif 956 {
957 /* default loop */
958
959 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev);
961 close (sigpipe [0]);
962 close (sigpipe [1]);
963
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A);
968 }
969
970 postfork = 0;
658} 971}
659 972
660#if EV_MULTIPLICITY 973#if EV_MULTIPLICITY
661struct ev_loop * 974struct ev_loop *
662ev_loop_new (int methods) 975ev_loop_new (unsigned int flags)
663{ 976{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
665 978
979 memset (loop, 0, sizeof (struct ev_loop));
980
666 loop_init (EV_A_ methods); 981 loop_init (EV_A_ flags);
667 982
668 if (ev_method (EV_A)) 983 if (ev_backend (EV_A))
669 return loop; 984 return loop;
670 985
671 return 0; 986 return 0;
672} 987}
673 988
674void 989void
675ev_loop_destroy (EV_P) 990ev_loop_destroy (EV_P)
676{ 991{
677 loop_destroy (EV_A); 992 loop_destroy (EV_A);
678 free (loop); 993 ev_free (loop);
679} 994}
680 995
681void 996void
682ev_loop_fork (EV_P) 997ev_loop_fork (EV_P)
683{ 998{
684 loop_fork (EV_A); 999 postfork = 1;
685} 1000}
686 1001
687#endif 1002#endif
688 1003
689#if EV_MULTIPLICITY 1004#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 1005struct ev_loop *
1006ev_default_loop_init (unsigned int flags)
694#else 1007#else
695static int default_loop;
696
697int 1008int
1009ev_default_loop (unsigned int flags)
698#endif 1010#endif
699ev_default_loop (int methods)
700{ 1011{
701 if (sigpipe [0] == sigpipe [1]) 1012 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe)) 1013 if (pipe (sigpipe))
703 return 0; 1014 return 0;
704 1015
705 if (!default_loop) 1016 if (!ev_default_loop_ptr)
706 { 1017 {
707#if EV_MULTIPLICITY 1018#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct; 1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
709#else 1020#else
710 default_loop = 1; 1021 ev_default_loop_ptr = 1;
711#endif 1022#endif
712 1023
713 loop_init (EV_A_ methods); 1024 loop_init (EV_A_ flags);
714 1025
715 if (ev_method (EV_A)) 1026 if (ev_backend (EV_A))
716 { 1027 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 1028 siginit (EV_A);
720 1029
721#ifndef WIN32 1030#ifndef _WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 1031 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 1032 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 1033 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1034 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 1035#endif
727 } 1036 }
728 else 1037 else
729 default_loop = 0; 1038 ev_default_loop_ptr = 0;
730 } 1039 }
731 1040
732 return default_loop; 1041 return ev_default_loop_ptr;
733} 1042}
734 1043
735void 1044void
736ev_default_destroy (void) 1045ev_default_destroy (void)
737{ 1046{
738#if EV_MULTIPLICITY 1047#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 1048 struct ev_loop *loop = ev_default_loop_ptr;
740#endif 1049#endif
741 1050
1051#ifndef _WIN32
742 ev_ref (EV_A); /* child watcher */ 1052 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 1053 ev_signal_stop (EV_A_ &childev);
1054#endif
744 1055
745 ev_ref (EV_A); /* signal watcher */ 1056 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 1057 ev_io_stop (EV_A_ &sigev);
747 1058
748 close (sigpipe [0]); sigpipe [0] = 0; 1059 close (sigpipe [0]); sigpipe [0] = 0;
753 1064
754void 1065void
755ev_default_fork (void) 1066ev_default_fork (void)
756{ 1067{
757#if EV_MULTIPLICITY 1068#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 1069 struct ev_loop *loop = ev_default_loop_ptr;
759#endif 1070#endif
760 1071
761 loop_fork (EV_A); 1072 if (backend)
762 1073 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 1074}
771 1075
772/*****************************************************************************/ 1076/*****************************************************************************/
773 1077
774static void 1078int inline_size
1079any_pending (EV_P)
1080{
1081 int pri;
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088}
1089
1090void inline_speed
775call_pending (EV_P) 1091call_pending (EV_P)
776{ 1092{
777 int pri; 1093 int pri;
778 1094
779 for (pri = NUMPRI; pri--; ) 1095 for (pri = NUMPRI; pri--; )
780 while (pendingcnt [pri]) 1096 while (pendingcnt [pri])
781 { 1097 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 1099
784 if (p->w) 1100 if (expect_true (p->w))
785 { 1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending));
1103
786 p->w->pending = 0; 1104 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 1105 EV_CB_INVOKE (p->w, p->events);
788 } 1106 }
789 } 1107 }
790} 1108}
791 1109
792static void 1110void inline_size
793timers_reify (EV_P) 1111timers_reify (EV_P)
794{ 1112{
795 while (timercnt && timers [0]->at <= mn_now) 1113 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 1114 {
797 struct ev_timer *w = timers [0]; 1115 ev_timer *w = timers [0];
798 1116
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 1118
801 /* first reschedule or stop timer */ 1119 /* first reschedule or stop timer */
802 if (w->repeat) 1120 if (w->repeat)
803 { 1121 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123
805 w->at = mn_now + w->repeat; 1124 ((WT)w)->at += w->repeat;
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
806 downheap ((WT *)timers, timercnt, 0); 1128 downheap ((WT *)timers, timercnt, 0);
807 } 1129 }
808 else 1130 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1132
811 event (EV_A_ (W)w, EV_TIMEOUT); 1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1134 }
813} 1135}
814 1136
815static void 1137#if EV_PERIODIC_ENABLE
1138void inline_size
816periodics_reify (EV_P) 1139periodics_reify (EV_P)
817{ 1140{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1142 {
820 struct ev_periodic *w = periodics [0]; 1143 ev_periodic *w = periodics [0];
821 1144
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1145 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1146
824 /* first reschedule or stop timer */ 1147 /* first reschedule or stop timer */
825 if (w->interval) 1148 if (w->reschedule_cb)
826 { 1149 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0);
1153 }
1154 else if (w->interval)
1155 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1158 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1159 }
831 else 1160 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1162
834 event (EV_A_ (W)w, EV_PERIODIC); 1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1164 }
836} 1165}
837 1166
838static void 1167static void noinline
839periodics_reschedule (EV_P) 1168periodics_reschedule (EV_P)
840{ 1169{
841 int i; 1170 int i;
842 1171
843 /* adjust periodics after time jump */ 1172 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1173 for (i = 0; i < periodiccnt; ++i)
845 { 1174 {
846 struct ev_periodic *w = periodics [i]; 1175 ev_periodic *w = periodics [i];
847 1176
1177 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1179 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1181 }
861}
862 1182
863inline int 1183 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i);
1186}
1187#endif
1188
1189int inline_size
864time_update_monotonic (EV_P) 1190time_update_monotonic (EV_P)
865{ 1191{
866 mn_now = get_clock (); 1192 mn_now = get_clock ();
867 1193
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1195 {
870 rt_now = rtmn_diff + mn_now; 1196 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1197 return 0;
872 } 1198 }
873 else 1199 else
874 { 1200 {
875 now_floor = mn_now; 1201 now_floor = mn_now;
876 rt_now = ev_time (); 1202 ev_rt_now = ev_time ();
877 return 1; 1203 return 1;
878 } 1204 }
879} 1205}
880 1206
881static void 1207void inline_size
882time_update (EV_P) 1208time_update (EV_P)
883{ 1209{
884 int i; 1210 int i;
885 1211
886#if EV_USE_MONOTONIC 1212#if EV_USE_MONOTONIC
888 { 1214 {
889 if (time_update_monotonic (EV_A)) 1215 if (time_update_monotonic (EV_A))
890 { 1216 {
891 ev_tstamp odiff = rtmn_diff; 1217 ev_tstamp odiff = rtmn_diff;
892 1218
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
894 { 1228 {
895 rtmn_diff = rt_now - mn_now; 1229 rtmn_diff = ev_rt_now - mn_now;
896 1230
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1232 return; /* all is well */
899 1233
900 rt_now = ev_time (); 1234 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1235 mn_now = get_clock ();
902 now_floor = mn_now; 1236 now_floor = mn_now;
903 } 1237 }
904 1238
1239# if EV_PERIODIC_ENABLE
905 periodics_reschedule (EV_A); 1240 periodics_reschedule (EV_A);
1241# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1242 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1244 }
909 } 1245 }
910 else 1246 else
911#endif 1247#endif
912 { 1248 {
913 rt_now = ev_time (); 1249 ev_rt_now = ev_time ();
914 1250
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1252 {
1253#if EV_PERIODIC_ENABLE
917 periodics_reschedule (EV_A); 1254 periodics_reschedule (EV_A);
1255#endif
918 1256
919 /* adjust timers. this is easy, as the offset is the same for all */ 1257 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1258 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1260 }
923 1261
924 mn_now = rt_now; 1262 mn_now = ev_rt_now;
925 } 1263 }
926} 1264}
927 1265
928void 1266void
929ev_ref (EV_P) 1267ev_ref (EV_P)
940static int loop_done; 1278static int loop_done;
941 1279
942void 1280void
943ev_loop (EV_P_ int flags) 1281ev_loop (EV_P_ int flags)
944{ 1282{
945 double block;
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
947 1286
948 do 1287 while (activecnt)
949 { 1288 {
1289 /* we might have forked, so reify kernel state if necessary */
1290 #if EV_FORK_ENABLE
1291 if (expect_false (postfork))
1292 if (forkcnt)
1293 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A);
1296 }
1297 #endif
1298
950 /* queue check watchers (and execute them) */ 1299 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt)) 1300 if (expect_false (preparecnt))
952 { 1301 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1303 call_pending (EV_A);
955 } 1304 }
956 1305
1306 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork))
1308 loop_fork (EV_A);
1309
957 /* update fd-related kernel structures */ 1310 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1311 fd_reify (EV_A);
959 1312
960 /* calculate blocking time */ 1313 /* calculate blocking time */
1314 {
1315 double block;
961 1316
962 /* we only need this for !monotonic clockor timers, but as we basically 1317 if (flags & EVLOOP_NONBLOCK || idlecnt)
963 always have timers, we just calculate it always */ 1318 block = 0.; /* do not block at all */
1319 else
1320 {
1321 /* update time to cancel out callback processing overhead */
964#if EV_USE_MONOTONIC 1322#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1323 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1324 time_update_monotonic (EV_A);
967 else 1325 else
968#endif 1326#endif
969 { 1327 {
970 rt_now = ev_time (); 1328 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1329 mn_now = ev_rt_now;
972 } 1330 }
973 1331
974 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.;
976 else
977 {
978 block = MAX_BLOCKTIME; 1332 block = MAX_BLOCKTIME;
979 1333
980 if (timercnt) 1334 if (timercnt)
981 { 1335 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
983 if (block > to) block = to; 1337 if (block > to) block = to;
984 } 1338 }
985 1339
1340#if EV_PERIODIC_ENABLE
986 if (periodiccnt) 1341 if (periodiccnt)
987 { 1342 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
989 if (block > to) block = to; 1344 if (block > to) block = to;
990 } 1345 }
1346#endif
991 1347
992 if (block < 0.) block = 0.; 1348 if (expect_false (block < 0.)) block = 0.;
993 } 1349 }
994 1350
995 method_poll (EV_A_ block); 1351 backend_poll (EV_A_ block);
1352 }
996 1353
997 /* update rt_now, do magic */ 1354 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1355 time_update (EV_A);
999 1356
1000 /* queue pending timers and reschedule them */ 1357 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1358 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE
1002 periodics_reify (EV_A); /* absolute timers called first */ 1360 periodics_reify (EV_A); /* absolute timers called first */
1361#endif
1003 1362
1004 /* queue idle watchers unless io or timers are pending */ 1363 /* queue idle watchers unless other events are pending */
1005 if (!pendingcnt) 1364 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1366
1008 /* queue check watchers, to be executed first */ 1367 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1368 if (expect_false (checkcnt))
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1011 1370
1012 call_pending (EV_A); 1371 call_pending (EV_A);
1013 }
1014 while (activecnt && !loop_done);
1015 1372
1016 if (loop_done != 2) 1373 if (expect_false (loop_done))
1017 loop_done = 0; 1374 break;
1375 }
1376
1377 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL;
1018} 1379}
1019 1380
1020void 1381void
1021ev_unloop (EV_P_ int how) 1382ev_unloop (EV_P_ int how)
1022{ 1383{
1023 loop_done = how; 1384 loop_done = how;
1024} 1385}
1025 1386
1026/*****************************************************************************/ 1387/*****************************************************************************/
1027 1388
1028inline void 1389void inline_size
1029wlist_add (WL *head, WL elem) 1390wlist_add (WL *head, WL elem)
1030{ 1391{
1031 elem->next = *head; 1392 elem->next = *head;
1032 *head = elem; 1393 *head = elem;
1033} 1394}
1034 1395
1035inline void 1396void inline_size
1036wlist_del (WL *head, WL elem) 1397wlist_del (WL *head, WL elem)
1037{ 1398{
1038 while (*head) 1399 while (*head)
1039 { 1400 {
1040 if (*head == elem) 1401 if (*head == elem)
1045 1406
1046 head = &(*head)->next; 1407 head = &(*head)->next;
1047 } 1408 }
1048} 1409}
1049 1410
1050inline void 1411void inline_speed
1051ev_clear_pending (EV_P_ W w) 1412ev_clear_pending (EV_P_ W w)
1052{ 1413{
1053 if (w->pending) 1414 if (w->pending)
1054 { 1415 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1416 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1056 w->pending = 0; 1417 w->pending = 0;
1057 } 1418 }
1058} 1419}
1059 1420
1060inline void 1421void inline_speed
1061ev_start (EV_P_ W w, int active) 1422ev_start (EV_P_ W w, int active)
1062{ 1423{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065 1426
1066 w->active = active; 1427 w->active = active;
1067 ev_ref (EV_A); 1428 ev_ref (EV_A);
1068} 1429}
1069 1430
1070inline void 1431void inline_size
1071ev_stop (EV_P_ W w) 1432ev_stop (EV_P_ W w)
1072{ 1433{
1073 ev_unref (EV_A); 1434 ev_unref (EV_A);
1074 w->active = 0; 1435 w->active = 0;
1075} 1436}
1076 1437
1077/*****************************************************************************/ 1438/*****************************************************************************/
1078 1439
1079void 1440void
1080ev_io_start (EV_P_ struct ev_io *w) 1441ev_io_start (EV_P_ ev_io *w)
1081{ 1442{
1082 int fd = w->fd; 1443 int fd = w->fd;
1083 1444
1084 if (ev_is_active (w)) 1445 if (expect_false (ev_is_active (w)))
1085 return; 1446 return;
1086 1447
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1448 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1449
1089 ev_start (EV_A_ (W)w, 1); 1450 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1452 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1453
1093 fd_change (EV_A_ fd); 1454 fd_change (EV_A_ fd);
1094} 1455}
1095 1456
1096void 1457void
1097ev_io_stop (EV_P_ struct ev_io *w) 1458ev_io_stop (EV_P_ ev_io *w)
1098{ 1459{
1099 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1101 return; 1462 return;
1463
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1102 1465
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1105 1468
1106 fd_change (EV_A_ w->fd); 1469 fd_change (EV_A_ w->fd);
1107} 1470}
1108 1471
1109void 1472void
1110ev_timer_start (EV_P_ struct ev_timer *w) 1473ev_timer_start (EV_P_ ev_timer *w)
1111{ 1474{
1112 if (ev_is_active (w)) 1475 if (expect_false (ev_is_active (w)))
1113 return; 1476 return;
1114 1477
1115 w->at += mn_now; 1478 ((WT)w)->at += mn_now;
1116 1479
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1481
1119 ev_start (EV_A_ (W)w, ++timercnt); 1482 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1121 timers [timercnt - 1] = w; 1484 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1485 upheap ((WT *)timers, timercnt - 1);
1123}
1124 1486
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1488}
1489
1125void 1490void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1491ev_timer_stop (EV_P_ ev_timer *w)
1127{ 1492{
1128 ev_clear_pending (EV_A_ (W)w); 1493 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1494 if (expect_false (!ev_is_active (w)))
1130 return; 1495 return;
1131 1496
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1498
1132 if (w->active < timercnt--) 1499 if (expect_true (((W)w)->active < timercnt--))
1133 { 1500 {
1134 timers [w->active - 1] = timers [timercnt]; 1501 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1503 }
1137 1504
1138 w->at = w->repeat; 1505 ((WT)w)->at -= mn_now;
1139 1506
1140 ev_stop (EV_A_ (W)w); 1507 ev_stop (EV_A_ (W)w);
1141} 1508}
1142 1509
1143void 1510void
1144ev_timer_again (EV_P_ struct ev_timer *w) 1511ev_timer_again (EV_P_ ev_timer *w)
1145{ 1512{
1146 if (ev_is_active (w)) 1513 if (ev_is_active (w))
1147 { 1514 {
1148 if (w->repeat) 1515 if (w->repeat)
1149 { 1516 {
1150 w->at = mn_now + w->repeat; 1517 ((WT)w)->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1152 } 1519 }
1153 else 1520 else
1154 ev_timer_stop (EV_A_ w); 1521 ev_timer_stop (EV_A_ w);
1155 } 1522 }
1156 else if (w->repeat) 1523 else if (w->repeat)
1524 {
1525 w->at = w->repeat;
1157 ev_timer_start (EV_A_ w); 1526 ev_timer_start (EV_A_ w);
1527 }
1158} 1528}
1159 1529
1530#if EV_PERIODIC_ENABLE
1160void 1531void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1532ev_periodic_start (EV_P_ ev_periodic *w)
1162{ 1533{
1163 if (ev_is_active (w)) 1534 if (expect_false (ev_is_active (w)))
1164 return; 1535 return;
1165 1536
1537 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval)
1540 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1542 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1544 }
1171 1545
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1546 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 1548 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1549 upheap ((WT *)periodics, periodiccnt - 1);
1176}
1177 1550
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1552}
1553
1178void 1554void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1555ev_periodic_stop (EV_P_ ev_periodic *w)
1180{ 1556{
1181 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1558 if (expect_false (!ev_is_active (w)))
1183 return; 1559 return;
1184 1560
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1562
1185 if (w->active < periodiccnt--) 1563 if (expect_true (((W)w)->active < periodiccnt--))
1186 { 1564 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1565 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1567 }
1190 1568
1191 ev_stop (EV_A_ (W)w); 1569 ev_stop (EV_A_ (W)w);
1192} 1570}
1193 1571
1194void 1572void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1573ev_periodic_again (EV_P_ ev_periodic *w)
1196{ 1574{
1197 if (ev_is_active (w)) 1575 /* TODO: use adjustheap and recalculation */
1198 return;
1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1576 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w);
1214} 1578}
1215 1579#endif
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259 1580
1260#ifndef SA_RESTART 1581#ifndef SA_RESTART
1261# define SA_RESTART 0 1582# define SA_RESTART 0
1262#endif 1583#endif
1263 1584
1264void 1585void
1265ev_signal_start (EV_P_ struct ev_signal *w) 1586ev_signal_start (EV_P_ ev_signal *w)
1266{ 1587{
1267#if EV_MULTIPLICITY 1588#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 1590#endif
1270 if (ev_is_active (w)) 1591 if (expect_false (ev_is_active (w)))
1271 return; 1592 return;
1272 1593
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1595
1275 ev_start (EV_A_ (W)w, 1); 1596 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1599
1279 if (!w->next) 1600 if (!((WL)w)->next)
1280 { 1601 {
1602#if _WIN32
1603 signal (w->signum, sighandler);
1604#else
1281 struct sigaction sa; 1605 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1606 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1607 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1609 sigaction (w->signum, &sa, 0);
1610#endif
1286 } 1611 }
1287} 1612}
1288 1613
1289void 1614void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1615ev_signal_stop (EV_P_ ev_signal *w)
1291{ 1616{
1292 ev_clear_pending (EV_A_ (W)w); 1617 ev_clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w)) 1618 if (expect_false (!ev_is_active (w)))
1294 return; 1619 return;
1295 1620
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1297 ev_stop (EV_A_ (W)w); 1622 ev_stop (EV_A_ (W)w);
1298 1623
1299 if (!signals [w->signum - 1].head) 1624 if (!signals [w->signum - 1].head)
1300 signal (w->signum, SIG_DFL); 1625 signal (w->signum, SIG_DFL);
1301} 1626}
1302 1627
1303void 1628void
1304ev_child_start (EV_P_ struct ev_child *w) 1629ev_child_start (EV_P_ ev_child *w)
1305{ 1630{
1306#if EV_MULTIPLICITY 1631#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1308#endif 1633#endif
1309 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1310 return; 1635 return;
1311 1636
1312 ev_start (EV_A_ (W)w, 1); 1637 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1314} 1639}
1315 1640
1316void 1641void
1317ev_child_stop (EV_P_ struct ev_child *w) 1642ev_child_stop (EV_P_ ev_child *w)
1318{ 1643{
1319 ev_clear_pending (EV_A_ (W)w); 1644 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1645 if (expect_false (!ev_is_active (w)))
1321 return; 1646 return;
1322 1647
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1649 ev_stop (EV_A_ (W)w);
1325} 1650}
1326 1651
1652#if EV_STAT_ENABLE
1653
1654# ifdef _WIN32
1655# undef lstat
1656# define lstat(a,b) _stati64 (a,b)
1657# endif
1658
1659#define DEF_STAT_INTERVAL 5.0074891
1660#define MIN_STAT_INTERVAL 0.1074891
1661
1662void
1663ev_stat_stat (EV_P_ ev_stat *w)
1664{
1665 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1;
1669}
1670
1671static void
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675
1676 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w);
1680
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1682 ev_feed_event (EV_A_ w, EV_STAT);
1683}
1684
1685void
1686ev_stat_start (EV_P_ ev_stat *w)
1687{
1688 if (expect_false (ev_is_active (w)))
1689 return;
1690
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w);
1696
1697 if (w->interval < MIN_STAT_INTERVAL)
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1701 ev_set_priority (&w->timer, ev_priority (w));
1702 ev_timer_start (EV_A_ &w->timer);
1703
1704 ev_start (EV_A_ (W)w, 1);
1705}
1706
1707void
1708ev_stat_stop (EV_P_ ev_stat *w)
1709{
1710 ev_clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w)))
1712 return;
1713
1714 ev_timer_stop (EV_A_ &w->timer);
1715
1716 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719
1720void
1721ev_idle_start (EV_P_ ev_idle *w)
1722{
1723 if (expect_false (ev_is_active (w)))
1724 return;
1725
1726 ev_start (EV_A_ (W)w, ++idlecnt);
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1728 idles [idlecnt - 1] = w;
1729}
1730
1731void
1732ev_idle_stop (EV_P_ ev_idle *w)
1733{
1734 ev_clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w)))
1736 return;
1737
1738 {
1739 int active = ((W)w)->active;
1740 idles [active - 1] = idles [--idlecnt];
1741 ((W)idles [active - 1])->active = active;
1742 }
1743
1744 ev_stop (EV_A_ (W)w);
1745}
1746
1747void
1748ev_prepare_start (EV_P_ ev_prepare *w)
1749{
1750 if (expect_false (ev_is_active (w)))
1751 return;
1752
1753 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w;
1756}
1757
1758void
1759ev_prepare_stop (EV_P_ ev_prepare *w)
1760{
1761 ev_clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w)))
1763 return;
1764
1765 {
1766 int active = ((W)w)->active;
1767 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active;
1769 }
1770
1771 ev_stop (EV_A_ (W)w);
1772}
1773
1774void
1775ev_check_start (EV_P_ ev_check *w)
1776{
1777 if (expect_false (ev_is_active (w)))
1778 return;
1779
1780 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w;
1783}
1784
1785void
1786ev_check_stop (EV_P_ ev_check *w)
1787{
1788 ev_clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w)))
1790 return;
1791
1792 {
1793 int active = ((W)w)->active;
1794 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active;
1796 }
1797
1798 ev_stop (EV_A_ (W)w);
1799}
1800
1801#if EV_EMBED_ENABLE
1802void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w)
1804{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK);
1806}
1807
1808static void
1809embed_cb (EV_P_ ev_io *io, int revents)
1810{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812
1813 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else
1816 ev_embed_sweep (loop, w);
1817}
1818
1819void
1820ev_embed_start (EV_P_ ev_embed *w)
1821{
1822 if (expect_false (ev_is_active (w)))
1823 return;
1824
1825 {
1826 struct ev_loop *loop = w->loop;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1829 }
1830
1831 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io);
1833
1834 ev_start (EV_A_ (W)w, 1);
1835}
1836
1837void
1838ev_embed_stop (EV_P_ ev_embed *w)
1839{
1840 ev_clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w)))
1842 return;
1843
1844 ev_io_stop (EV_A_ &w->io);
1845
1846 ev_stop (EV_A_ (W)w);
1847}
1848#endif
1849
1850#if EV_FORK_ENABLE
1851void
1852ev_fork_start (EV_P_ ev_fork *w)
1853{
1854 if (expect_false (ev_is_active (w)))
1855 return;
1856
1857 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w;
1860}
1861
1862void
1863ev_fork_stop (EV_P_ ev_fork *w)
1864{
1865 ev_clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w)))
1867 return;
1868
1869 {
1870 int active = ((W)w)->active;
1871 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active;
1873 }
1874
1875 ev_stop (EV_A_ (W)w);
1876}
1877#endif
1878
1327/*****************************************************************************/ 1879/*****************************************************************************/
1328 1880
1329struct ev_once 1881struct ev_once
1330{ 1882{
1331 struct ev_io io; 1883 ev_io io;
1332 struct ev_timer to; 1884 ev_timer to;
1333 void (*cb)(int revents, void *arg); 1885 void (*cb)(int revents, void *arg);
1334 void *arg; 1886 void *arg;
1335}; 1887};
1336 1888
1337static void 1889static void
1340 void (*cb)(int revents, void *arg) = once->cb; 1892 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1893 void *arg = once->arg;
1342 1894
1343 ev_io_stop (EV_A_ &once->io); 1895 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1896 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1897 ev_free (once);
1346 1898
1347 cb (revents, arg); 1899 cb (revents, arg);
1348} 1900}
1349 1901
1350static void 1902static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents) 1903once_cb_io (EV_P_ ev_io *w, int revents)
1352{ 1904{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1354} 1906}
1355 1907
1356static void 1908static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents) 1909once_cb_to (EV_P_ ev_timer *w, int revents)
1358{ 1910{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1360} 1912}
1361 1913
1362void 1914void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1916{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1917 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1918
1367 if (!once) 1919 if (expect_false (!once))
1920 {
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1921 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1922 return;
1370 { 1923 }
1924
1371 once->cb = cb; 1925 once->cb = cb;
1372 once->arg = arg; 1926 once->arg = arg;
1373 1927
1374 ev_watcher_init (&once->io, once_cb_io); 1928 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1929 if (fd >= 0)
1376 { 1930 {
1377 ev_io_set (&once->io, fd, events); 1931 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1932 ev_io_start (EV_A_ &once->io);
1379 } 1933 }
1380 1934
1381 ev_watcher_init (&once->to, once_cb_to); 1935 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1936 if (timeout >= 0.)
1383 { 1937 {
1384 ev_timer_set (&once->to, timeout, 0.); 1938 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1939 ev_timer_start (EV_A_ &once->to);
1386 }
1387 } 1940 }
1388} 1941}
1389 1942
1943#ifdef __cplusplus
1944}
1945#endif
1946

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines