ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.35 by root, Thu Nov 1 11:55:54 2007 UTC vs.
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1
99#endif
100
101/**/
102
103#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0
106#endif
107
63#ifndef CLOCK_REALTIME 108#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 110# define EV_USE_REALTIME 0
65#endif 111#endif
66#ifndef EV_USE_REALTIME 112
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 113/**/
68#endif
69 114
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 119
75#include "ev.h" 120#include "ev.h"
121
122#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline
125#else
126# define expect(expr,value) (expr)
127# define inline static
128#endif
129
130#define expect_false(expr) expect ((expr) != 0, 0)
131#define expect_true(expr) expect ((expr) != 0, 1)
132
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
134#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 135
77typedef struct ev_watcher *W; 136typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 137typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 138typedef struct ev_watcher_time *WT;
80 139
81static ev_tstamp now, diff; /* monotonic clock */ 140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84
85static int have_monotonic; /* runtime */
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 141
91/*****************************************************************************/ 142/*****************************************************************************/
92 143
93ev_tstamp 144typedef struct
145{
146 struct ev_watcher_list *head;
147 unsigned char events;
148 unsigned char reify;
149} ANFD;
150
151typedef struct
152{
153 W w;
154 int events;
155} ANPENDING;
156
157#if EV_MULTIPLICITY
158
159struct ev_loop
160{
161# define VAR(name,decl) decl;
162# include "ev_vars.h"
163};
164# undef VAR
165# include "ev_wrap.h"
166
167#else
168
169# define VAR(name,decl) static decl;
170# include "ev_vars.h"
171# undef VAR
172
173#endif
174
175/*****************************************************************************/
176
177inline ev_tstamp
94ev_time (void) 178ev_time (void)
95{ 179{
96#if EV_USE_REALTIME 180#if EV_USE_REALTIME
97 struct timespec ts; 181 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 182 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 186 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 187 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 188#endif
105} 189}
106 190
107static ev_tstamp 191inline ev_tstamp
108get_clock (void) 192get_clock (void)
109{ 193{
110#if EV_USE_MONOTONIC 194#if EV_USE_MONOTONIC
111 if (have_monotonic) 195 if (expect_true (have_monotonic))
112 { 196 {
113 struct timespec ts; 197 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 198 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 199 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 200 }
117#endif 201#endif
118 202
119 return ev_time (); 203 return ev_time ();
120} 204}
121 205
206ev_tstamp
207ev_now (EV_P)
208{
209 return rt_now;
210}
211
122#define array_roundsize(base,n) ((n) | 4 & ~3) 212#define array_roundsize(base,n) ((n) | 4 & ~3)
123 213
124#define array_needsize(base,cur,cnt,init) \ 214#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 215 if (expect_false ((cnt) > cur)) \
126 { \ 216 { \
127 int newcnt = cur; \ 217 int newcnt = cur; \
128 do \ 218 do \
129 { \ 219 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 220 newcnt = array_roundsize (base, newcnt << 1); \
136 cur = newcnt; \ 226 cur = newcnt; \
137 } 227 }
138 228
139/*****************************************************************************/ 229/*****************************************************************************/
140 230
141typedef struct
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147
148static ANFD *anfds;
149static int anfdmax;
150
151static void 231static void
152anfds_init (ANFD *base, int count) 232anfds_init (ANFD *base, int count)
153{ 233{
154 while (count--) 234 while (count--)
155 { 235 {
159 239
160 ++base; 240 ++base;
161 } 241 }
162} 242}
163 243
164typedef struct
165{
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void 244static void
174event (W w, int events) 245event (EV_P_ W w, int events)
175{ 246{
176 if (w->pending) 247 if (w->pending)
177 { 248 {
178 pendings [w->pending - 1].events |= events; 249 pendings [ABSPRI (w)][w->pending - 1].events |= events;
179 return; 250 return;
180 } 251 }
181 252
182 w->pending = ++pendingcnt; 253 w->pending = ++pendingcnt [ABSPRI (w)];
183 array_needsize (pendings, pendingmax, pendingcnt, ); 254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
184 pendings [pendingcnt - 1].w = w; 255 pendings [ABSPRI (w)][w->pending - 1].w = w;
185 pendings [pendingcnt - 1].events = events; 256 pendings [ABSPRI (w)][w->pending - 1].events = events;
186} 257}
187 258
188static void 259static void
189queue_events (W *events, int eventcnt, int type) 260queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 261{
191 int i; 262 int i;
192 263
193 for (i = 0; i < eventcnt; ++i) 264 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 265 event (EV_A_ events [i], type);
195} 266}
196 267
197static void 268static void
198fd_event (int fd, int events) 269fd_event (EV_P_ int fd, int events)
199{ 270{
200 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 272 struct ev_io *w;
202 273
203 for (w = anfd->head; w; w = w->next) 274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
204 { 275 {
205 int ev = w->events & events; 276 int ev = w->events & events;
206 277
207 if (ev) 278 if (ev)
208 event ((W)w, ev); 279 event (EV_A_ (W)w, ev);
209 } 280 }
210} 281}
211 282
212/*****************************************************************************/ 283/*****************************************************************************/
213 284
214static int *fdchanges;
215static int fdchangemax, fdchangecnt;
216
217static void 285static void
218fd_reify (void) 286fd_reify (EV_P)
219{ 287{
220 int i; 288 int i;
221 289
222 for (i = 0; i < fdchangecnt; ++i) 290 for (i = 0; i < fdchangecnt; ++i)
223 { 291 {
225 ANFD *anfd = anfds + fd; 293 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 294 struct ev_io *w;
227 295
228 int events = 0; 296 int events = 0;
229 297
230 for (w = anfd->head; w; w = w->next) 298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
231 events |= w->events; 299 events |= w->events;
232 300
233 anfd->reify = 0; 301 anfd->reify = 0;
234 302
235 if (anfd->events != events) 303 if (anfd->events != events)
236 { 304 {
237 method_modify (fd, anfd->events, events); 305 method_modify (EV_A_ fd, anfd->events, events);
238 anfd->events = events; 306 anfd->events = events;
239 } 307 }
240 } 308 }
241 309
242 fdchangecnt = 0; 310 fdchangecnt = 0;
243} 311}
244 312
245static void 313static void
246fd_change (int fd) 314fd_change (EV_P_ int fd)
247{ 315{
248 if (anfds [fd].reify || fdchangecnt < 0) 316 if (anfds [fd].reify || fdchangecnt < 0)
249 return; 317 return;
250 318
251 anfds [fd].reify = 1; 319 anfds [fd].reify = 1;
253 ++fdchangecnt; 321 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 322 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
255 fdchanges [fdchangecnt - 1] = fd; 323 fdchanges [fdchangecnt - 1] = fd;
256} 324}
257 325
326static void
327fd_kill (EV_P_ int fd)
328{
329 struct ev_io *w;
330
331 while ((w = (struct ev_io *)anfds [fd].head))
332 {
333 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 }
336}
337
258/* called on EBADF to verify fds */ 338/* called on EBADF to verify fds */
259static void 339static void
260fd_recheck (void) 340fd_ebadf (EV_P)
261{ 341{
262 int fd; 342 int fd;
263 343
264 for (fd = 0; fd < anfdmax; ++fd) 344 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 345 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
267 while (anfds [fd].head) 347 fd_kill (EV_A_ fd);
348}
349
350/* called on ENOMEM in select/poll to kill some fds and retry */
351static void
352fd_enomem (EV_P)
353{
354 int fd = anfdmax;
355
356 while (fd--)
357 if (anfds [fd].events)
268 { 358 {
269 ev_io_stop (anfds [fd].head); 359 close (fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 360 fd_kill (EV_A_ fd);
361 return;
271 } 362 }
363}
364
365/* susually called after fork if method needs to re-arm all fds from scratch */
366static void
367fd_rearm_all (EV_P)
368{
369 int fd;
370
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events)
374 {
375 anfds [fd].events = 0;
376 fd_change (EV_A_ fd);
377 }
272} 378}
273 379
274/*****************************************************************************/ 380/*****************************************************************************/
275 381
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 382static void
283upheap (WT *timers, int k) 383upheap (WT *heap, int k)
284{ 384{
285 WT w = timers [k]; 385 WT w = heap [k];
286 386
287 while (k && timers [k >> 1]->at > w->at) 387 while (k && heap [k >> 1]->at > w->at)
288 { 388 {
289 timers [k] = timers [k >> 1]; 389 heap [k] = heap [k >> 1];
290 timers [k]->active = k + 1; 390 heap [k]->active = k + 1;
291 k >>= 1; 391 k >>= 1;
292 } 392 }
293 393
294 timers [k] = w; 394 heap [k] = w;
295 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
296 396
297} 397}
298 398
299static void 399static void
300downheap (WT *timers, int N, int k) 400downheap (WT *heap, int N, int k)
301{ 401{
302 WT w = timers [k]; 402 WT w = heap [k];
303 403
304 while (k < (N >> 1)) 404 while (k < (N >> 1))
305 { 405 {
306 int j = k << 1; 406 int j = k << 1;
307 407
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
309 ++j; 409 ++j;
310 410
311 if (w->at <= timers [j]->at) 411 if (w->at <= heap [j]->at)
312 break; 412 break;
313 413
314 timers [k] = timers [j]; 414 heap [k] = heap [j];
315 timers [k]->active = k + 1; 415 heap [k]->active = k + 1;
316 k = j; 416 k = j;
317 } 417 }
318 418
319 timers [k] = w; 419 heap [k] = w;
320 timers [k]->active = k + 1; 420 heap [k]->active = k + 1;
321} 421}
322 422
323/*****************************************************************************/ 423/*****************************************************************************/
324 424
325typedef struct 425typedef struct
326{ 426{
327 struct ev_signal *head; 427 struct ev_watcher_list *head;
328 sig_atomic_t volatile gotsig; 428 sig_atomic_t volatile gotsig;
329} ANSIG; 429} ANSIG;
330 430
331static ANSIG *signals; 431static ANSIG *signals;
332static int signalmax; 432static int signalmax;
352{ 452{
353 signals [signum - 1].gotsig = 1; 453 signals [signum - 1].gotsig = 1;
354 454
355 if (!gotsig) 455 if (!gotsig)
356 { 456 {
457 int old_errno = errno;
357 gotsig = 1; 458 gotsig = 1;
358 write (sigpipe [1], &signum, 1); 459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
359 } 461 }
360} 462}
361 463
362static void 464static void
363sigcb (struct ev_io *iow, int revents) 465sigcb (EV_P_ struct ev_io *iow, int revents)
364{ 466{
365 struct ev_signal *w; 467 struct ev_watcher_list *w;
366 int sig; 468 int signum;
367 469
368 read (sigpipe [0], &revents, 1); 470 read (sigpipe [0], &revents, 1);
369 gotsig = 0; 471 gotsig = 0;
370 472
371 for (sig = signalmax; sig--; ) 473 for (signum = signalmax; signum--; )
372 if (signals [sig].gotsig) 474 if (signals [signum].gotsig)
373 { 475 {
374 signals [sig].gotsig = 0; 476 signals [signum].gotsig = 0;
375 477
376 for (w = signals [sig].head; w; w = w->next) 478 for (w = signals [signum].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL); 479 event (EV_A_ (W)w, EV_SIGNAL);
378 } 480 }
379} 481}
380 482
381static void 483static void
382siginit (void) 484siginit (EV_P)
383{ 485{
486#ifndef WIN32
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386 489
387 /* rather than sort out wether we really need nb, set it */ 490 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
390 494
391 ev_io_set (&sigev, sigpipe [0], EV_READ); 495 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev); 496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
393} 498}
394 499
395/*****************************************************************************/ 500/*****************************************************************************/
396 501
397static struct ev_idle **idles; 502#ifndef WIN32
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407 503
408static struct ev_child *childs [PID_HASHSIZE]; 504static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 505static struct ev_signal childev;
410 506
411#ifndef WCONTINUED 507#ifndef WCONTINUED
412# define WCONTINUED 0 508# define WCONTINUED 0
413#endif 509#endif
414 510
415static void 511static void
416childcb (struct ev_signal *sw, int revents) 512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
417{ 513{
418 struct ev_child *w; 514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents)
528{
419 int pid, status; 529 int pid, status;
420 530
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 532 {
423 if (w->pid == pid || w->pid == -1) 533 /* make sure we are called again until all childs have been reaped */
424 { 534 event (EV_A_ (W)sw, EV_SIGNAL);
425 w->status = status; 535
426 event ((W)w, EV_CHILD); 536 child_reap (EV_A_ sw, pid, pid, status);
427 } 537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 }
428} 539}
540
541#endif
429 542
430/*****************************************************************************/ 543/*****************************************************************************/
431 544
545#if EV_USE_KQUEUE
546# include "ev_kqueue.c"
547#endif
432#if EV_USE_EPOLL 548#if EV_USE_EPOLL
433# include "ev_epoll.c" 549# include "ev_epoll.c"
434#endif 550#endif
551#if EV_USE_POLL
552# include "ev_poll.c"
553#endif
435#if EV_USE_SELECT 554#if EV_USE_SELECT
436# include "ev_select.c" 555# include "ev_select.c"
437#endif 556#endif
438 557
439int 558int
446ev_version_minor (void) 565ev_version_minor (void)
447{ 566{
448 return EV_VERSION_MINOR; 567 return EV_VERSION_MINOR;
449} 568}
450 569
451int ev_init (int flags) 570/* return true if we are running with elevated privileges and should ignore env variables */
571static int
572enable_secure (void)
452{ 573{
574#ifdef WIN32
575 return 0;
576#else
577 return getuid () != geteuid ()
578 || getgid () != getegid ();
579#endif
580}
581
582int
583ev_method (EV_P)
584{
585 return method;
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
453 if (!ev_method) 591 if (!method)
454 { 592 {
455#if EV_USE_MONOTONIC 593#if EV_USE_MONOTONIC
456 { 594 {
457 struct timespec ts; 595 struct timespec ts;
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
459 have_monotonic = 1; 597 have_monotonic = 1;
460 } 598 }
461#endif 599#endif
462 600
463 ev_now = ev_time (); 601 rt_now = ev_time ();
464 now = get_clock (); 602 mn_now = get_clock ();
603 now_floor = mn_now;
465 diff = ev_now - now; 604 rtmn_diff = rt_now - mn_now;
466 605
467 if (pipe (sigpipe)) 606 if (methods == EVMETHOD_AUTO)
468 return 0; 607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
469 608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
470 ev_method = EVMETHOD_NONE; 610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
471#if EV_USE_EPOLL 616#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
473#endif 621#endif
474#if EV_USE_SELECT 622#if EV_USE_SELECT
475 if (ev_method == EVMETHOD_NONE) select_init (flags); 623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
476#endif 624#endif
625 }
626}
477 627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY
661struct ev_loop *
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1;
711#endif
712
713 loop_init (EV_A_ methods);
714
478 if (ev_method) 715 if (ev_method (EV_A))
479 { 716 {
480 ev_watcher_init (&sigev, sigcb); 717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
481 siginit (); 719 siginit (EV_A);
482 720
721#ifndef WIN32
483 ev_signal_init (&childev, childcb, SIGCHLD); 722 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 724 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif
485 } 727 }
728 else
729 default_loop = 0;
486 } 730 }
487 731
488 return ev_method; 732 return default_loop;
489} 733}
490 734
491/*****************************************************************************/
492
493void 735void
494ev_fork_prepare (void) 736ev_default_destroy (void)
495{ 737{
496 /* nop */ 738#if EV_MULTIPLICITY
497} 739 struct ev_loop *loop = default_loop;
498
499void
500ev_fork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_fork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif 740#endif
512 741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
513 ev_io_stop (&sigev); 746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752}
753
754void
755ev_default_fork (void)
756{
757#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
514 close (sigpipe [0]); 764 close (sigpipe [0]);
515 close (sigpipe [1]); 765 close (sigpipe [1]);
516 pipe (sigpipe); 766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
517 siginit (); 769 siginit (EV_A);
518} 770}
519 771
520/*****************************************************************************/ 772/*****************************************************************************/
521 773
522static void 774static void
523call_pending (void) 775call_pending (EV_P)
524{ 776{
777 int pri;
778
779 for (pri = NUMPRI; pri--; )
525 while (pendingcnt) 780 while (pendingcnt [pri])
526 { 781 {
527 ANPENDING *p = pendings + --pendingcnt; 782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
528 783
529 if (p->w) 784 if (p->w)
530 { 785 {
531 p->w->pending = 0; 786 p->w->pending = 0;
532 p->w->cb (p->w, p->events); 787 p->w->cb (EV_A_ p->w, p->events);
533 } 788 }
534 } 789 }
535} 790}
536 791
537static void 792static void
538timers_reify (void) 793timers_reify (EV_P)
539{ 794{
540 while (timercnt && timers [0]->at <= now) 795 while (timercnt && timers [0]->at <= mn_now)
541 { 796 {
542 struct ev_timer *w = timers [0]; 797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
543 800
544 /* first reschedule or stop timer */ 801 /* first reschedule or stop timer */
545 if (w->repeat) 802 if (w->repeat)
546 { 803 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 805 w->at = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 806 downheap ((WT *)timers, timercnt, 0);
550 } 807 }
551 else 808 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
553 810
554 event ((W)w, EV_TIMEOUT); 811 event (EV_A_ (W)w, EV_TIMEOUT);
555 } 812 }
556} 813}
557 814
558static void 815static void
559periodics_reify (void) 816periodics_reify (EV_P)
560{ 817{
561 while (periodiccnt && periodics [0]->at <= ev_now) 818 while (periodiccnt && periodics [0]->at <= rt_now)
562 { 819 {
563 struct ev_periodic *w = periodics [0]; 820 struct ev_periodic *w = periodics [0];
821
822 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
564 823
565 /* first reschedule or stop timer */ 824 /* first reschedule or stop timer */
566 if (w->interval) 825 if (w->interval)
567 { 826 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
570 downheap ((WT *)periodics, periodiccnt, 0); 829 downheap ((WT *)periodics, periodiccnt, 0);
571 } 830 }
572 else 831 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
574 833
575 event ((W)w, EV_PERIODIC); 834 event (EV_A_ (W)w, EV_PERIODIC);
576 } 835 }
577} 836}
578 837
579static void 838static void
580periodics_reschedule (ev_tstamp diff) 839periodics_reschedule (EV_P)
581{ 840{
582 int i; 841 int i;
583 842
584 /* adjust periodics after time jump */ 843 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i) 844 for (i = 0; i < periodiccnt; ++i)
586 { 845 {
587 struct ev_periodic *w = periodics [i]; 846 struct ev_periodic *w = periodics [i];
588 847
589 if (w->interval) 848 if (w->interval)
590 { 849 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
592 851
593 if (fabs (diff) >= 1e-4) 852 if (fabs (diff) >= 1e-4)
594 { 853 {
595 ev_periodic_stop (w); 854 ev_periodic_stop (EV_A_ w);
596 ev_periodic_start (w); 855 ev_periodic_start (EV_A_ w);
597 856
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 858 }
600 } 859 }
601 } 860 }
602} 861}
603 862
863inline int
864time_update_monotonic (EV_P)
865{
866 mn_now = get_clock ();
867
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 }
873 else
874 {
875 now_floor = mn_now;
876 rt_now = ev_time ();
877 return 1;
878 }
879}
880
604static void 881static void
605time_update (void) 882time_update (EV_P)
606{ 883{
607 int i; 884 int i;
608 885
609 ev_now = ev_time (); 886#if EV_USE_MONOTONIC
610
611 if (have_monotonic) 887 if (expect_true (have_monotonic))
612 { 888 {
613 ev_tstamp odiff = diff; 889 if (time_update_monotonic (EV_A))
614
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */
616 { 890 {
617 now = get_clock (); 891 ev_tstamp odiff = rtmn_diff;
892
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 {
618 diff = ev_now - now; 895 rtmn_diff = rt_now - mn_now;
619 896
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
621 return; /* all is well */ 898 return; /* all is well */
622 899
623 ev_now = ev_time (); 900 rt_now = ev_time ();
901 mn_now = get_clock ();
902 now_floor = mn_now;
903 }
904
905 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
624 } 908 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 909 }
629 else 910 else
911#endif
630 { 912 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 913 rt_now = ev_time ();
914
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
632 { 916 {
633 periodics_reschedule (ev_now - now); 917 periodics_reschedule (EV_A);
634 918
635 /* adjust timers. this is easy, as the offset is the same for all */ 919 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i) 920 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff; 921 timers [i]->at += rt_now - mn_now;
638 } 922 }
639 923
640 now = ev_now; 924 mn_now = rt_now;
641 } 925 }
642} 926}
643 927
644int ev_loop_done; 928void
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
645 933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
646void ev_loop (int flags) 943ev_loop (EV_P_ int flags)
647{ 944{
648 double block; 945 double block;
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 947
651 do 948 do
652 { 949 {
653 /* queue check watchers (and execute them) */ 950 /* queue check watchers (and execute them) */
654 if (preparecnt) 951 if (expect_false (preparecnt))
655 { 952 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 954 call_pending (EV_A);
658 } 955 }
659 956
660 /* update fd-related kernel structures */ 957 /* update fd-related kernel structures */
661 fd_reify (); 958 fd_reify (EV_A);
662 959
663 /* calculate blocking time */ 960 /* calculate blocking time */
664 961
665 /* we only need this for !monotonic clockor timers, but as we basically 962 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */ 963 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A);
967 else
968#endif
969 {
667 ev_now = ev_time (); 970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
668 973
669 if (flags & EVLOOP_NONBLOCK || idlecnt) 974 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.; 975 block = 0.;
671 else 976 else
672 { 977 {
673 block = MAX_BLOCKTIME; 978 block = MAX_BLOCKTIME;
674 979
675 if (timercnt) 980 if (timercnt)
676 { 981 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 982 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
678 if (block > to) block = to; 983 if (block > to) block = to;
679 } 984 }
680 985
681 if (periodiccnt) 986 if (periodiccnt)
682 { 987 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
684 if (block > to) block = to; 989 if (block > to) block = to;
685 } 990 }
686 991
687 if (block < 0.) block = 0.; 992 if (block < 0.) block = 0.;
688 } 993 }
689 994
690 method_poll (block); 995 method_poll (EV_A_ block);
691 996
692 /* update ev_now, do magic */ 997 /* update rt_now, do magic */
693 time_update (); 998 time_update (EV_A);
694 999
695 /* queue pending timers and reschedule them */ 1000 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 1001 timers_reify (EV_A); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */ 1002 periodics_reify (EV_A); /* absolute timers called first */
698 1003
699 /* queue idle watchers unless io or timers are pending */ 1004 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt) 1005 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
702 1007
703 /* queue check watchers, to be executed first */ 1008 /* queue check watchers, to be executed first */
704 if (checkcnt) 1009 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 1011
707 call_pending (); 1012 call_pending (EV_A);
708 } 1013 }
709 while (!ev_loop_done); 1014 while (activecnt && !loop_done);
710 1015
711 if (ev_loop_done != 2) 1016 if (loop_done != 2)
712 ev_loop_done = 0; 1017 loop_done = 0;
1018}
1019
1020void
1021ev_unloop (EV_P_ int how)
1022{
1023 loop_done = how;
713} 1024}
714 1025
715/*****************************************************************************/ 1026/*****************************************************************************/
716 1027
717static void 1028inline void
718wlist_add (WL *head, WL elem) 1029wlist_add (WL *head, WL elem)
719{ 1030{
720 elem->next = *head; 1031 elem->next = *head;
721 *head = elem; 1032 *head = elem;
722} 1033}
723 1034
724static void 1035inline void
725wlist_del (WL *head, WL elem) 1036wlist_del (WL *head, WL elem)
726{ 1037{
727 while (*head) 1038 while (*head)
728 { 1039 {
729 if (*head == elem) 1040 if (*head == elem)
734 1045
735 head = &(*head)->next; 1046 head = &(*head)->next;
736 } 1047 }
737} 1048}
738 1049
739static void 1050inline void
740ev_clear_pending (W w) 1051ev_clear_pending (EV_P_ W w)
741{ 1052{
742 if (w->pending) 1053 if (w->pending)
743 { 1054 {
744 pendings [w->pending - 1].w = 0; 1055 pendings [ABSPRI (w)][w->pending - 1].w = 0;
745 w->pending = 0; 1056 w->pending = 0;
746 } 1057 }
747} 1058}
748 1059
749static void 1060inline void
750ev_start (W w, int active) 1061ev_start (EV_P_ W w, int active)
751{ 1062{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
752 w->active = active; 1066 w->active = active;
1067 ev_ref (EV_A);
753} 1068}
754 1069
755static void 1070inline void
756ev_stop (W w) 1071ev_stop (EV_P_ W w)
757{ 1072{
1073 ev_unref (EV_A);
758 w->active = 0; 1074 w->active = 0;
759} 1075}
760 1076
761/*****************************************************************************/ 1077/*****************************************************************************/
762 1078
763void 1079void
764ev_io_start (struct ev_io *w) 1080ev_io_start (EV_P_ struct ev_io *w)
765{ 1081{
1082 int fd = w->fd;
1083
766 if (ev_is_active (w)) 1084 if (ev_is_active (w))
767 return; 1085 return;
768 1086
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 1087 assert (("ev_io_start called with negative fd", fd >= 0));
772 1088
773 ev_start ((W)w, 1); 1089 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1091 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776 1092
777 fd_change (fd); 1093 fd_change (EV_A_ fd);
778} 1094}
779 1095
780void 1096void
781ev_io_stop (struct ev_io *w) 1097ev_io_stop (EV_P_ struct ev_io *w)
782{ 1098{
783 ev_clear_pending ((W)w); 1099 ev_clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 1100 if (!ev_is_active (w))
785 return; 1101 return;
786 1102
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 1104 ev_stop (EV_A_ (W)w);
789 1105
790 fd_change (w->fd); 1106 fd_change (EV_A_ w->fd);
791} 1107}
792 1108
793void 1109void
794ev_timer_start (struct ev_timer *w) 1110ev_timer_start (EV_P_ struct ev_timer *w)
795{ 1111{
796 if (ev_is_active (w)) 1112 if (ev_is_active (w))
797 return; 1113 return;
798 1114
799 w->at += now; 1115 w->at += mn_now;
800 1116
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 1118
803 ev_start ((W)w, ++timercnt); 1119 ev_start (EV_A_ (W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, ); 1120 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w; 1121 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1); 1122 upheap ((WT *)timers, timercnt - 1);
807} 1123}
808 1124
809void 1125void
810ev_timer_stop (struct ev_timer *w) 1126ev_timer_stop (EV_P_ struct ev_timer *w)
811{ 1127{
812 ev_clear_pending ((W)w); 1128 ev_clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 1129 if (!ev_is_active (w))
814 return; 1130 return;
815 1131
816 if (w->active < timercnt--) 1132 if (w->active < timercnt--)
817 { 1133 {
819 downheap ((WT *)timers, timercnt, w->active - 1); 1135 downheap ((WT *)timers, timercnt, w->active - 1);
820 } 1136 }
821 1137
822 w->at = w->repeat; 1138 w->at = w->repeat;
823 1139
824 ev_stop ((W)w); 1140 ev_stop (EV_A_ (W)w);
825} 1141}
826 1142
827void 1143void
828ev_timer_again (struct ev_timer *w) 1144ev_timer_again (EV_P_ struct ev_timer *w)
829{ 1145{
830 if (ev_is_active (w)) 1146 if (ev_is_active (w))
831 { 1147 {
832 if (w->repeat) 1148 if (w->repeat)
833 { 1149 {
834 w->at = now + w->repeat; 1150 w->at = mn_now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, w->active - 1);
836 } 1152 }
837 else 1153 else
838 ev_timer_stop (w); 1154 ev_timer_stop (EV_A_ w);
839 } 1155 }
840 else if (w->repeat) 1156 else if (w->repeat)
841 ev_timer_start (w); 1157 ev_timer_start (EV_A_ w);
842} 1158}
843 1159
844void 1160void
845ev_periodic_start (struct ev_periodic *w) 1161ev_periodic_start (EV_P_ struct ev_periodic *w)
846{ 1162{
847 if (ev_is_active (w)) 1163 if (ev_is_active (w))
848 return; 1164 return;
849 1165
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851 1167
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 1168 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval) 1169 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
855 1171
856 ev_start ((W)w, ++periodiccnt); 1172 ev_start (EV_A_ (W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 1173 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w; 1174 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1); 1175 upheap ((WT *)periodics, periodiccnt - 1);
860} 1176}
861 1177
862void 1178void
863ev_periodic_stop (struct ev_periodic *w) 1179ev_periodic_stop (EV_P_ struct ev_periodic *w)
864{ 1180{
865 ev_clear_pending ((W)w); 1181 ev_clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 1182 if (!ev_is_active (w))
867 return; 1183 return;
868 1184
869 if (w->active < periodiccnt--) 1185 if (w->active < periodiccnt--)
870 { 1186 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 1187 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1188 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 } 1189 }
874 1190
875 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
876} 1192}
877 1193
878void 1194void
879ev_signal_start (struct ev_signal *w) 1195ev_idle_start (EV_P_ struct ev_idle *w)
880{ 1196{
881 if (ev_is_active (w)) 1197 if (ev_is_active (w))
882 return; 1198 return;
883 1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203}
1204
1205void
1206ev_idle_stop (EV_P_ struct ev_idle *w)
1207{
1208 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w);
1214}
1215
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260#ifndef SA_RESTART
1261# define SA_RESTART 0
1262#endif
1263
1264void
1265ev_signal_start (EV_P_ struct ev_signal *w)
1266{
1267#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1269#endif
1270 if (ev_is_active (w))
1271 return;
1272
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885 1274
886 ev_start ((W)w, 1); 1275 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init); 1276 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889 1278
890 if (!w->next) 1279 if (!w->next)
891 { 1280 {
892 struct sigaction sa; 1281 struct sigaction sa;
893 sa.sa_handler = sighandler; 1282 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask); 1283 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 1285 sigaction (w->signum, &sa, 0);
897 } 1286 }
898} 1287}
899 1288
900void 1289void
901ev_signal_stop (struct ev_signal *w) 1290ev_signal_stop (EV_P_ struct ev_signal *w)
902{ 1291{
903 ev_clear_pending ((W)w); 1292 ev_clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 1293 if (!ev_is_active (w))
905 return; 1294 return;
906 1295
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 1297 ev_stop (EV_A_ (W)w);
909 1298
910 if (!signals [w->signum - 1].head) 1299 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL); 1300 signal (w->signum, SIG_DFL);
912} 1301}
913 1302
914void 1303void
915ev_idle_start (struct ev_idle *w) 1304ev_child_start (EV_P_ struct ev_child *w)
916{ 1305{
1306#if EV_MULTIPLICITY
1307 assert (("child watchers are only supported in the default loop", loop == default_loop));
1308#endif
917 if (ev_is_active (w)) 1309 if (ev_is_active (w))
918 return; 1310 return;
919 1311
920 ev_start ((W)w, ++idlecnt); 1312 ev_start (EV_A_ (W)w, 1);
921 array_needsize (idles, idlemax, idlecnt, ); 1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
922 idles [idlecnt - 1] = w;
923} 1314}
924 1315
925void 1316void
926ev_idle_stop (struct ev_idle *w) 1317ev_child_stop (EV_P_ struct ev_child *w)
927{ 1318{
928 ev_clear_pending ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 1320 if (ev_is_active (w))
930 return; 1321 return;
931 1322
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w); 1324 ev_stop (EV_A_ (W)w);
999} 1325}
1000 1326
1001/*****************************************************************************/ 1327/*****************************************************************************/
1002 1328
1003struct ev_once 1329struct ev_once
1007 void (*cb)(int revents, void *arg); 1333 void (*cb)(int revents, void *arg);
1008 void *arg; 1334 void *arg;
1009}; 1335};
1010 1336
1011static void 1337static void
1012once_cb (struct ev_once *once, int revents) 1338once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 1339{
1014 void (*cb)(int revents, void *arg) = once->cb; 1340 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 1341 void *arg = once->arg;
1016 1342
1017 ev_io_stop (&once->io); 1343 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 1344 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 1345 free (once);
1020 1346
1021 cb (revents, arg); 1347 cb (revents, arg);
1022} 1348}
1023 1349
1024static void 1350static void
1025once_cb_io (struct ev_io *w, int revents) 1351once_cb_io (EV_P_ struct ev_io *w, int revents)
1026{ 1352{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1028} 1354}
1029 1355
1030static void 1356static void
1031once_cb_to (struct ev_timer *w, int revents) 1357once_cb_to (EV_P_ struct ev_timer *w, int revents)
1032{ 1358{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1034} 1360}
1035 1361
1036void 1362void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 1364{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 1365 struct ev_once *once = malloc (sizeof (struct ev_once));
1040 1366
1041 if (!once) 1367 if (!once)
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1047 1373
1048 ev_watcher_init (&once->io, once_cb_io); 1374 ev_watcher_init (&once->io, once_cb_io);
1049 if (fd >= 0) 1375 if (fd >= 0)
1050 { 1376 {
1051 ev_io_set (&once->io, fd, events); 1377 ev_io_set (&once->io, fd, events);
1052 ev_io_start (&once->io); 1378 ev_io_start (EV_A_ &once->io);
1053 } 1379 }
1054 1380
1055 ev_watcher_init (&once->to, once_cb_to); 1381 ev_watcher_init (&once->to, once_cb_to);
1056 if (timeout >= 0.) 1382 if (timeout >= 0.)
1057 { 1383 {
1058 ev_timer_set (&once->to, timeout, 0.); 1384 ev_timer_set (&once->to, timeout, 0.);
1059 ev_timer_start (&once->to); 1385 ev_timer_start (EV_A_ &once->to);
1060 } 1386 }
1061 } 1387 }
1062} 1388}
1063 1389
1064/*****************************************************************************/
1065
1066#if 0
1067
1068struct ev_io wio;
1069
1070static void
1071sin_cb (struct ev_io *w, int revents)
1072{
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1074}
1075
1076static void
1077ocb (struct ev_timer *w, int revents)
1078{
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1080 ev_timer_stop (w);
1081 ev_timer_start (w);
1082}
1083
1084static void
1085scb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091
1092static void
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i)
1111 {
1112 struct ev_timer *w = t + i;
1113 ev_watcher_init (w, ocb, i);
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1115 ev_timer_start (w);
1116 if (drand48 () < 0.5)
1117 ev_timer_stop (w);
1118 }
1119#endif
1120
1121 struct ev_timer t1;
1122 ev_timer_init (&t1, ocb, 5, 10);
1123 ev_timer_start (&t1);
1124
1125 struct ev_signal sig;
1126 ev_signal_init (&sig, scb, SIGQUIT);
1127 ev_signal_start (&sig);
1128
1129 struct ev_check cw;
1130 ev_check_init (&cw, gcb);
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140}
1141
1142#endif
1143
1144
1145
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines