ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.17 by root, Wed Oct 31 14:44:15 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
36 63
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
41#include <sys/time.h> 72#include <sys/time.h>
42#include <time.h> 73#include <time.h>
43 74
44#define HAVE_EPOLL 1 75/**/
45 76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
47# ifdef CLOCK_MONOTONIC 103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 105# define EV_USE_MONOTONIC 0
49# endif 106#endif
50#endif
51 107
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 108#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0
62#endif 111#endif
112
113/**/
63 114
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
66 119
67#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
68 135
69typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
70typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
71typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
72 139
73static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
74ev_tstamp ev_now;
75int ev_method;
76
77static int have_monotonic; /* runtime */
78
79static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
80static void (*method_modify)(int fd, int oev, int nev);
81static void (*method_poll)(ev_tstamp timeout);
82 141
83/*****************************************************************************/ 142/*****************************************************************************/
84 143
85ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
86ev_time (void) 178ev_time (void)
87{ 179{
88#if HAVE_REALTIME 180#if EV_USE_REALTIME
89 struct timespec ts; 181 struct timespec ts;
90 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
91 return ts.tv_sec + ts.tv_nsec * 1e-9; 183 return ts.tv_sec + ts.tv_nsec * 1e-9;
92#else 184#else
93 struct timeval tv; 185 struct timeval tv;
94 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
95 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
96#endif 188#endif
97} 189}
98 190
99static ev_tstamp 191inline ev_tstamp
100get_clock (void) 192get_clock (void)
101{ 193{
102#if HAVE_MONOTONIC 194#if EV_USE_MONOTONIC
103 if (have_monotonic) 195 if (expect_true (have_monotonic))
104 { 196 {
105 struct timespec ts; 197 struct timespec ts;
106 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
107 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
108 } 200 }
109#endif 201#endif
110 202
111 return ev_time (); 203 return ev_time ();
112} 204}
113 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
212#define array_roundsize(base,n) ((n) | 4 & ~3)
213
114#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
115 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
116 { \ 216 { \
117 int newcnt = cur ? cur << 1 : 16; \ 217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
118 base = realloc (base, sizeof (*base) * (newcnt)); \ 224 base = realloc (base, sizeof (*base) * (newcnt)); \
119 init (base + cur, newcnt - cur); \ 225 init (base + cur, newcnt - cur); \
120 cur = newcnt; \ 226 cur = newcnt; \
121 } 227 }
122 228
123/*****************************************************************************/ 229/*****************************************************************************/
124 230
125typedef struct
126{
127 struct ev_io *head;
128 unsigned char wev, rev; /* want, received event set */
129} ANFD;
130
131static ANFD *anfds;
132static int anfdmax;
133
134static int *fdchanges;
135static int fdchangemax, fdchangecnt;
136
137static void 231static void
138anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
139{ 233{
140 while (count--) 234 while (count--)
141 { 235 {
142 base->head = 0; 236 base->head = 0;
143 base->wev = base->rev = EV_NONE; 237 base->events = EV_NONE;
238 base->reify = 0;
239
144 ++base; 240 ++base;
145 } 241 }
146} 242}
147 243
148typedef struct
149{
150 W w;
151 int events;
152} ANPENDING;
153
154static ANPENDING *pendings;
155static int pendingmax, pendingcnt;
156
157static void 244static void
158event (W w, int events) 245event (EV_P_ W w, int events)
159{ 246{
160 if (w->active) 247 if (w->pending)
161 { 248 {
162 w->pending = ++pendingcnt;
163 array_needsize (pendings, pendingmax, pendingcnt, );
164 pendings [pendingcnt - 1].w = w;
165 pendings [pendingcnt - 1].events = events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
250 return;
166 } 251 }
167}
168 252
253 w->pending = ++pendingcnt [ABSPRI (w)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257}
258
169static void 259static void
260queue_events (EV_P_ W *events, int eventcnt, int type)
261{
262 int i;
263
264 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type);
266}
267
268static void
170fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
171{ 270{
172 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
173 struct ev_io *w; 272 struct ev_io *w;
174 273
175 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
176 { 275 {
177 int ev = w->events & events; 276 int ev = w->events & events;
178 277
179 if (ev) 278 if (ev)
180 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
181 } 280 }
182} 281}
183 282
283/*****************************************************************************/
284
184static void 285static void
185queue_events (W *events, int eventcnt, int type) 286fd_reify (EV_P)
186{ 287{
187 int i; 288 int i;
188 289
189 for (i = 0; i < eventcnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
190 event (events [i], type); 291 {
292 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295
296 int events = 0;
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events;
307 }
308 }
309
310 fdchangecnt = 0;
311}
312
313static void
314fd_change (EV_P_ int fd)
315{
316 if (anfds [fd].reify || fdchangecnt < 0)
317 return;
318
319 anfds [fd].reify = 1;
320
321 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
323 fdchanges [fdchangecnt - 1] = fd;
324}
325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
338/* called on EBADF to verify fds */
339static void
340fd_ebadf (EV_P)
341{
342 int fd;
343
344 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
358 {
359 close (fd);
360 fd_kill (EV_A_ fd);
361 return;
362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
191} 378}
192 379
193/*****************************************************************************/ 380/*****************************************************************************/
194 381
195static struct ev_timer **timers;
196static int timermax, timercnt;
197
198static struct ev_periodic **periodics;
199static int periodicmax, periodiccnt;
200
201static void 382static void
202upheap (WT *timers, int k) 383upheap (WT *heap, int k)
203{ 384{
204 WT w = timers [k]; 385 WT w = heap [k];
205 386
206 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
207 { 388 {
208 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
209 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
210 k >>= 1; 391 k >>= 1;
211 } 392 }
212 393
213 timers [k] = w; 394 heap [k] = w;
214 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
215 396
216} 397}
217 398
218static void 399static void
219downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
220{ 401{
221 WT w = timers [k]; 402 WT w = heap [k];
222 403
223 while (k < (N >> 1)) 404 while (k < (N >> 1))
224 { 405 {
225 int j = k << 1; 406 int j = k << 1;
226 407
227 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
228 ++j; 409 ++j;
229 410
230 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
231 break; 412 break;
232 413
233 timers [k] = timers [j]; 414 heap [k] = heap [j];
234 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
235 k = j; 416 k = j;
236 } 417 }
237 418
238 timers [k] = w; 419 heap [k] = w;
239 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
240} 421}
241 422
242/*****************************************************************************/ 423/*****************************************************************************/
243 424
244typedef struct 425typedef struct
245{ 426{
246 struct ev_signal *head; 427 struct ev_watcher_list *head;
247 sig_atomic_t gotsig; 428 sig_atomic_t volatile gotsig;
248} ANSIG; 429} ANSIG;
249 430
250static ANSIG *signals; 431static ANSIG *signals;
251static int signalmax; 432static int signalmax;
252 433
253static int sigpipe [2]; 434static int sigpipe [2];
254static sig_atomic_t gotsig; 435static sig_atomic_t volatile gotsig;
255static struct ev_io sigev; 436static struct ev_io sigev;
256 437
257static void 438static void
258signals_init (ANSIG *base, int count) 439signals_init (ANSIG *base, int count)
259{ 440{
260 while (count--) 441 while (count--)
261 { 442 {
262 base->head = 0; 443 base->head = 0;
263 base->gotsig = 0; 444 base->gotsig = 0;
445
264 ++base; 446 ++base;
265 } 447 }
266} 448}
267 449
268static void 450static void
270{ 452{
271 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
272 454
273 if (!gotsig) 455 if (!gotsig)
274 { 456 {
457 int old_errno = errno;
275 gotsig = 1; 458 gotsig = 1;
276 write (sigpipe [1], &gotsig, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
277 } 461 }
278} 462}
279 463
280static void 464static void
281sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
282{ 466{
283 struct ev_signal *w; 467 struct ev_watcher_list *w;
284 int sig; 468 int signum;
285 469
470 read (sigpipe [0], &revents, 1);
286 gotsig = 0; 471 gotsig = 0;
287 read (sigpipe [0], &revents, 1);
288 472
289 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
290 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
291 { 475 {
292 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
293 477
294 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
295 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
296 } 480 }
297} 481}
298 482
299static void 483static void
300siginit (void) 484siginit (EV_P)
301{ 485{
486#ifndef WIN32
302 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
303 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
304 489
305 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
306 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
307 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
308 494
309 evio_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
310 evio_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
311} 498}
312 499
313/*****************************************************************************/ 500/*****************************************************************************/
314 501
315static struct ev_idle **idles; 502#ifndef WIN32
316static int idlemax, idlecnt;
317 503
318static struct ev_check **checks; 504static struct ev_child *childs [PID_HASHSIZE];
319static int checkmax, checkcnt; 505static struct ev_signal childev;
506
507#ifndef WCONTINUED
508# define WCONTINUED 0
509#endif
510
511static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
529 int pid, status;
530
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 {
533 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL);
535
536 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
539}
540
541#endif
320 542
321/*****************************************************************************/ 543/*****************************************************************************/
322 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
323#if HAVE_EPOLL 548#if EV_USE_EPOLL
324# include "ev_epoll.c" 549# include "ev_epoll.c"
325#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
326#if HAVE_SELECT 554#if EV_USE_SELECT
327# include "ev_select.c" 555# include "ev_select.c"
328#endif 556#endif
329 557
330int ev_init (int flags) 558int
559ev_version_major (void)
331{ 560{
561 return EV_VERSION_MAJOR;
562}
563
564int
565ev_version_minor (void)
566{
567 return EV_VERSION_MINOR;
568}
569
570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
332#if HAVE_MONOTONIC 593#if EV_USE_MONOTONIC
333 { 594 {
334 struct timespec ts; 595 struct timespec ts;
335 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
336 have_monotonic = 1; 597 have_monotonic = 1;
337 } 598 }
338#endif 599#endif
339 600
340 ev_now = ev_time (); 601 rt_now = ev_time ();
341 now = get_clock (); 602 mn_now = get_clock ();
342 diff = ev_now - now; 603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
343 605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
344 if (pipe (sigpipe)) 702 if (pipe (sigpipe))
345 return 0; 703 return 0;
346 704
347 ev_method = EVMETHOD_NONE; 705 if (!default_loop)
348#if HAVE_EPOLL
349 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
350#endif
351#if HAVE_SELECT
352 if (ev_method == EVMETHOD_NONE) select_init (flags);
353#endif
354
355 if (ev_method)
356 { 706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
715 if (ev_method (EV_A))
716 {
357 evw_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
358 siginit (); 719 siginit (EV_A);
359 }
360 720
361 return ev_method; 721#ifndef WIN32
362} 722 ev_signal_init (&childev, childcb, SIGCHLD);
363 723 ev_set_priority (&childev, EV_MAXPRI);
364/*****************************************************************************/ 724 ev_signal_start (EV_A_ &childev);
365 725 ev_unref (EV_A); /* child watcher should not keep loop alive */
366void ev_prefork (void)
367{
368 /* nop */
369}
370
371void ev_postfork_parent (void)
372{
373 /* nop */
374}
375
376void ev_postfork_child (void)
377{
378#if HAVE_EPOLL
379 if (ev_method == EVMETHOD_EPOLL)
380 epoll_postfork_child ();
381#endif 726#endif
727 }
728 else
729 default_loop = 0;
730 }
382 731
732 return default_loop;
733}
734
735void
736ev_default_destroy (void)
737{
738#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
383 evio_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
384 close (sigpipe [0]); 764 close (sigpipe [0]);
385 close (sigpipe [1]); 765 close (sigpipe [1]);
386 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
387 siginit (); 769 siginit (EV_A);
388} 770}
389 771
390/*****************************************************************************/ 772/*****************************************************************************/
391 773
392static void 774static void
393fd_reify (void) 775call_pending (EV_P)
394{ 776{
395 int i; 777 int pri;
396 778
397 for (i = 0; i < fdchangecnt; ++i) 779 for (pri = NUMPRI; pri--; )
398 { 780 while (pendingcnt [pri])
399 int fd = fdchanges [i];
400 ANFD *anfd = anfds + fd;
401 struct ev_io *w;
402
403 int wev = 0;
404
405 for (w = anfd->head; w; w = w->next)
406 wev |= w->events;
407
408 if (anfd->wev != wev)
409 { 781 {
410 method_modify (fd, anfd->wev, wev); 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
411 anfd->wev = wev;
412 }
413 }
414 783
415 fdchangecnt = 0;
416}
417
418static void
419call_pending ()
420{
421 int i;
422
423 for (i = 0; i < pendingcnt; ++i)
424 {
425 ANPENDING *p = pendings + i;
426
427 if (p->w) 784 if (p->w)
428 { 785 {
429 p->w->pending = 0; 786 p->w->pending = 0;
430 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
431 } 788 }
432 } 789 }
433
434 pendingcnt = 0;
435} 790}
436 791
437static void 792static void
438timers_reify () 793timers_reify (EV_P)
439{ 794{
440 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
441 { 796 {
442 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
443 798
444 event ((W)w, EV_TIMEOUT); 799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
445 800
446 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
447 if (w->repeat) 802 if (w->repeat)
448 { 803 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
449 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
450 assert (("timer timeout in the past, negative repeat?", w->at > now));
451 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
452 } 807 }
453 else 808 else
454 evtimer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
455 }
456}
457 810
811 event (EV_A_ (W)w, EV_TIMEOUT);
812 }
813}
814
458static void 815static void
459periodics_reify () 816periodics_reify (EV_P)
460{ 817{
461 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
462 { 819 {
463 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
464 823
465 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
466 if (w->interval) 825 if (w->interval)
467 { 826 {
468 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
469 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
470 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
471 } 830 }
472 else 831 else
473 evperiodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
474 833
475 event ((W)w, EV_TIMEOUT); 834 event (EV_A_ (W)w, EV_PERIODIC);
476 } 835 }
477} 836}
478 837
479static void 838static void
480periodics_reschedule (ev_tstamp diff) 839periodics_reschedule (EV_P)
481{ 840{
482 int i; 841 int i;
483 842
484 /* adjust periodics after time jump */ 843 /* adjust periodics after time jump */
485 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
486 { 845 {
487 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
488 847
489 if (w->interval) 848 if (w->interval)
490 { 849 {
491 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
492 851
493 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
494 { 853 {
495 evperiodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
496 evperiodic_start (w); 855 ev_periodic_start (EV_A_ w);
497 856
498 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
499 } 858 }
500 } 859 }
501 } 860 }
502} 861}
503 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
504static void 881static void
505time_update () 882time_update (EV_P)
506{ 883{
507 int i; 884 int i;
508 885
509 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
510
511 if (have_monotonic) 887 if (expect_true (have_monotonic))
512 { 888 {
513 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
514
515 for (i = 4; --i; ) /* loop a few times, before making important decisions */
516 { 890 {
517 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
518 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
519 896
520 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
521 return; /* all is well */ 898 return; /* all is well */
522 899
523 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
524 } 908 }
525
526 periodics_reschedule (diff - odiff);
527 /* no timer adjustment, as the monotonic clock doesn't jump */
528 } 909 }
529 else 910 else
911#endif
530 { 912 {
531 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
532 { 916 {
533 periodics_reschedule (ev_now - now); 917 periodics_reschedule (EV_A);
534 918
535 /* adjust timers. this is easy, as the offset is the same for all */ 919 /* adjust timers. this is easy, as the offset is the same for all */
536 for (i = 0; i < timercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
537 timers [i]->at += diff; 921 timers [i]->at += rt_now - mn_now;
538 } 922 }
539 923
540 now = ev_now; 924 mn_now = rt_now;
541 } 925 }
542} 926}
543 927
544int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
545 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
546void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
547{ 944{
548 double block; 945 double block;
549 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
550
551 if (checkcnt)
552 {
553 queue_events ((W *)checks, checkcnt, EV_CHECK);
554 call_pending ();
555 }
556 947
557 do 948 do
558 { 949 {
950 /* queue check watchers (and execute them) */
951 if (expect_false (preparecnt))
952 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A);
955 }
956
559 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
560 fd_reify (); 958 fd_reify (EV_A);
561 959
562 /* calculate blocking time */ 960 /* calculate blocking time */
563 961
564 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 962 /* we only need this for !monotonic clockor timers, but as we basically
963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
565 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
566 973
567 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
568 block = 0.; 975 block = 0.;
569 else 976 else
570 { 977 {
571 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
572 979
573 if (timercnt) 980 if (timercnt)
574 { 981 {
575 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
576 if (block > to) block = to; 983 if (block > to) block = to;
577 } 984 }
578 985
579 if (periodiccnt) 986 if (periodiccnt)
580 { 987 {
581 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
582 if (block > to) block = to; 989 if (block > to) block = to;
583 } 990 }
584 991
585 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
586 } 993 }
587 994
588 method_poll (block); 995 method_poll (EV_A_ block);
589 996
590 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
591 time_update (); 998 time_update (EV_A);
592 999
593 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */
594 periodics_reify (); /* absolute timers first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
595 timers_reify (); /* relative timers second */
596 1003
597 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
598 if (!pendingcnt) 1005 if (!pendingcnt)
599 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
600 1007
601 /* queue check and possibly idle watchers */ 1008 /* queue check watchers, to be executed first */
1009 if (checkcnt)
602 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
603 1011
604 call_pending (); 1012 call_pending (EV_A);
605 } 1013 }
606 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
607 1015
608 if (ev_loop_done != 2) 1016 if (loop_done != 2)
609 ev_loop_done = 0; 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
610} 1024}
611 1025
612/*****************************************************************************/ 1026/*****************************************************************************/
613 1027
614static void 1028inline void
615wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
616{ 1030{
617 elem->next = *head; 1031 elem->next = *head;
618 *head = elem; 1032 *head = elem;
619} 1033}
620 1034
621static void 1035inline void
622wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
623{ 1037{
624 while (*head) 1038 while (*head)
625 { 1039 {
626 if (*head == elem) 1040 if (*head == elem)
631 1045
632 head = &(*head)->next; 1046 head = &(*head)->next;
633 } 1047 }
634} 1048}
635 1049
636static void 1050inline void
637ev_clear (W w) 1051ev_clear_pending (EV_P_ W w)
638{ 1052{
639 if (w->pending) 1053 if (w->pending)
640 { 1054 {
641 pendings [w->pending - 1].w = 0; 1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
642 w->pending = 0; 1056 w->pending = 0;
643 } 1057 }
644} 1058}
645 1059
646static void 1060inline void
647ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
648{ 1062{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
649 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
650} 1068}
651 1069
652static void 1070inline void
653ev_stop (W w) 1071ev_stop (EV_P_ W w)
654{ 1072{
1073 ev_unref (EV_A);
655 w->active = 0; 1074 w->active = 0;
656} 1075}
657 1076
658/*****************************************************************************/ 1077/*****************************************************************************/
659 1078
660void 1079void
661evio_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
662{ 1081{
1082 int fd = w->fd;
1083
663 if (ev_is_active (w)) 1084 if (ev_is_active (w))
664 return; 1085 return;
665 1086
666 int fd = w->fd; 1087 assert (("ev_io_start called with negative fd", fd >= 0));
667 1088
668 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
669 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
670 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
671 1092
672 ++fdchangecnt; 1093 fd_change (EV_A_ fd);
673 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
674 fdchanges [fdchangecnt - 1] = fd;
675} 1094}
676 1095
677void 1096void
678evio_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
679{ 1098{
680 ev_clear ((W)w); 1099 ev_clear_pending (EV_A_ (W)w);
681 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
682 return; 1101 return;
683 1102
684 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
685 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
686 1105
687 ++fdchangecnt; 1106 fd_change (EV_A_ w->fd);
688 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
689 fdchanges [fdchangecnt - 1] = w->fd;
690} 1107}
691 1108
692void 1109void
693evtimer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
694{ 1111{
695 if (ev_is_active (w)) 1112 if (ev_is_active (w))
696 return; 1113 return;
697 1114
698 w->at += now; 1115 w->at += mn_now;
699 1116
700 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
701 1118
702 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
703 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
704 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
705 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
706} 1123}
707 1124
708void 1125void
709evtimer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
710{ 1127{
711 ev_clear ((W)w); 1128 ev_clear_pending (EV_A_ (W)w);
712 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
713 return; 1130 return;
714 1131
715 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
716 { 1133 {
718 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
719 } 1136 }
720 1137
721 w->at = w->repeat; 1138 w->at = w->repeat;
722 1139
723 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
724} 1141}
725 1142
726void 1143void
727evtimer_again (struct ev_timer *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
728{ 1145{
729 if (ev_is_active (w)) 1146 if (ev_is_active (w))
730 { 1147 {
731 if (w->repeat) 1148 if (w->repeat)
732 { 1149 {
733 w->at = now + w->repeat; 1150 w->at = mn_now + w->repeat;
734 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, w->active - 1);
735 } 1152 }
736 else 1153 else
737 evtimer_stop (w); 1154 ev_timer_stop (EV_A_ w);
738 } 1155 }
739 else if (w->repeat) 1156 else if (w->repeat)
740 evtimer_start (w); 1157 ev_timer_start (EV_A_ w);
741} 1158}
742 1159
743void 1160void
744evperiodic_start (struct ev_periodic *w) 1161ev_periodic_start (EV_P_ struct ev_periodic *w)
745{ 1162{
746 if (ev_is_active (w)) 1163 if (ev_is_active (w))
747 return; 1164 return;
748 1165
749 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
750 1167
751 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
752 if (w->interval) 1169 if (w->interval)
753 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
754 1171
755 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
756 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
757 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
758 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
759} 1176}
760 1177
761void 1178void
762evperiodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
763{ 1180{
764 ev_clear ((W)w); 1181 ev_clear_pending (EV_A_ (W)w);
765 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
766 return; 1183 return;
767 1184
768 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
769 { 1186 {
770 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
771 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
772 } 1189 }
773 1190
774 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
775} 1192}
776 1193
777void 1194void
778evsignal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
779{ 1196{
780 if (ev_is_active (w)) 1197 if (ev_is_active (w))
781 return; 1198 return;
782 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274
783 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
784 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
785 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
786 1278
787 if (!w->next) 1279 if (!w->next)
788 { 1280 {
789 struct sigaction sa; 1281 struct sigaction sa;
790 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
791 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
792 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
793 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
794 } 1286 }
795} 1287}
796 1288
797void 1289void
798evsignal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
799{ 1291{
800 ev_clear ((W)w); 1292 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
802 return; 1294 return;
803 1295
804 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
805 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
806 1298
807 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
808 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
809} 1301}
810 1302
811void evidle_start (struct ev_idle *w) 1303void
1304ev_child_start (EV_P_ struct ev_child *w)
812{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
813 if (ev_is_active (w)) 1309 if (ev_is_active (w))
814 return; 1310 return;
815 1311
816 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
817 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
818 idles [idlecnt - 1] = w;
819} 1314}
820 1315
821void evidle_stop (struct ev_idle *w) 1316void
1317ev_child_stop (EV_P_ struct ev_child *w)
822{ 1318{
823 ev_clear ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
824 if (ev_is_active (w)) 1320 if (ev_is_active (w))
825 return; 1321 return;
826 1322
827 idles [w->active - 1] = idles [--idlecnt]; 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
828 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
829}
830
831void evcheck_start (struct ev_check *w)
832{
833 if (ev_is_active (w))
834 return;
835
836 ev_start ((W)w, ++checkcnt);
837 array_needsize (checks, checkmax, checkcnt, );
838 checks [checkcnt - 1] = w;
839}
840
841void evcheck_stop (struct ev_check *w)
842{
843 ev_clear ((W)w);
844 if (ev_is_active (w))
845 return;
846
847 checks [w->active - 1] = checks [--checkcnt];
848 ev_stop ((W)w);
849} 1325}
850 1326
851/*****************************************************************************/ 1327/*****************************************************************************/
852 1328
853struct ev_once 1329struct ev_once
857 void (*cb)(int revents, void *arg); 1333 void (*cb)(int revents, void *arg);
858 void *arg; 1334 void *arg;
859}; 1335};
860 1336
861static void 1337static void
862once_cb (struct ev_once *once, int revents) 1338once_cb (EV_P_ struct ev_once *once, int revents)
863{ 1339{
864 void (*cb)(int revents, void *arg) = once->cb; 1340 void (*cb)(int revents, void *arg) = once->cb;
865 void *arg = once->arg; 1341 void *arg = once->arg;
866 1342
867 evio_stop (&once->io); 1343 ev_io_stop (EV_A_ &once->io);
868 evtimer_stop (&once->to); 1344 ev_timer_stop (EV_A_ &once->to);
869 free (once); 1345 free (once);
870 1346
871 cb (revents, arg); 1347 cb (revents, arg);
872} 1348}
873 1349
874static void 1350static void
875once_cb_io (struct ev_io *w, int revents) 1351once_cb_io (EV_P_ struct ev_io *w, int revents)
876{ 1352{
877 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
878} 1354}
879 1355
880static void 1356static void
881once_cb_to (struct ev_timer *w, int revents) 1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
882{ 1358{
883 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
884} 1360}
885 1361
886void 1362void
887ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
888{ 1364{
889 struct ev_once *once = malloc (sizeof (struct ev_once)); 1365 struct ev_once *once = malloc (sizeof (struct ev_once));
890 1366
891 if (!once) 1367 if (!once)
892 cb (EV_ERROR, arg); 1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
893 else 1369 else
894 { 1370 {
895 once->cb = cb; 1371 once->cb = cb;
896 once->arg = arg; 1372 once->arg = arg;
897 1373
898 evw_init (&once->io, once_cb_io); 1374 ev_watcher_init (&once->io, once_cb_io);
899
900 if (fd >= 0) 1375 if (fd >= 0)
901 { 1376 {
902 evio_set (&once->io, fd, events); 1377 ev_io_set (&once->io, fd, events);
903 evio_start (&once->io); 1378 ev_io_start (EV_A_ &once->io);
904 } 1379 }
905 1380
906 evw_init (&once->to, once_cb_to); 1381 ev_watcher_init (&once->to, once_cb_to);
907
908 if (timeout >= 0.) 1382 if (timeout >= 0.)
909 { 1383 {
910 evtimer_set (&once->to, timeout, 0.); 1384 ev_timer_set (&once->to, timeout, 0.);
911 evtimer_start (&once->to); 1385 ev_timer_start (EV_A_ &once->to);
912 } 1386 }
913 } 1387 }
914} 1388}
915 1389
916/*****************************************************************************/
917
918#if 0
919
920struct ev_io wio;
921
922static void
923sin_cb (struct ev_io *w, int revents)
924{
925 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
926}
927
928static void
929ocb (struct ev_timer *w, int revents)
930{
931 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
932 evtimer_stop (w);
933 evtimer_start (w);
934}
935
936static void
937scb (struct ev_signal *w, int revents)
938{
939 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
940 evio_stop (&wio);
941 evio_start (&wio);
942}
943
944static void
945gcb (struct ev_signal *w, int revents)
946{
947 fprintf (stderr, "generic %x\n", revents);
948
949}
950
951int main (void)
952{
953 ev_init (0);
954
955 evio_init (&wio, sin_cb, 0, EV_READ);
956 evio_start (&wio);
957
958 struct ev_timer t[10000];
959
960#if 0
961 int i;
962 for (i = 0; i < 10000; ++i)
963 {
964 struct ev_timer *w = t + i;
965 evw_init (w, ocb, i);
966 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
967 evtimer_start (w);
968 if (drand48 () < 0.5)
969 evtimer_stop (w);
970 }
971#endif
972
973 struct ev_timer t1;
974 evtimer_init (&t1, ocb, 5, 10);
975 evtimer_start (&t1);
976
977 struct ev_signal sig;
978 evsignal_init (&sig, scb, SIGQUIT);
979 evsignal_start (&sig);
980
981 struct ev_check cw;
982 evcheck_init (&cw, gcb);
983 evcheck_start (&cw);
984
985 struct ev_idle iw;
986 evidle_init (&iw, gcb);
987 evidle_start (&iw);
988
989 ev_loop (0);
990
991 return 0;
992}
993
994#endif
995
996
997
998

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines