ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.464 by root, Fri Mar 21 16:41:04 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
59#include <unistd.h> 168#include <string.h>
60#include <fcntl.h> 169#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 170#include <stddef.h>
63 171
64#include <stdio.h> 172#include <stdio.h>
65 173
66#include <assert.h> 174#include <assert.h>
67#include <errno.h> 175#include <errno.h>
68#include <sys/types.h> 176#include <sys/types.h>
177#include <time.h>
178#include <limits.h>
179
180#include <signal.h>
181
182#ifdef EV_H
183# include EV_H
184#else
185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
69#ifndef WIN32 199#ifndef _WIN32
200# include <sys/time.h>
70# include <sys/wait.h> 201# include <sys/wait.h>
202# include <unistd.h>
203#else
204# include <io.h>
205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
71#endif 210# endif
72#include <sys/time.h> 211# undef EV_AVOID_STDIO
73#include <time.h> 212#endif
74 213
75/**/ 214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
258# endif
259#endif
76 260
77#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
78# define EV_USE_MONOTONIC 1 265# define EV_USE_MONOTONIC 0
266# endif
267#endif
268
269#ifndef EV_USE_REALTIME
270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
79#endif 279#endif
80 280
81#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
83#endif 283#endif
84 284
85#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 286# ifdef _WIN32
287# define EV_USE_POLL 0
288# else
289# define EV_USE_POLL EV_FEATURE_BACKENDS
290# endif
87#endif 291#endif
88 292
89#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
90# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
91#endif 299#endif
92 300
93#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
95#endif 303#endif
96 304
97#ifndef EV_USE_REALTIME 305#ifndef EV_USE_PORT
98# define EV_USE_REALTIME 1 306# define EV_USE_PORT 0
307#endif
308
309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
313# define EV_USE_INOTIFY 0
99#endif 314# endif
315#endif
100 316
101/**/ 317#ifndef EV_PID_HASHSIZE
318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
328# else
329# define EV_USE_EVENTFD 0
330# endif
331#endif
332
333#ifndef EV_USE_SIGNALFD
334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335# define EV_USE_SIGNALFD EV_FEATURE_OS
336# else
337# define EV_USE_SIGNALFD 0
338# endif
339#endif
340
341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
102 390
103#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
104# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
105# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
106#endif 394#endif
108#ifndef CLOCK_REALTIME 396#ifndef CLOCK_REALTIME
109# undef EV_USE_REALTIME 397# undef EV_USE_REALTIME
110# define EV_USE_REALTIME 0 398# define EV_USE_REALTIME 0
111#endif 399#endif
112 400
401#if !EV_STAT_ENABLE
402# undef EV_USE_INOTIFY
403# define EV_USE_INOTIFY 0
404#endif
405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
420# endif
421#endif
422
423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
459#endif
460
113/**/ 461/**/
114 462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
469/*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
475
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 478
120#include "ev.h" 479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
121 481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 */
512
513#ifndef ECB_H
514#define ECB_H
515
516/* 16 bits major, 16 bits minor */
517#define ECB_VERSION 0x00010003
518
519#ifdef _WIN32
520 typedef signed char int8_t;
521 typedef unsigned char uint8_t;
522 typedef signed short int16_t;
523 typedef unsigned short uint16_t;
524 typedef signed int int32_t;
525 typedef unsigned int uint32_t;
122#if __GNUC__ >= 3 526 #if __GNUC__
123# define expect(expr,value) __builtin_expect ((expr),(value)) 527 typedef signed long long int64_t;
124# define inline inline 528 typedef unsigned long long uint64_t;
529 #else /* _MSC_VER || __BORLANDC__ */
530 typedef signed __int64 int64_t;
531 typedef unsigned __int64 uint64_t;
532 #endif
533 #ifdef _WIN64
534 #define ECB_PTRSIZE 8
535 typedef uint64_t uintptr_t;
536 typedef int64_t intptr_t;
537 #else
538 #define ECB_PTRSIZE 4
539 typedef uint32_t uintptr_t;
540 typedef int32_t intptr_t;
541 #endif
125#else 542#else
126# define expect(expr,value) (expr) 543 #include <inttypes.h>
127# define inline static 544 #if UINTMAX_MAX > 0xffffffffU
545 #define ECB_PTRSIZE 8
546 #else
547 #define ECB_PTRSIZE 4
128#endif 548 #endif
549#endif
129 550
130#define expect_false(expr) expect ((expr) != 0, 0) 551/* work around x32 idiocy by defining proper macros */
131#define expect_true(expr) expect ((expr) != 0, 1) 552#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553 #if _ILP32
554 #define ECB_AMD64_X32 1
555 #else
556 #define ECB_AMD64 1
557 #endif
558#endif
132 559
133#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 560/* many compilers define _GNUC_ to some versions but then only implement
134#define ABSPRI(w) ((w)->priority - EV_MINPRI) 561 * what their idiot authors think are the "more important" extensions,
562 * causing enormous grief in return for some better fake benchmark numbers.
563 * or so.
564 * we try to detect these and simply assume they are not gcc - if they have
565 * an issue with that they should have done it right in the first place.
566 */
567#ifndef ECB_GCC_VERSION
568 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569 #define ECB_GCC_VERSION(major,minor) 0
570 #else
571 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572 #endif
573#endif
135 574
136typedef struct ev_watcher *W; 575#define ECB_CPP (__cplusplus+0)
137typedef struct ev_watcher_list *WL; 576#define ECB_CPP11 (__cplusplus >= 201103L)
138typedef struct ev_watcher_time *WT;
139 577
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 578#if ECB_CPP
579 #define ECB_C 0
580 #define ECB_STDC_VERSION 0
581#else
582 #define ECB_C 1
583 #define ECB_STDC_VERSION __STDC_VERSION__
584#endif
585
586#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
587#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
588
589#if ECB_CPP
590 #define ECB_EXTERN_C extern "C"
591 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
592 #define ECB_EXTERN_C_END }
593#else
594 #define ECB_EXTERN_C extern
595 #define ECB_EXTERN_C_BEG
596 #define ECB_EXTERN_C_END
597#endif
141 598
142/*****************************************************************************/ 599/*****************************************************************************/
143 600
601/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
602/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
603
604#if ECB_NO_THREADS
605 #define ECB_NO_SMP 1
606#endif
607
608#if ECB_NO_SMP
609 #define ECB_MEMORY_FENCE do { } while (0)
610#endif
611
612#ifndef ECB_MEMORY_FENCE
613 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
614 #if __i386 || __i386__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
616 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
617 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
618 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
619 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
620 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
621 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
622 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
625 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
627 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
628 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
629 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
630 #elif __aarch64__
631 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
632 #elif (__sparc || __sparc__) && !__sparcv8
633 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
634 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
635 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
636 #elif defined __s390__ || defined __s390x__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
638 #elif defined __mips__
639 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
640 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
642 #elif defined __alpha__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
644 #elif defined __hppa__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
647 #elif defined __ia64__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
649 #elif defined __m68k__
650 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
651 #elif defined __m88k__
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
653 #elif defined __sh__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
655 #endif
656 #endif
657#endif
658
659#ifndef ECB_MEMORY_FENCE
660 #if ECB_GCC_VERSION(4,7)
661 /* see comment below (stdatomic.h) about the C11 memory model. */
662 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
663 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
664 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
665
666 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
667 * without risking compile time errors with other compilers. We *could*
668 * define our own ecb_clang_has_feature, but I just can't be bothered to work
669 * around this shit time and again.
670 * #elif defined __clang && __has_feature (cxx_atomic)
671 * // see comment below (stdatomic.h) about the C11 memory model.
672 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
673 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
674 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
675 */
676
677 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
678 #define ECB_MEMORY_FENCE __sync_synchronize ()
679 #elif _MSC_VER >= 1500 /* VC++ 2008 */
680 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
681 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
682 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
683 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
684 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
685 #elif _MSC_VER >= 1400 /* VC++ 2005 */
686 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
687 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
688 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
689 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
690 #elif defined _WIN32
691 #include <WinNT.h>
692 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
693 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
694 #include <mbarrier.h>
695 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
696 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
697 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
698 #elif __xlC__
699 #define ECB_MEMORY_FENCE __sync ()
700 #endif
701#endif
702
703#ifndef ECB_MEMORY_FENCE
704 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
705 /* we assume that these memory fences work on all variables/all memory accesses, */
706 /* not just C11 atomics and atomic accesses */
707 #include <stdatomic.h>
708 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
709 /* any fence other than seq_cst, which isn't very efficient for us. */
710 /* Why that is, we don't know - either the C11 memory model is quite useless */
711 /* for most usages, or gcc and clang have a bug */
712 /* I *currently* lean towards the latter, and inefficiently implement */
713 /* all three of ecb's fences as a seq_cst fence */
714 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
715 /* for all __atomic_thread_fence's except seq_cst */
716 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
717 #endif
718#endif
719
720#ifndef ECB_MEMORY_FENCE
721 #if !ECB_AVOID_PTHREADS
722 /*
723 * if you get undefined symbol references to pthread_mutex_lock,
724 * or failure to find pthread.h, then you should implement
725 * the ECB_MEMORY_FENCE operations for your cpu/compiler
726 * OR provide pthread.h and link against the posix thread library
727 * of your system.
728 */
729 #include <pthread.h>
730 #define ECB_NEEDS_PTHREADS 1
731 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
732
733 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
734 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
735 #endif
736#endif
737
738#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
739 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
740#endif
741
742#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
743 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
744#endif
745
746/*****************************************************************************/
747
748#if __cplusplus
749 #define ecb_inline static inline
750#elif ECB_GCC_VERSION(2,5)
751 #define ecb_inline static __inline__
752#elif ECB_C99
753 #define ecb_inline static inline
754#else
755 #define ecb_inline static
756#endif
757
758#if ECB_GCC_VERSION(3,3)
759 #define ecb_restrict __restrict__
760#elif ECB_C99
761 #define ecb_restrict restrict
762#else
763 #define ecb_restrict
764#endif
765
766typedef int ecb_bool;
767
768#define ECB_CONCAT_(a, b) a ## b
769#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
770#define ECB_STRINGIFY_(a) # a
771#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
772
773#define ecb_function_ ecb_inline
774
775#if ECB_GCC_VERSION(3,1)
776 #define ecb_attribute(attrlist) __attribute__(attrlist)
777 #define ecb_is_constant(expr) __builtin_constant_p (expr)
778 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
779 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
780#else
781 #define ecb_attribute(attrlist)
782
783 /* possible C11 impl for integral types
784 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
785 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
786
787 #define ecb_is_constant(expr) 0
788 #define ecb_expect(expr,value) (expr)
789 #define ecb_prefetch(addr,rw,locality)
790#endif
791
792/* no emulation for ecb_decltype */
793#if ECB_GCC_VERSION(4,5)
794 #define ecb_decltype(x) __decltype(x)
795#elif ECB_GCC_VERSION(3,0)
796 #define ecb_decltype(x) __typeof(x)
797#endif
798
799#define ecb_noinline ecb_attribute ((__noinline__))
800#define ecb_unused ecb_attribute ((__unused__))
801#define ecb_const ecb_attribute ((__const__))
802#define ecb_pure ecb_attribute ((__pure__))
803
804#if ECB_C11
805 #define ecb_noreturn _Noreturn
806#else
807 #define ecb_noreturn ecb_attribute ((__noreturn__))
808#endif
809
810#if ECB_GCC_VERSION(4,3)
811 #define ecb_artificial ecb_attribute ((__artificial__))
812 #define ecb_hot ecb_attribute ((__hot__))
813 #define ecb_cold ecb_attribute ((__cold__))
814#else
815 #define ecb_artificial
816 #define ecb_hot
817 #define ecb_cold
818#endif
819
820/* put around conditional expressions if you are very sure that the */
821/* expression is mostly true or mostly false. note that these return */
822/* booleans, not the expression. */
823#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
824#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
825/* for compatibility to the rest of the world */
826#define ecb_likely(expr) ecb_expect_true (expr)
827#define ecb_unlikely(expr) ecb_expect_false (expr)
828
829/* count trailing zero bits and count # of one bits */
830#if ECB_GCC_VERSION(3,4)
831 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
832 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
833 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
834 #define ecb_ctz32(x) __builtin_ctz (x)
835 #define ecb_ctz64(x) __builtin_ctzll (x)
836 #define ecb_popcount32(x) __builtin_popcount (x)
837 /* no popcountll */
838#else
839 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
840 ecb_function_ int
841 ecb_ctz32 (uint32_t x)
842 {
843 int r = 0;
844
845 x &= ~x + 1; /* this isolates the lowest bit */
846
847#if ECB_branchless_on_i386
848 r += !!(x & 0xaaaaaaaa) << 0;
849 r += !!(x & 0xcccccccc) << 1;
850 r += !!(x & 0xf0f0f0f0) << 2;
851 r += !!(x & 0xff00ff00) << 3;
852 r += !!(x & 0xffff0000) << 4;
853#else
854 if (x & 0xaaaaaaaa) r += 1;
855 if (x & 0xcccccccc) r += 2;
856 if (x & 0xf0f0f0f0) r += 4;
857 if (x & 0xff00ff00) r += 8;
858 if (x & 0xffff0000) r += 16;
859#endif
860
861 return r;
862 }
863
864 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
865 ecb_function_ int
866 ecb_ctz64 (uint64_t x)
867 {
868 int shift = x & 0xffffffffU ? 0 : 32;
869 return ecb_ctz32 (x >> shift) + shift;
870 }
871
872 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
873 ecb_function_ int
874 ecb_popcount32 (uint32_t x)
875 {
876 x -= (x >> 1) & 0x55555555;
877 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
878 x = ((x >> 4) + x) & 0x0f0f0f0f;
879 x *= 0x01010101;
880
881 return x >> 24;
882 }
883
884 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
885 ecb_function_ int ecb_ld32 (uint32_t x)
886 {
887 int r = 0;
888
889 if (x >> 16) { x >>= 16; r += 16; }
890 if (x >> 8) { x >>= 8; r += 8; }
891 if (x >> 4) { x >>= 4; r += 4; }
892 if (x >> 2) { x >>= 2; r += 2; }
893 if (x >> 1) { r += 1; }
894
895 return r;
896 }
897
898 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
899 ecb_function_ int ecb_ld64 (uint64_t x)
900 {
901 int r = 0;
902
903 if (x >> 32) { x >>= 32; r += 32; }
904
905 return r + ecb_ld32 (x);
906 }
907#endif
908
909ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
910ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
911ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
912ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
913
914ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
915ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
916{
917 return ( (x * 0x0802U & 0x22110U)
918 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
919}
920
921ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
922ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
923{
924 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
925 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
926 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
927 x = ( x >> 8 ) | ( x << 8);
928
929 return x;
930}
931
932ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
933ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
934{
935 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
936 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
937 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
938 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
939 x = ( x >> 16 ) | ( x << 16);
940
941 return x;
942}
943
944/* popcount64 is only available on 64 bit cpus as gcc builtin */
945/* so for this version we are lazy */
946ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
947ecb_function_ int
948ecb_popcount64 (uint64_t x)
949{
950 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
951}
952
953ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
954ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
955ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
956ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
957ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
958ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
959ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
960ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
961
962ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
963ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
964ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
965ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
966ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
967ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
968ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
969ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
970
971#if ECB_GCC_VERSION(4,3)
972 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
973 #define ecb_bswap32(x) __builtin_bswap32 (x)
974 #define ecb_bswap64(x) __builtin_bswap64 (x)
975#else
976 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
977 ecb_function_ uint16_t
978 ecb_bswap16 (uint16_t x)
979 {
980 return ecb_rotl16 (x, 8);
981 }
982
983 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
984 ecb_function_ uint32_t
985 ecb_bswap32 (uint32_t x)
986 {
987 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
988 }
989
990 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
991 ecb_function_ uint64_t
992 ecb_bswap64 (uint64_t x)
993 {
994 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
995 }
996#endif
997
998#if ECB_GCC_VERSION(4,5)
999 #define ecb_unreachable() __builtin_unreachable ()
1000#else
1001 /* this seems to work fine, but gcc always emits a warning for it :/ */
1002 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1003 ecb_inline void ecb_unreachable (void) { }
1004#endif
1005
1006/* try to tell the compiler that some condition is definitely true */
1007#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1008
1009ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1010ecb_inline unsigned char
1011ecb_byteorder_helper (void)
1012{
1013 /* the union code still generates code under pressure in gcc, */
1014 /* but less than using pointers, and always seems to */
1015 /* successfully return a constant. */
1016 /* the reason why we have this horrible preprocessor mess */
1017 /* is to avoid it in all cases, at least on common architectures */
1018 /* or when using a recent enough gcc version (>= 4.6) */
1019#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1020 return 0x44;
1021#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1022 return 0x44;
1023#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1024 return 0x11;
1025#else
1026 union
1027 {
1028 uint32_t i;
1029 uint8_t c;
1030 } u = { 0x11223344 };
1031 return u.c;
1032#endif
1033}
1034
1035ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1036ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1037ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1038ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1039
1040#if ECB_GCC_VERSION(3,0) || ECB_C99
1041 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1042#else
1043 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1044#endif
1045
1046#if __cplusplus
1047 template<typename T>
1048 static inline T ecb_div_rd (T val, T div)
1049 {
1050 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1051 }
1052 template<typename T>
1053 static inline T ecb_div_ru (T val, T div)
1054 {
1055 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1056 }
1057#else
1058 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1059 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1060#endif
1061
1062#if ecb_cplusplus_does_not_suck
1063 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1064 template<typename T, int N>
1065 static inline int ecb_array_length (const T (&arr)[N])
1066 {
1067 return N;
1068 }
1069#else
1070 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1071#endif
1072
1073/*******************************************************************************/
1074/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1075
1076/* basically, everything uses "ieee pure-endian" floating point numbers */
1077/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1078#if 0 \
1079 || __i386 || __i386__ \
1080 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1081 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1082 || defined __arm__ && defined __ARM_EABI__ \
1083 || defined __s390__ || defined __s390x__ \
1084 || defined __mips__ \
1085 || defined __alpha__ \
1086 || defined __hppa__ \
1087 || defined __ia64__ \
1088 || defined __m68k__ \
1089 || defined __m88k__ \
1090 || defined __sh__ \
1091 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1092 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__))
1093 #define ECB_STDFP 1
1094 #include <string.h> /* for memcpy */
1095#else
1096 #define ECB_STDFP 0
1097#endif
1098
1099#ifndef ECB_NO_LIBM
1100
1101 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1102
1103 /* only the oldest of old doesn't have this one. solaris. */
1104 #ifdef INFINITY
1105 #define ECB_INFINITY INFINITY
1106 #else
1107 #define ECB_INFINITY HUGE_VAL
1108 #endif
1109
1110 #ifdef NAN
1111 #define ECB_NAN NAN
1112 #else
1113 #define ECB_NAN ECB_INFINITY
1114 #endif
1115
1116 /* converts an ieee half/binary16 to a float */
1117 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1118 ecb_function_ float
1119 ecb_binary16_to_float (uint16_t x)
1120 {
1121 int e = (x >> 10) & 0x1f;
1122 int m = x & 0x3ff;
1123 float r;
1124
1125 if (!e ) r = ldexpf (m , -24);
1126 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1127 else if (m ) r = ECB_NAN;
1128 else r = ECB_INFINITY;
1129
1130 return x & 0x8000 ? -r : r;
1131 }
1132
1133 /* convert a float to ieee single/binary32 */
1134 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1135 ecb_function_ uint32_t
1136 ecb_float_to_binary32 (float x)
1137 {
1138 uint32_t r;
1139
1140 #if ECB_STDFP
1141 memcpy (&r, &x, 4);
1142 #else
1143 /* slow emulation, works for anything but -0 */
1144 uint32_t m;
1145 int e;
1146
1147 if (x == 0e0f ) return 0x00000000U;
1148 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1149 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1150 if (x != x ) return 0x7fbfffffU;
1151
1152 m = frexpf (x, &e) * 0x1000000U;
1153
1154 r = m & 0x80000000U;
1155
1156 if (r)
1157 m = -m;
1158
1159 if (e <= -126)
1160 {
1161 m &= 0xffffffU;
1162 m >>= (-125 - e);
1163 e = -126;
1164 }
1165
1166 r |= (e + 126) << 23;
1167 r |= m & 0x7fffffU;
1168 #endif
1169
1170 return r;
1171 }
1172
1173 /* converts an ieee single/binary32 to a float */
1174 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1175 ecb_function_ float
1176 ecb_binary32_to_float (uint32_t x)
1177 {
1178 float r;
1179
1180 #if ECB_STDFP
1181 memcpy (&r, &x, 4);
1182 #else
1183 /* emulation, only works for normals and subnormals and +0 */
1184 int neg = x >> 31;
1185 int e = (x >> 23) & 0xffU;
1186
1187 x &= 0x7fffffU;
1188
1189 if (e)
1190 x |= 0x800000U;
1191 else
1192 e = 1;
1193
1194 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1195 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1196
1197 r = neg ? -r : r;
1198 #endif
1199
1200 return r;
1201 }
1202
1203 /* convert a double to ieee double/binary64 */
1204 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1205 ecb_function_ uint64_t
1206 ecb_double_to_binary64 (double x)
1207 {
1208 uint64_t r;
1209
1210 #if ECB_STDFP
1211 memcpy (&r, &x, 8);
1212 #else
1213 /* slow emulation, works for anything but -0 */
1214 uint64_t m;
1215 int e;
1216
1217 if (x == 0e0 ) return 0x0000000000000000U;
1218 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1219 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1220 if (x != x ) return 0X7ff7ffffffffffffU;
1221
1222 m = frexp (x, &e) * 0x20000000000000U;
1223
1224 r = m & 0x8000000000000000;;
1225
1226 if (r)
1227 m = -m;
1228
1229 if (e <= -1022)
1230 {
1231 m &= 0x1fffffffffffffU;
1232 m >>= (-1021 - e);
1233 e = -1022;
1234 }
1235
1236 r |= ((uint64_t)(e + 1022)) << 52;
1237 r |= m & 0xfffffffffffffU;
1238 #endif
1239
1240 return r;
1241 }
1242
1243 /* converts an ieee double/binary64 to a double */
1244 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1245 ecb_function_ double
1246 ecb_binary64_to_double (uint64_t x)
1247 {
1248 double r;
1249
1250 #if ECB_STDFP
1251 memcpy (&r, &x, 8);
1252 #else
1253 /* emulation, only works for normals and subnormals and +0 */
1254 int neg = x >> 63;
1255 int e = (x >> 52) & 0x7ffU;
1256
1257 x &= 0xfffffffffffffU;
1258
1259 if (e)
1260 x |= 0x10000000000000U;
1261 else
1262 e = 1;
1263
1264 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1265 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1266
1267 r = neg ? -r : r;
1268 #endif
1269
1270 return r;
1271 }
1272
1273#endif
1274
1275#endif
1276
1277/* ECB.H END */
1278
1279#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1280/* if your architecture doesn't need memory fences, e.g. because it is
1281 * single-cpu/core, or if you use libev in a project that doesn't use libev
1282 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1283 * libev, in which cases the memory fences become nops.
1284 * alternatively, you can remove this #error and link against libpthread,
1285 * which will then provide the memory fences.
1286 */
1287# error "memory fences not defined for your architecture, please report"
1288#endif
1289
1290#ifndef ECB_MEMORY_FENCE
1291# define ECB_MEMORY_FENCE do { } while (0)
1292# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1293# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1294#endif
1295
1296#define expect_false(cond) ecb_expect_false (cond)
1297#define expect_true(cond) ecb_expect_true (cond)
1298#define noinline ecb_noinline
1299
1300#define inline_size ecb_inline
1301
1302#if EV_FEATURE_CODE
1303# define inline_speed ecb_inline
1304#else
1305# define inline_speed static noinline
1306#endif
1307
1308#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1309
1310#if EV_MINPRI == EV_MAXPRI
1311# define ABSPRI(w) (((W)w), 0)
1312#else
1313# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1314#endif
1315
1316#define EMPTY /* required for microsofts broken pseudo-c compiler */
1317#define EMPTY2(a,b) /* used to suppress some warnings */
1318
1319typedef ev_watcher *W;
1320typedef ev_watcher_list *WL;
1321typedef ev_watcher_time *WT;
1322
1323#define ev_active(w) ((W)(w))->active
1324#define ev_at(w) ((WT)(w))->at
1325
1326#if EV_USE_REALTIME
1327/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1328/* giving it a reasonably high chance of working on typical architectures */
1329static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1330#endif
1331
1332#if EV_USE_MONOTONIC
1333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1334#endif
1335
1336#ifndef EV_FD_TO_WIN32_HANDLE
1337# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1338#endif
1339#ifndef EV_WIN32_HANDLE_TO_FD
1340# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1341#endif
1342#ifndef EV_WIN32_CLOSE_FD
1343# define EV_WIN32_CLOSE_FD(fd) close (fd)
1344#endif
1345
1346#ifdef _WIN32
1347# include "ev_win32.c"
1348#endif
1349
1350/*****************************************************************************/
1351
1352/* define a suitable floor function (only used by periodics atm) */
1353
1354#if EV_USE_FLOOR
1355# include <math.h>
1356# define ev_floor(v) floor (v)
1357#else
1358
1359#include <float.h>
1360
1361/* a floor() replacement function, should be independent of ev_tstamp type */
1362static ev_tstamp noinline
1363ev_floor (ev_tstamp v)
1364{
1365 /* the choice of shift factor is not terribly important */
1366#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1367 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1368#else
1369 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1370#endif
1371
1372 /* argument too large for an unsigned long? */
1373 if (expect_false (v >= shift))
1374 {
1375 ev_tstamp f;
1376
1377 if (v == v - 1.)
1378 return v; /* very large number */
1379
1380 f = shift * ev_floor (v * (1. / shift));
1381 return f + ev_floor (v - f);
1382 }
1383
1384 /* special treatment for negative args? */
1385 if (expect_false (v < 0.))
1386 {
1387 ev_tstamp f = -ev_floor (-v);
1388
1389 return f - (f == v ? 0 : 1);
1390 }
1391
1392 /* fits into an unsigned long */
1393 return (unsigned long)v;
1394}
1395
1396#endif
1397
1398/*****************************************************************************/
1399
1400#ifdef __linux
1401# include <sys/utsname.h>
1402#endif
1403
1404static unsigned int noinline ecb_cold
1405ev_linux_version (void)
1406{
1407#ifdef __linux
1408 unsigned int v = 0;
1409 struct utsname buf;
1410 int i;
1411 char *p = buf.release;
1412
1413 if (uname (&buf))
1414 return 0;
1415
1416 for (i = 3+1; --i; )
1417 {
1418 unsigned int c = 0;
1419
1420 for (;;)
1421 {
1422 if (*p >= '0' && *p <= '9')
1423 c = c * 10 + *p++ - '0';
1424 else
1425 {
1426 p += *p == '.';
1427 break;
1428 }
1429 }
1430
1431 v = (v << 8) | c;
1432 }
1433
1434 return v;
1435#else
1436 return 0;
1437#endif
1438}
1439
1440/*****************************************************************************/
1441
1442#if EV_AVOID_STDIO
1443static void noinline ecb_cold
1444ev_printerr (const char *msg)
1445{
1446 write (STDERR_FILENO, msg, strlen (msg));
1447}
1448#endif
1449
1450static void (*syserr_cb)(const char *msg) EV_THROW;
1451
1452void ecb_cold
1453ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1454{
1455 syserr_cb = cb;
1456}
1457
1458static void noinline ecb_cold
1459ev_syserr (const char *msg)
1460{
1461 if (!msg)
1462 msg = "(libev) system error";
1463
1464 if (syserr_cb)
1465 syserr_cb (msg);
1466 else
1467 {
1468#if EV_AVOID_STDIO
1469 ev_printerr (msg);
1470 ev_printerr (": ");
1471 ev_printerr (strerror (errno));
1472 ev_printerr ("\n");
1473#else
1474 perror (msg);
1475#endif
1476 abort ();
1477 }
1478}
1479
1480static void *
1481ev_realloc_emul (void *ptr, long size) EV_THROW
1482{
1483 /* some systems, notably openbsd and darwin, fail to properly
1484 * implement realloc (x, 0) (as required by both ansi c-89 and
1485 * the single unix specification, so work around them here.
1486 * recently, also (at least) fedora and debian started breaking it,
1487 * despite documenting it otherwise.
1488 */
1489
1490 if (size)
1491 return realloc (ptr, size);
1492
1493 free (ptr);
1494 return 0;
1495}
1496
1497static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1498
1499void ecb_cold
1500ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1501{
1502 alloc = cb;
1503}
1504
1505inline_speed void *
1506ev_realloc (void *ptr, long size)
1507{
1508 ptr = alloc (ptr, size);
1509
1510 if (!ptr && size)
1511 {
1512#if EV_AVOID_STDIO
1513 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1514#else
1515 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1516#endif
1517 abort ();
1518 }
1519
1520 return ptr;
1521}
1522
1523#define ev_malloc(size) ev_realloc (0, (size))
1524#define ev_free(ptr) ev_realloc ((ptr), 0)
1525
1526/*****************************************************************************/
1527
1528/* set in reify when reification needed */
1529#define EV_ANFD_REIFY 1
1530
1531/* file descriptor info structure */
144typedef struct 1532typedef struct
145{ 1533{
146 struct ev_watcher_list *head; 1534 WL head;
147 unsigned char events; 1535 unsigned char events; /* the events watched for */
1536 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1537 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
148 unsigned char reify; 1538 unsigned char unused;
1539#if EV_USE_EPOLL
1540 unsigned int egen; /* generation counter to counter epoll bugs */
1541#endif
1542#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1543 SOCKET handle;
1544#endif
1545#if EV_USE_IOCP
1546 OVERLAPPED or, ow;
1547#endif
149} ANFD; 1548} ANFD;
150 1549
1550/* stores the pending event set for a given watcher */
151typedef struct 1551typedef struct
152{ 1552{
153 W w; 1553 W w;
154 int events; 1554 int events; /* the pending event set for the given watcher */
155} ANPENDING; 1555} ANPENDING;
156 1556
1557#if EV_USE_INOTIFY
1558/* hash table entry per inotify-id */
1559typedef struct
1560{
1561 WL head;
1562} ANFS;
1563#endif
1564
1565/* Heap Entry */
1566#if EV_HEAP_CACHE_AT
1567 /* a heap element */
1568 typedef struct {
1569 ev_tstamp at;
1570 WT w;
1571 } ANHE;
1572
1573 #define ANHE_w(he) (he).w /* access watcher, read-write */
1574 #define ANHE_at(he) (he).at /* access cached at, read-only */
1575 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1576#else
1577 /* a heap element */
1578 typedef WT ANHE;
1579
1580 #define ANHE_w(he) (he)
1581 #define ANHE_at(he) (he)->at
1582 #define ANHE_at_cache(he)
1583#endif
1584
157#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
158 1586
159struct ev_loop 1587 struct ev_loop
160{ 1588 {
1589 ev_tstamp ev_rt_now;
1590 #define ev_rt_now ((loop)->ev_rt_now)
161# define VAR(name,decl) decl; 1591 #define VAR(name,decl) decl;
162# include "ev_vars.h" 1592 #include "ev_vars.h"
163};
164# undef VAR 1593 #undef VAR
1594 };
165# include "ev_wrap.h" 1595 #include "ev_wrap.h"
1596
1597 static struct ev_loop default_loop_struct;
1598 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
166 1599
167#else 1600#else
168 1601
1602 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
169# define VAR(name,decl) static decl; 1603 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 1604 #include "ev_vars.h"
171# undef VAR 1605 #undef VAR
172 1606
1607 static int ev_default_loop_ptr;
1608
173#endif 1609#endif
1610
1611#if EV_FEATURE_API
1612# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1613# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1614# define EV_INVOKE_PENDING invoke_cb (EV_A)
1615#else
1616# define EV_RELEASE_CB (void)0
1617# define EV_ACQUIRE_CB (void)0
1618# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1619#endif
1620
1621#define EVBREAK_RECURSE 0x80
174 1622
175/*****************************************************************************/ 1623/*****************************************************************************/
176 1624
177inline ev_tstamp 1625#ifndef EV_HAVE_EV_TIME
1626ev_tstamp
178ev_time (void) 1627ev_time (void) EV_THROW
179{ 1628{
180#if EV_USE_REALTIME 1629#if EV_USE_REALTIME
1630 if (expect_true (have_realtime))
1631 {
181 struct timespec ts; 1632 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 1633 clock_gettime (CLOCK_REALTIME, &ts);
183 return ts.tv_sec + ts.tv_nsec * 1e-9; 1634 return ts.tv_sec + ts.tv_nsec * 1e-9;
184#else 1635 }
1636#endif
1637
185 struct timeval tv; 1638 struct timeval tv;
186 gettimeofday (&tv, 0); 1639 gettimeofday (&tv, 0);
187 return tv.tv_sec + tv.tv_usec * 1e-6; 1640 return tv.tv_sec + tv.tv_usec * 1e-6;
188#endif
189} 1641}
1642#endif
190 1643
191inline ev_tstamp 1644inline_size ev_tstamp
192get_clock (void) 1645get_clock (void)
193{ 1646{
194#if EV_USE_MONOTONIC 1647#if EV_USE_MONOTONIC
195 if (expect_true (have_monotonic)) 1648 if (expect_true (have_monotonic))
196 { 1649 {
201#endif 1654#endif
202 1655
203 return ev_time (); 1656 return ev_time ();
204} 1657}
205 1658
1659#if EV_MULTIPLICITY
206ev_tstamp 1660ev_tstamp
207ev_now (EV_P) 1661ev_now (EV_P) EV_THROW
208{ 1662{
209 return rt_now; 1663 return ev_rt_now;
210} 1664}
1665#endif
211 1666
212#define array_roundsize(base,n) ((n) | 4 & ~3) 1667void
213 1668ev_sleep (ev_tstamp delay) EV_THROW
214#define array_needsize(base,cur,cnt,init) \ 1669{
215 if (expect_false ((cnt) > cur)) \ 1670 if (delay > 0.)
216 { \
217 int newcnt = cur; \
218 do \
219 { \
220 newcnt = array_roundsize (base, newcnt << 1); \
221 } \
222 while ((cnt) > newcnt); \
223 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \
225 init (base + cur, newcnt - cur); \
226 cur = newcnt; \
227 } 1671 {
1672#if EV_USE_NANOSLEEP
1673 struct timespec ts;
1674
1675 EV_TS_SET (ts, delay);
1676 nanosleep (&ts, 0);
1677#elif defined _WIN32
1678 Sleep ((unsigned long)(delay * 1e3));
1679#else
1680 struct timeval tv;
1681
1682 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1683 /* something not guaranteed by newer posix versions, but guaranteed */
1684 /* by older ones */
1685 EV_TV_SET (tv, delay);
1686 select (0, 0, 0, 0, &tv);
1687#endif
1688 }
1689}
228 1690
229/*****************************************************************************/ 1691/*****************************************************************************/
230 1692
231static void 1693#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
232anfds_init (ANFD *base, int count)
233{
234 while (count--)
235 {
236 base->head = 0;
237 base->events = EV_NONE;
238 base->reify = 0;
239 1694
240 ++base; 1695/* find a suitable new size for the given array, */
1696/* hopefully by rounding to a nice-to-malloc size */
1697inline_size int
1698array_nextsize (int elem, int cur, int cnt)
1699{
1700 int ncur = cur + 1;
1701
1702 do
1703 ncur <<= 1;
1704 while (cnt > ncur);
1705
1706 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1707 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
241 } 1708 {
242} 1709 ncur *= elem;
243 1710 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
244static void 1711 ncur = ncur - sizeof (void *) * 4;
245event (EV_P_ W w, int events) 1712 ncur /= elem;
246{
247 if (w->pending)
248 { 1713 }
1714
1715 return ncur;
1716}
1717
1718static void * noinline ecb_cold
1719array_realloc (int elem, void *base, int *cur, int cnt)
1720{
1721 *cur = array_nextsize (elem, *cur, cnt);
1722 return ev_realloc (base, elem * *cur);
1723}
1724
1725#define array_init_zero(base,count) \
1726 memset ((void *)(base), 0, sizeof (*(base)) * (count))
1727
1728#define array_needsize(type,base,cur,cnt,init) \
1729 if (expect_false ((cnt) > (cur))) \
1730 { \
1731 int ecb_unused ocur_ = (cur); \
1732 (base) = (type *)array_realloc \
1733 (sizeof (type), (base), &(cur), (cnt)); \
1734 init ((base) + (ocur_), (cur) - ocur_); \
1735 }
1736
1737#if 0
1738#define array_slim(type,stem) \
1739 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
1740 { \
1741 stem ## max = array_roundsize (stem ## cnt >> 1); \
1742 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1743 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1744 }
1745#endif
1746
1747#define array_free(stem, idx) \
1748 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1749
1750/*****************************************************************************/
1751
1752/* dummy callback for pending events */
1753static void noinline
1754pendingcb (EV_P_ ev_prepare *w, int revents)
1755{
1756}
1757
1758void noinline
1759ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1760{
1761 W w_ = (W)w;
1762 int pri = ABSPRI (w_);
1763
1764 if (expect_false (w_->pending))
1765 pendings [pri][w_->pending - 1].events |= revents;
1766 else
1767 {
1768 w_->pending = ++pendingcnt [pri];
1769 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1770 pendings [pri][w_->pending - 1].w = w_;
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 1771 pendings [pri][w_->pending - 1].events = revents;
250 return;
251 } 1772 }
252 1773
253 w->pending = ++pendingcnt [ABSPRI (w)]; 1774 pendingpri = NUMPRI - 1;
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
255 pendings [ABSPRI (w)][w->pending - 1].w = w;
256 pendings [ABSPRI (w)][w->pending - 1].events = events;
257} 1775}
258 1776
259static void 1777inline_speed void
1778feed_reverse (EV_P_ W w)
1779{
1780 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1781 rfeeds [rfeedcnt++] = w;
1782}
1783
1784inline_size void
1785feed_reverse_done (EV_P_ int revents)
1786{
1787 do
1788 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1789 while (rfeedcnt);
1790}
1791
1792inline_speed void
260queue_events (EV_P_ W *events, int eventcnt, int type) 1793queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 1794{
262 int i; 1795 int i;
263 1796
264 for (i = 0; i < eventcnt; ++i) 1797 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 1798 ev_feed_event (EV_A_ events [i], type);
266} 1799}
267 1800
268static void 1801/*****************************************************************************/
1802
1803inline_speed void
269fd_event (EV_P_ int fd, int events) 1804fd_event_nocheck (EV_P_ int fd, int revents)
270{ 1805{
271 ANFD *anfd = anfds + fd; 1806 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 1807 ev_io *w;
273 1808
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1809 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
275 { 1810 {
276 int ev = w->events & events; 1811 int ev = w->events & revents;
277 1812
278 if (ev) 1813 if (ev)
279 event (EV_A_ (W)w, ev); 1814 ev_feed_event (EV_A_ (W)w, ev);
280 } 1815 }
281} 1816}
282 1817
283/*****************************************************************************/ 1818/* do not submit kernel events for fds that have reify set */
1819/* because that means they changed while we were polling for new events */
1820inline_speed void
1821fd_event (EV_P_ int fd, int revents)
1822{
1823 ANFD *anfd = anfds + fd;
284 1824
285static void 1825 if (expect_true (!anfd->reify))
1826 fd_event_nocheck (EV_A_ fd, revents);
1827}
1828
1829void
1830ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1831{
1832 if (fd >= 0 && fd < anfdmax)
1833 fd_event_nocheck (EV_A_ fd, revents);
1834}
1835
1836/* make sure the external fd watch events are in-sync */
1837/* with the kernel/libev internal state */
1838inline_size void
286fd_reify (EV_P) 1839fd_reify (EV_P)
287{ 1840{
288 int i; 1841 int i;
289 1842
1843#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
290 for (i = 0; i < fdchangecnt; ++i) 1844 for (i = 0; i < fdchangecnt; ++i)
291 { 1845 {
292 int fd = fdchanges [i]; 1846 int fd = fdchanges [i];
293 ANFD *anfd = anfds + fd; 1847 ANFD *anfd = anfds + fd;
294 struct ev_io *w;
295 1848
296 int events = 0; 1849 if (anfd->reify & EV__IOFDSET && anfd->head)
297
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events;
300
301 anfd->reify = 0;
302
303 if (anfd->events != events)
304 { 1850 {
1851 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1852
1853 if (handle != anfd->handle)
1854 {
1855 unsigned long arg;
1856
1857 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1858
1859 /* handle changed, but fd didn't - we need to do it in two steps */
305 method_modify (EV_A_ fd, anfd->events, events); 1860 backend_modify (EV_A_ fd, anfd->events, 0);
306 anfd->events = events; 1861 anfd->events = 0;
1862 anfd->handle = handle;
1863 }
307 } 1864 }
308 } 1865 }
1866#endif
1867
1868 for (i = 0; i < fdchangecnt; ++i)
1869 {
1870 int fd = fdchanges [i];
1871 ANFD *anfd = anfds + fd;
1872 ev_io *w;
1873
1874 unsigned char o_events = anfd->events;
1875 unsigned char o_reify = anfd->reify;
1876
1877 anfd->reify = 0;
1878
1879 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1880 {
1881 anfd->events = 0;
1882
1883 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1884 anfd->events |= (unsigned char)w->events;
1885
1886 if (o_events != anfd->events)
1887 o_reify = EV__IOFDSET; /* actually |= */
1888 }
1889
1890 if (o_reify & EV__IOFDSET)
1891 backend_modify (EV_A_ fd, o_events, anfd->events);
1892 }
309 1893
310 fdchangecnt = 0; 1894 fdchangecnt = 0;
311} 1895}
312 1896
313static void 1897/* something about the given fd changed */
1898inline_size void
314fd_change (EV_P_ int fd) 1899fd_change (EV_P_ int fd, int flags)
315{ 1900{
316 if (anfds [fd].reify || fdchangecnt < 0) 1901 unsigned char reify = anfds [fd].reify;
317 return;
318
319 anfds [fd].reify = 1; 1902 anfds [fd].reify |= flags;
320 1903
1904 if (expect_true (!reify))
1905 {
321 ++fdchangecnt; 1906 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 1907 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
323 fdchanges [fdchangecnt - 1] = fd; 1908 fdchanges [fdchangecnt - 1] = fd;
1909 }
324} 1910}
325 1911
326static void 1912/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1913inline_speed void ecb_cold
327fd_kill (EV_P_ int fd) 1914fd_kill (EV_P_ int fd)
328{ 1915{
329 struct ev_io *w; 1916 ev_io *w;
330 1917
331 while ((w = (struct ev_io *)anfds [fd].head)) 1918 while ((w = (ev_io *)anfds [fd].head))
332 { 1919 {
333 ev_io_stop (EV_A_ w); 1920 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1921 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 1922 }
1923}
1924
1925/* check whether the given fd is actually valid, for error recovery */
1926inline_size int ecb_cold
1927fd_valid (int fd)
1928{
1929#ifdef _WIN32
1930 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1931#else
1932 return fcntl (fd, F_GETFD) != -1;
1933#endif
336} 1934}
337 1935
338/* called on EBADF to verify fds */ 1936/* called on EBADF to verify fds */
339static void 1937static void noinline ecb_cold
340fd_ebadf (EV_P) 1938fd_ebadf (EV_P)
341{ 1939{
342 int fd; 1940 int fd;
343 1941
344 for (fd = 0; fd < anfdmax; ++fd) 1942 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 1943 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 1944 if (!fd_valid (fd) && errno == EBADF)
347 fd_kill (EV_A_ fd); 1945 fd_kill (EV_A_ fd);
348} 1946}
349 1947
350/* called on ENOMEM in select/poll to kill some fds and retry */ 1948/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 1949static void noinline ecb_cold
352fd_enomem (EV_P) 1950fd_enomem (EV_P)
353{ 1951{
354 int fd = anfdmax; 1952 int fd;
355 1953
356 while (fd--) 1954 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 1955 if (anfds [fd].events)
358 { 1956 {
359 close (fd);
360 fd_kill (EV_A_ fd); 1957 fd_kill (EV_A_ fd);
361 return; 1958 break;
362 } 1959 }
363} 1960}
364 1961
365/* susually called after fork if method needs to re-arm all fds from scratch */ 1962/* usually called after fork if backend needs to re-arm all fds from scratch */
366static void 1963static void noinline
367fd_rearm_all (EV_P) 1964fd_rearm_all (EV_P)
368{ 1965{
369 int fd; 1966 int fd;
370 1967
371 /* this should be highly optimised to not do anything but set a flag */
372 for (fd = 0; fd < anfdmax; ++fd) 1968 for (fd = 0; fd < anfdmax; ++fd)
373 if (anfds [fd].events) 1969 if (anfds [fd].events)
374 { 1970 {
375 anfds [fd].events = 0; 1971 anfds [fd].events = 0;
376 fd_change (EV_A_ fd); 1972 anfds [fd].emask = 0;
1973 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
377 } 1974 }
378} 1975}
379 1976
1977/* used to prepare libev internal fd's */
1978/* this is not fork-safe */
1979inline_speed void
1980fd_intern (int fd)
1981{
1982#ifdef _WIN32
1983 unsigned long arg = 1;
1984 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1985#else
1986 fcntl (fd, F_SETFD, FD_CLOEXEC);
1987 fcntl (fd, F_SETFL, O_NONBLOCK);
1988#endif
1989}
1990
380/*****************************************************************************/ 1991/*****************************************************************************/
381 1992
1993/*
1994 * the heap functions want a real array index. array index 0 is guaranteed to not
1995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1996 * the branching factor of the d-tree.
1997 */
1998
1999/*
2000 * at the moment we allow libev the luxury of two heaps,
2001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2002 * which is more cache-efficient.
2003 * the difference is about 5% with 50000+ watchers.
2004 */
2005#if EV_USE_4HEAP
2006
2007#define DHEAP 4
2008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2010#define UPHEAP_DONE(p,k) ((p) == (k))
2011
2012/* away from the root */
2013inline_speed void
2014downheap (ANHE *heap, int N, int k)
2015{
2016 ANHE he = heap [k];
2017 ANHE *E = heap + N + HEAP0;
2018
2019 for (;;)
2020 {
2021 ev_tstamp minat;
2022 ANHE *minpos;
2023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2024
2025 /* find minimum child */
2026 if (expect_true (pos + DHEAP - 1 < E))
2027 {
2028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2032 }
2033 else if (pos < E)
2034 {
2035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2039 }
2040 else
2041 break;
2042
2043 if (ANHE_at (he) <= minat)
2044 break;
2045
2046 heap [k] = *minpos;
2047 ev_active (ANHE_w (*minpos)) = k;
2048
2049 k = minpos - heap;
2050 }
2051
2052 heap [k] = he;
2053 ev_active (ANHE_w (he)) = k;
2054}
2055
2056#else /* 4HEAP */
2057
2058#define HEAP0 1
2059#define HPARENT(k) ((k) >> 1)
2060#define UPHEAP_DONE(p,k) (!(p))
2061
2062/* away from the root */
2063inline_speed void
2064downheap (ANHE *heap, int N, int k)
2065{
2066 ANHE he = heap [k];
2067
2068 for (;;)
2069 {
2070 int c = k << 1;
2071
2072 if (c >= N + HEAP0)
2073 break;
2074
2075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2076 ? 1 : 0;
2077
2078 if (ANHE_at (he) <= ANHE_at (heap [c]))
2079 break;
2080
2081 heap [k] = heap [c];
2082 ev_active (ANHE_w (heap [k])) = k;
2083
2084 k = c;
2085 }
2086
2087 heap [k] = he;
2088 ev_active (ANHE_w (he)) = k;
2089}
2090#endif
2091
2092/* towards the root */
2093inline_speed void
2094upheap (ANHE *heap, int k)
2095{
2096 ANHE he = heap [k];
2097
2098 for (;;)
2099 {
2100 int p = HPARENT (k);
2101
2102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2103 break;
2104
2105 heap [k] = heap [p];
2106 ev_active (ANHE_w (heap [k])) = k;
2107 k = p;
2108 }
2109
2110 heap [k] = he;
2111 ev_active (ANHE_w (he)) = k;
2112}
2113
2114/* move an element suitably so it is in a correct place */
2115inline_size void
2116adjustheap (ANHE *heap, int N, int k)
2117{
2118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2119 upheap (heap, k);
2120 else
2121 downheap (heap, N, k);
2122}
2123
2124/* rebuild the heap: this function is used only once and executed rarely */
2125inline_size void
2126reheap (ANHE *heap, int N)
2127{
2128 int i;
2129
2130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2132 for (i = 0; i < N; ++i)
2133 upheap (heap, i + HEAP0);
2134}
2135
2136/*****************************************************************************/
2137
2138/* associate signal watchers to a signal signal */
2139typedef struct
2140{
2141 EV_ATOMIC_T pending;
2142#if EV_MULTIPLICITY
2143 EV_P;
2144#endif
2145 WL head;
2146} ANSIG;
2147
2148static ANSIG signals [EV_NSIG - 1];
2149
2150/*****************************************************************************/
2151
2152#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2153
2154static void noinline ecb_cold
2155evpipe_init (EV_P)
2156{
2157 if (!ev_is_active (&pipe_w))
2158 {
2159 int fds [2];
2160
2161# if EV_USE_EVENTFD
2162 fds [0] = -1;
2163 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2164 if (fds [1] < 0 && errno == EINVAL)
2165 fds [1] = eventfd (0, 0);
2166
2167 if (fds [1] < 0)
2168# endif
2169 {
2170 while (pipe (fds))
2171 ev_syserr ("(libev) error creating signal/async pipe");
2172
2173 fd_intern (fds [0]);
2174 }
2175
2176 evpipe [0] = fds [0];
2177
2178 if (evpipe [1] < 0)
2179 evpipe [1] = fds [1]; /* first call, set write fd */
2180 else
2181 {
2182 /* on subsequent calls, do not change evpipe [1] */
2183 /* so that evpipe_write can always rely on its value. */
2184 /* this branch does not do anything sensible on windows, */
2185 /* so must not be executed on windows */
2186
2187 dup2 (fds [1], evpipe [1]);
2188 close (fds [1]);
2189 }
2190
2191 fd_intern (evpipe [1]);
2192
2193 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2194 ev_io_start (EV_A_ &pipe_w);
2195 ev_unref (EV_A); /* watcher should not keep loop alive */
2196 }
2197}
2198
2199inline_speed void
2200evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2201{
2202 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2203
2204 if (expect_true (*flag))
2205 return;
2206
2207 *flag = 1;
2208 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2209
2210 pipe_write_skipped = 1;
2211
2212 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2213
2214 if (pipe_write_wanted)
2215 {
2216 int old_errno;
2217
2218 pipe_write_skipped = 0;
2219 ECB_MEMORY_FENCE_RELEASE;
2220
2221 old_errno = errno; /* save errno because write will clobber it */
2222
2223#if EV_USE_EVENTFD
2224 if (evpipe [0] < 0)
2225 {
2226 uint64_t counter = 1;
2227 write (evpipe [1], &counter, sizeof (uint64_t));
2228 }
2229 else
2230#endif
2231 {
2232#ifdef _WIN32
2233 WSABUF buf;
2234 DWORD sent;
2235 buf.buf = &buf;
2236 buf.len = 1;
2237 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2238#else
2239 write (evpipe [1], &(evpipe [1]), 1);
2240#endif
2241 }
2242
2243 errno = old_errno;
2244 }
2245}
2246
2247/* called whenever the libev signal pipe */
2248/* got some events (signal, async) */
382static void 2249static void
383upheap (WT *heap, int k) 2250pipecb (EV_P_ ev_io *iow, int revents)
384{ 2251{
385 WT w = heap [k]; 2252 int i;
386 2253
387 while (k && heap [k >> 1]->at > w->at) 2254 if (revents & EV_READ)
388 {
389 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1;
391 k >>= 1;
392 } 2255 {
2256#if EV_USE_EVENTFD
2257 if (evpipe [0] < 0)
2258 {
2259 uint64_t counter;
2260 read (evpipe [1], &counter, sizeof (uint64_t));
2261 }
2262 else
2263#endif
2264 {
2265 char dummy[4];
2266#ifdef _WIN32
2267 WSABUF buf;
2268 DWORD recvd;
2269 DWORD flags = 0;
2270 buf.buf = dummy;
2271 buf.len = sizeof (dummy);
2272 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2273#else
2274 read (evpipe [0], &dummy, sizeof (dummy));
2275#endif
2276 }
2277 }
393 2278
394 heap [k] = w; 2279 pipe_write_skipped = 0;
395 heap [k]->active = k + 1;
396 2280
2281 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2282
2283#if EV_SIGNAL_ENABLE
2284 if (sig_pending)
2285 {
2286 sig_pending = 0;
2287
2288 ECB_MEMORY_FENCE;
2289
2290 for (i = EV_NSIG - 1; i--; )
2291 if (expect_false (signals [i].pending))
2292 ev_feed_signal_event (EV_A_ i + 1);
2293 }
2294#endif
2295
2296#if EV_ASYNC_ENABLE
2297 if (async_pending)
2298 {
2299 async_pending = 0;
2300
2301 ECB_MEMORY_FENCE;
2302
2303 for (i = asynccnt; i--; )
2304 if (asyncs [i]->sent)
2305 {
2306 asyncs [i]->sent = 0;
2307 ECB_MEMORY_FENCE_RELEASE;
2308 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2309 }
2310 }
2311#endif
2312}
2313
2314/*****************************************************************************/
2315
2316void
2317ev_feed_signal (int signum) EV_THROW
2318{
2319#if EV_MULTIPLICITY
2320 EV_P;
2321 ECB_MEMORY_FENCE_ACQUIRE;
2322 EV_A = signals [signum - 1].loop;
2323
2324 if (!EV_A)
2325 return;
2326#endif
2327
2328 signals [signum - 1].pending = 1;
2329 evpipe_write (EV_A_ &sig_pending);
397} 2330}
398 2331
399static void 2332static void
400downheap (WT *heap, int N, int k) 2333ev_sighandler (int signum)
401{ 2334{
402 WT w = heap [k]; 2335#ifdef _WIN32
2336 signal (signum, ev_sighandler);
2337#endif
403 2338
404 while (k < (N >> 1)) 2339 ev_feed_signal (signum);
405 { 2340}
406 int j = k << 1;
407 2341
408 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2342void noinline
409 ++j; 2343ev_feed_signal_event (EV_P_ int signum) EV_THROW
2344{
2345 WL w;
410 2346
411 if (w->at <= heap [j]->at) 2347 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2348 return;
2349
2350 --signum;
2351
2352#if EV_MULTIPLICITY
2353 /* it is permissible to try to feed a signal to the wrong loop */
2354 /* or, likely more useful, feeding a signal nobody is waiting for */
2355
2356 if (expect_false (signals [signum].loop != EV_A))
2357 return;
2358#endif
2359
2360 signals [signum].pending = 0;
2361 ECB_MEMORY_FENCE_RELEASE;
2362
2363 for (w = signals [signum].head; w; w = w->next)
2364 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2365}
2366
2367#if EV_USE_SIGNALFD
2368static void
2369sigfdcb (EV_P_ ev_io *iow, int revents)
2370{
2371 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2372
2373 for (;;)
2374 {
2375 ssize_t res = read (sigfd, si, sizeof (si));
2376
2377 /* not ISO-C, as res might be -1, but works with SuS */
2378 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2379 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2380
2381 if (res < (ssize_t)sizeof (si))
412 break; 2382 break;
413
414 heap [k] = heap [j];
415 heap [k]->active = k + 1;
416 k = j;
417 } 2383 }
418
419 heap [k] = w;
420 heap [k]->active = k + 1;
421} 2384}
2385#endif
2386
2387#endif
422 2388
423/*****************************************************************************/ 2389/*****************************************************************************/
424 2390
425typedef struct 2391#if EV_CHILD_ENABLE
426{ 2392static WL childs [EV_PID_HASHSIZE];
427 struct ev_watcher_list *head;
428 sig_atomic_t volatile gotsig;
429} ANSIG;
430 2393
431static ANSIG *signals;
432static int signalmax;
433
434static int sigpipe [2];
435static sig_atomic_t volatile gotsig;
436static struct ev_io sigev;
437
438static void
439signals_init (ANSIG *base, int count)
440{
441 while (count--)
442 {
443 base->head = 0;
444 base->gotsig = 0;
445
446 ++base;
447 }
448}
449
450static void
451sighandler (int signum)
452{
453 signals [signum - 1].gotsig = 1;
454
455 if (!gotsig)
456 {
457 int old_errno = errno;
458 gotsig = 1;
459 write (sigpipe [1], &signum, 1);
460 errno = old_errno;
461 }
462}
463
464static void
465sigcb (EV_P_ struct ev_io *iow, int revents)
466{
467 struct ev_watcher_list *w;
468 int signum;
469
470 read (sigpipe [0], &revents, 1);
471 gotsig = 0;
472
473 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig)
475 {
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481}
482
483static void
484siginit (EV_P)
485{
486#ifndef WIN32
487 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
488 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
489
490 /* rather than sort out wether we really need nb, set it */
491 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
492 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
493#endif
494
495 ev_io_set (&sigev, sigpipe [0], EV_READ);
496 ev_io_start (EV_A_ &sigev);
497 ev_unref (EV_A); /* child watcher should not keep loop alive */
498}
499
500/*****************************************************************************/
501
502#ifndef WIN32
503
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 2394static ev_signal childev;
2395
2396#ifndef WIFCONTINUED
2397# define WIFCONTINUED(status) 0
2398#endif
2399
2400/* handle a single child status event */
2401inline_speed void
2402child_reap (EV_P_ int chain, int pid, int status)
2403{
2404 ev_child *w;
2405 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2406
2407 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2408 {
2409 if ((w->pid == pid || !w->pid)
2410 && (!traced || (w->flags & 1)))
2411 {
2412 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2413 w->rpid = pid;
2414 w->rstatus = status;
2415 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2416 }
2417 }
2418}
506 2419
507#ifndef WCONTINUED 2420#ifndef WCONTINUED
508# define WCONTINUED 0 2421# define WCONTINUED 0
509#endif 2422#endif
510 2423
2424/* called on sigchld etc., calls waitpid */
511static void 2425static void
512child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
513{
514 struct ev_child *w;
515
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid)
518 {
519 w->priority = sw->priority; /* need to do it *now* */
520 w->rpid = pid;
521 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD);
523 }
524}
525
526static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 2426childcb (EV_P_ ev_signal *sw, int revents)
528{ 2427{
529 int pid, status; 2428 int pid, status;
530 2429
2430 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2431 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 2432 if (!WCONTINUED
2433 || errno != EINVAL
2434 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2435 return;
2436
533 /* make sure we are called again until all childs have been reaped */ 2437 /* make sure we are called again until all children have been reaped */
2438 /* we need to do it this way so that the callback gets called before we continue */
534 event (EV_A_ (W)sw, EV_SIGNAL); 2439 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 2440
536 child_reap (EV_A_ sw, pid, pid, status); 2441 child_reap (EV_A_ pid, pid, status);
2442 if ((EV_PID_HASHSIZE) > 1)
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2443 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
538 }
539} 2444}
540 2445
541#endif 2446#endif
542 2447
543/*****************************************************************************/ 2448/*****************************************************************************/
544 2449
2450#if EV_USE_IOCP
2451# include "ev_iocp.c"
2452#endif
2453#if EV_USE_PORT
2454# include "ev_port.c"
2455#endif
545#if EV_USE_KQUEUE 2456#if EV_USE_KQUEUE
546# include "ev_kqueue.c" 2457# include "ev_kqueue.c"
547#endif 2458#endif
548#if EV_USE_EPOLL 2459#if EV_USE_EPOLL
549# include "ev_epoll.c" 2460# include "ev_epoll.c"
553#endif 2464#endif
554#if EV_USE_SELECT 2465#if EV_USE_SELECT
555# include "ev_select.c" 2466# include "ev_select.c"
556#endif 2467#endif
557 2468
558int 2469int ecb_cold
559ev_version_major (void) 2470ev_version_major (void) EV_THROW
560{ 2471{
561 return EV_VERSION_MAJOR; 2472 return EV_VERSION_MAJOR;
562} 2473}
563 2474
564int 2475int ecb_cold
565ev_version_minor (void) 2476ev_version_minor (void) EV_THROW
566{ 2477{
567 return EV_VERSION_MINOR; 2478 return EV_VERSION_MINOR;
568} 2479}
569 2480
570/* return true if we are running with elevated privileges and should ignore env variables */ 2481/* return true if we are running with elevated privileges and should ignore env variables */
571static int 2482int inline_size ecb_cold
572enable_secure (void) 2483enable_secure (void)
573{ 2484{
574#ifdef WIN32 2485#ifdef _WIN32
575 return 0; 2486 return 0;
576#else 2487#else
577 return getuid () != geteuid () 2488 return getuid () != geteuid ()
578 || getgid () != getegid (); 2489 || getgid () != getegid ();
579#endif 2490#endif
580} 2491}
581 2492
2493unsigned int ecb_cold
2494ev_supported_backends (void) EV_THROW
2495{
2496 unsigned int flags = 0;
2497
2498 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2499 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2500 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2501 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2502 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2503
2504 return flags;
2505}
2506
2507unsigned int ecb_cold
2508ev_recommended_backends (void) EV_THROW
2509{
2510 unsigned int flags = ev_supported_backends ();
2511
2512#ifndef __NetBSD__
2513 /* kqueue is borked on everything but netbsd apparently */
2514 /* it usually doesn't work correctly on anything but sockets and pipes */
2515 flags &= ~EVBACKEND_KQUEUE;
2516#endif
2517#ifdef __APPLE__
2518 /* only select works correctly on that "unix-certified" platform */
2519 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2520 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2521#endif
2522#ifdef __FreeBSD__
2523 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2524#endif
2525
2526 return flags;
2527}
2528
2529unsigned int ecb_cold
2530ev_embeddable_backends (void) EV_THROW
2531{
2532 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2533
2534 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2535 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2536 flags &= ~EVBACKEND_EPOLL;
2537
2538 return flags;
2539}
2540
2541unsigned int
2542ev_backend (EV_P) EV_THROW
2543{
2544 return backend;
2545}
2546
2547#if EV_FEATURE_API
2548unsigned int
2549ev_iteration (EV_P) EV_THROW
2550{
2551 return loop_count;
2552}
2553
2554unsigned int
2555ev_depth (EV_P) EV_THROW
2556{
2557 return loop_depth;
2558}
2559
2560void
2561ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2562{
2563 io_blocktime = interval;
2564}
2565
2566void
2567ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2568{
2569 timeout_blocktime = interval;
2570}
2571
2572void
2573ev_set_userdata (EV_P_ void *data) EV_THROW
2574{
2575 userdata = data;
2576}
2577
2578void *
2579ev_userdata (EV_P) EV_THROW
2580{
2581 return userdata;
2582}
2583
2584void
2585ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2586{
2587 invoke_cb = invoke_pending_cb;
2588}
2589
2590void
2591ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2592{
2593 release_cb = release;
2594 acquire_cb = acquire;
2595}
2596#endif
2597
2598/* initialise a loop structure, must be zero-initialised */
2599static void noinline ecb_cold
2600loop_init (EV_P_ unsigned int flags) EV_THROW
2601{
2602 if (!backend)
2603 {
2604 origflags = flags;
2605
2606#if EV_USE_REALTIME
2607 if (!have_realtime)
2608 {
2609 struct timespec ts;
2610
2611 if (!clock_gettime (CLOCK_REALTIME, &ts))
2612 have_realtime = 1;
2613 }
2614#endif
2615
2616#if EV_USE_MONOTONIC
2617 if (!have_monotonic)
2618 {
2619 struct timespec ts;
2620
2621 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2622 have_monotonic = 1;
2623 }
2624#endif
2625
2626 /* pid check not overridable via env */
2627#ifndef _WIN32
2628 if (flags & EVFLAG_FORKCHECK)
2629 curpid = getpid ();
2630#endif
2631
2632 if (!(flags & EVFLAG_NOENV)
2633 && !enable_secure ()
2634 && getenv ("LIBEV_FLAGS"))
2635 flags = atoi (getenv ("LIBEV_FLAGS"));
2636
2637 ev_rt_now = ev_time ();
2638 mn_now = get_clock ();
2639 now_floor = mn_now;
2640 rtmn_diff = ev_rt_now - mn_now;
2641#if EV_FEATURE_API
2642 invoke_cb = ev_invoke_pending;
2643#endif
2644
2645 io_blocktime = 0.;
2646 timeout_blocktime = 0.;
2647 backend = 0;
2648 backend_fd = -1;
2649 sig_pending = 0;
2650#if EV_ASYNC_ENABLE
2651 async_pending = 0;
2652#endif
2653 pipe_write_skipped = 0;
2654 pipe_write_wanted = 0;
2655 evpipe [0] = -1;
2656 evpipe [1] = -1;
2657#if EV_USE_INOTIFY
2658 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2659#endif
2660#if EV_USE_SIGNALFD
2661 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2662#endif
2663
2664 if (!(flags & EVBACKEND_MASK))
2665 flags |= ev_recommended_backends ();
2666
2667#if EV_USE_IOCP
2668 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2669#endif
2670#if EV_USE_PORT
2671 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2672#endif
2673#if EV_USE_KQUEUE
2674 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2675#endif
2676#if EV_USE_EPOLL
2677 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2678#endif
2679#if EV_USE_POLL
2680 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2681#endif
2682#if EV_USE_SELECT
2683 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2684#endif
2685
2686 ev_prepare_init (&pending_w, pendingcb);
2687
2688#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2689 ev_init (&pipe_w, pipecb);
2690 ev_set_priority (&pipe_w, EV_MAXPRI);
2691#endif
2692 }
2693}
2694
2695/* free up a loop structure */
2696void ecb_cold
2697ev_loop_destroy (EV_P)
2698{
2699 int i;
2700
2701#if EV_MULTIPLICITY
2702 /* mimic free (0) */
2703 if (!EV_A)
2704 return;
2705#endif
2706
2707#if EV_CLEANUP_ENABLE
2708 /* queue cleanup watchers (and execute them) */
2709 if (expect_false (cleanupcnt))
2710 {
2711 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2712 EV_INVOKE_PENDING;
2713 }
2714#endif
2715
2716#if EV_CHILD_ENABLE
2717 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2718 {
2719 ev_ref (EV_A); /* child watcher */
2720 ev_signal_stop (EV_A_ &childev);
2721 }
2722#endif
2723
2724 if (ev_is_active (&pipe_w))
2725 {
2726 /*ev_ref (EV_A);*/
2727 /*ev_io_stop (EV_A_ &pipe_w);*/
2728
2729 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2730 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2731 }
2732
2733#if EV_USE_SIGNALFD
2734 if (ev_is_active (&sigfd_w))
2735 close (sigfd);
2736#endif
2737
2738#if EV_USE_INOTIFY
2739 if (fs_fd >= 0)
2740 close (fs_fd);
2741#endif
2742
2743 if (backend_fd >= 0)
2744 close (backend_fd);
2745
2746#if EV_USE_IOCP
2747 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2748#endif
2749#if EV_USE_PORT
2750 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2751#endif
2752#if EV_USE_KQUEUE
2753 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2754#endif
2755#if EV_USE_EPOLL
2756 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2757#endif
2758#if EV_USE_POLL
2759 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2760#endif
2761#if EV_USE_SELECT
2762 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2763#endif
2764
2765 for (i = NUMPRI; i--; )
2766 {
2767 array_free (pending, [i]);
2768#if EV_IDLE_ENABLE
2769 array_free (idle, [i]);
2770#endif
2771 }
2772
2773 ev_free (anfds); anfds = 0; anfdmax = 0;
2774
2775 /* have to use the microsoft-never-gets-it-right macro */
2776 array_free (rfeed, EMPTY);
2777 array_free (fdchange, EMPTY);
2778 array_free (timer, EMPTY);
2779#if EV_PERIODIC_ENABLE
2780 array_free (periodic, EMPTY);
2781#endif
2782#if EV_FORK_ENABLE
2783 array_free (fork, EMPTY);
2784#endif
2785#if EV_CLEANUP_ENABLE
2786 array_free (cleanup, EMPTY);
2787#endif
2788 array_free (prepare, EMPTY);
2789 array_free (check, EMPTY);
2790#if EV_ASYNC_ENABLE
2791 array_free (async, EMPTY);
2792#endif
2793
2794 backend = 0;
2795
2796#if EV_MULTIPLICITY
2797 if (ev_is_default_loop (EV_A))
2798#endif
2799 ev_default_loop_ptr = 0;
2800#if EV_MULTIPLICITY
2801 else
2802 ev_free (EV_A);
2803#endif
2804}
2805
2806#if EV_USE_INOTIFY
2807inline_size void infy_fork (EV_P);
2808#endif
2809
2810inline_size void
2811loop_fork (EV_P)
2812{
2813#if EV_USE_PORT
2814 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2815#endif
2816#if EV_USE_KQUEUE
2817 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2818#endif
2819#if EV_USE_EPOLL
2820 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2821#endif
2822#if EV_USE_INOTIFY
2823 infy_fork (EV_A);
2824#endif
2825
2826#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2827 if (ev_is_active (&pipe_w))
2828 {
2829 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2830
2831 ev_ref (EV_A);
2832 ev_io_stop (EV_A_ &pipe_w);
2833
2834 if (evpipe [0] >= 0)
2835 EV_WIN32_CLOSE_FD (evpipe [0]);
2836
2837 evpipe_init (EV_A);
2838 /* iterate over everything, in case we missed something before */
2839 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2840 }
2841#endif
2842
2843 postfork = 0;
2844}
2845
2846#if EV_MULTIPLICITY
2847
2848struct ev_loop * ecb_cold
2849ev_loop_new (unsigned int flags) EV_THROW
2850{
2851 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2852
2853 memset (EV_A, 0, sizeof (struct ev_loop));
2854 loop_init (EV_A_ flags);
2855
2856 if (ev_backend (EV_A))
2857 return EV_A;
2858
2859 ev_free (EV_A);
2860 return 0;
2861}
2862
2863#endif /* multiplicity */
2864
2865#if EV_VERIFY
2866static void noinline ecb_cold
2867verify_watcher (EV_P_ W w)
2868{
2869 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2870
2871 if (w->pending)
2872 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2873}
2874
2875static void noinline ecb_cold
2876verify_heap (EV_P_ ANHE *heap, int N)
2877{
2878 int i;
2879
2880 for (i = HEAP0; i < N + HEAP0; ++i)
2881 {
2882 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2883 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2884 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2885
2886 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2887 }
2888}
2889
2890static void noinline ecb_cold
2891array_verify (EV_P_ W *ws, int cnt)
2892{
2893 while (cnt--)
2894 {
2895 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2896 verify_watcher (EV_A_ ws [cnt]);
2897 }
2898}
2899#endif
2900
2901#if EV_FEATURE_API
2902void ecb_cold
2903ev_verify (EV_P) EV_THROW
2904{
2905#if EV_VERIFY
2906 int i;
2907 WL w, w2;
2908
2909 assert (activecnt >= -1);
2910
2911 assert (fdchangemax >= fdchangecnt);
2912 for (i = 0; i < fdchangecnt; ++i)
2913 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2914
2915 assert (anfdmax >= 0);
2916 for (i = 0; i < anfdmax; ++i)
2917 {
2918 int j = 0;
2919
2920 for (w = w2 = anfds [i].head; w; w = w->next)
2921 {
2922 verify_watcher (EV_A_ (W)w);
2923
2924 if (j++ & 1)
2925 {
2926 assert (("libev: io watcher list contains a loop", w != w2));
2927 w2 = w2->next;
2928 }
2929
2930 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2931 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2932 }
2933 }
2934
2935 assert (timermax >= timercnt);
2936 verify_heap (EV_A_ timers, timercnt);
2937
2938#if EV_PERIODIC_ENABLE
2939 assert (periodicmax >= periodiccnt);
2940 verify_heap (EV_A_ periodics, periodiccnt);
2941#endif
2942
2943 for (i = NUMPRI; i--; )
2944 {
2945 assert (pendingmax [i] >= pendingcnt [i]);
2946#if EV_IDLE_ENABLE
2947 assert (idleall >= 0);
2948 assert (idlemax [i] >= idlecnt [i]);
2949 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2950#endif
2951 }
2952
2953#if EV_FORK_ENABLE
2954 assert (forkmax >= forkcnt);
2955 array_verify (EV_A_ (W *)forks, forkcnt);
2956#endif
2957
2958#if EV_CLEANUP_ENABLE
2959 assert (cleanupmax >= cleanupcnt);
2960 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2961#endif
2962
2963#if EV_ASYNC_ENABLE
2964 assert (asyncmax >= asynccnt);
2965 array_verify (EV_A_ (W *)asyncs, asynccnt);
2966#endif
2967
2968#if EV_PREPARE_ENABLE
2969 assert (preparemax >= preparecnt);
2970 array_verify (EV_A_ (W *)prepares, preparecnt);
2971#endif
2972
2973#if EV_CHECK_ENABLE
2974 assert (checkmax >= checkcnt);
2975 array_verify (EV_A_ (W *)checks, checkcnt);
2976#endif
2977
2978# if 0
2979#if EV_CHILD_ENABLE
2980 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2981 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2982#endif
2983# endif
2984#endif
2985}
2986#endif
2987
2988#if EV_MULTIPLICITY
2989struct ev_loop * ecb_cold
2990#else
582int 2991int
583ev_method (EV_P) 2992#endif
2993ev_default_loop (unsigned int flags) EV_THROW
584{ 2994{
585 return method; 2995 if (!ev_default_loop_ptr)
586}
587
588static void
589loop_init (EV_P_ int methods)
590{
591 if (!method)
592 {
593#if EV_USE_MONOTONIC
594 { 2996 {
595 struct timespec ts;
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1;
598 }
599#endif
600
601 rt_now = ev_time ();
602 mn_now = get_clock ();
603 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now;
605
606 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS"));
609 else
610 methods = EVMETHOD_ANY;
611
612 method = 0;
613#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif
616#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
618#endif
619#if EV_USE_POLL
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif
622#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif
625 }
626}
627
628void
629loop_destroy (EV_P)
630{
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif
634#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
636#endif
637#if EV_USE_POLL
638 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
639#endif
640#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif
643
644 method = 0;
645 /*TODO*/
646}
647
648void
649loop_fork (EV_P)
650{
651 /*TODO*/
652#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif
655#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif
658}
659
660#if EV_MULTIPLICITY 2997#if EV_MULTIPLICITY
661struct ev_loop * 2998 EV_P = ev_default_loop_ptr = &default_loop_struct;
662ev_loop_new (int methods)
663{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
665
666 loop_init (EV_A_ methods);
667
668 if (ev_method (EV_A))
669 return loop;
670
671 return 0;
672}
673
674void
675ev_loop_destroy (EV_P)
676{
677 loop_destroy (EV_A);
678 free (loop);
679}
680
681void
682ev_loop_fork (EV_P)
683{
684 loop_fork (EV_A);
685}
686
687#endif
688
689#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop *
694#else 2999#else
695static int default_loop;
696
697int
698#endif
699ev_default_loop (int methods)
700{
701 if (sigpipe [0] == sigpipe [1])
702 if (pipe (sigpipe))
703 return 0;
704
705 if (!default_loop)
706 {
707#if EV_MULTIPLICITY
708 struct ev_loop *loop = default_loop = &default_loop_struct;
709#else
710 default_loop = 1; 3000 ev_default_loop_ptr = 1;
711#endif 3001#endif
712 3002
713 loop_init (EV_A_ methods); 3003 loop_init (EV_A_ flags);
714 3004
715 if (ev_method (EV_A)) 3005 if (ev_backend (EV_A))
716 { 3006 {
717 ev_watcher_init (&sigev, sigcb); 3007#if EV_CHILD_ENABLE
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A);
720
721#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 3008 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 3009 ev_set_priority (&childev, EV_MAXPRI);
724 ev_signal_start (EV_A_ &childev); 3010 ev_signal_start (EV_A_ &childev);
725 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3011 ev_unref (EV_A); /* child watcher should not keep loop alive */
726#endif 3012#endif
727 } 3013 }
728 else 3014 else
729 default_loop = 0; 3015 ev_default_loop_ptr = 0;
730 } 3016 }
731 3017
732 return default_loop; 3018 return ev_default_loop_ptr;
733} 3019}
734 3020
735void 3021void
736ev_default_destroy (void) 3022ev_loop_fork (EV_P) EV_THROW
737{ 3023{
738#if EV_MULTIPLICITY 3024 postfork = 1;
739 struct ev_loop *loop = default_loop;
740#endif
741
742 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev);
744
745 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev);
747
748 close (sigpipe [0]); sigpipe [0] = 0;
749 close (sigpipe [1]); sigpipe [1] = 0;
750
751 loop_destroy (EV_A);
752} 3025}
3026
3027/*****************************************************************************/
753 3028
754void 3029void
755ev_default_fork (void) 3030ev_invoke (EV_P_ void *w, int revents)
756{ 3031{
757#if EV_MULTIPLICITY 3032 EV_CB_INVOKE ((W)w, revents);
758 struct ev_loop *loop = default_loop;
759#endif
760
761 loop_fork (EV_A);
762
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 3033}
771 3034
772/*****************************************************************************/ 3035unsigned int
773 3036ev_pending_count (EV_P) EV_THROW
774static void
775call_pending (EV_P)
776{ 3037{
777 int pri; 3038 int pri;
3039 unsigned int count = 0;
778 3040
779 for (pri = NUMPRI; pri--; ) 3041 for (pri = NUMPRI; pri--; )
3042 count += pendingcnt [pri];
3043
3044 return count;
3045}
3046
3047void noinline
3048ev_invoke_pending (EV_P)
3049{
3050 pendingpri = NUMPRI;
3051
3052 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3053 {
3054 --pendingpri;
3055
780 while (pendingcnt [pri]) 3056 while (pendingcnt [pendingpri])
781 {
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783
784 if (p->w)
785 {
786 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events);
788 }
789 }
790}
791
792static void
793timers_reify (EV_P)
794{
795 while (timercnt && timers [0]->at <= mn_now)
796 {
797 struct ev_timer *w = timers [0];
798
799 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800
801 /* first reschedule or stop timer */
802 if (w->repeat)
803 { 3057 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3058 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
805 w->at = mn_now + w->repeat; 3059
806 downheap ((WT *)timers, timercnt, 0); 3060 p->w->pending = 0;
3061 EV_CB_INVOKE (p->w, p->events);
3062 EV_FREQUENT_CHECK;
807 } 3063 }
808 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810
811 event (EV_A_ (W)w, EV_TIMEOUT);
812 }
813}
814
815static void
816periodics_reify (EV_P)
817{
818 while (periodiccnt && periodics [0]->at <= rt_now)
819 { 3064 }
820 struct ev_periodic *w = periodics [0]; 3065}
821 3066
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 3067#if EV_IDLE_ENABLE
3068/* make idle watchers pending. this handles the "call-idle */
3069/* only when higher priorities are idle" logic */
3070inline_size void
3071idle_reify (EV_P)
3072{
3073 if (expect_false (idleall))
3074 {
3075 int pri;
823 3076
824 /* first reschedule or stop timer */ 3077 for (pri = NUMPRI; pri--; )
825 if (w->interval)
826 { 3078 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 3079 if (pendingcnt [pri])
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 3080 break;
829 downheap ((WT *)periodics, periodiccnt, 0);
830 }
831 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 3081
834 event (EV_A_ (W)w, EV_PERIODIC); 3082 if (idlecnt [pri])
835 }
836}
837
838static void
839periodics_reschedule (EV_P)
840{
841 int i;
842
843 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i)
845 {
846 struct ev_periodic *w = periodics [i];
847
848 if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 { 3083 {
854 ev_periodic_stop (EV_A_ w); 3084 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
855 ev_periodic_start (EV_A_ w); 3085 break;
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 } 3086 }
859 } 3087 }
860 } 3088 }
861} 3089}
3090#endif
862 3091
863inline int 3092/* make timers pending */
864time_update_monotonic (EV_P) 3093inline_size void
3094timers_reify (EV_P)
865{ 3095{
866 mn_now = get_clock (); 3096 EV_FREQUENT_CHECK;
867 3097
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3098 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
869 {
870 rt_now = rtmn_diff + mn_now;
871 return 0;
872 } 3099 {
873 else 3100 do
3101 {
3102 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3103
3104 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3105
3106 /* first reschedule or stop timer */
3107 if (w->repeat)
3108 {
3109 ev_at (w) += w->repeat;
3110 if (ev_at (w) < mn_now)
3111 ev_at (w) = mn_now;
3112
3113 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3114
3115 ANHE_at_cache (timers [HEAP0]);
3116 downheap (timers, timercnt, HEAP0);
3117 }
3118 else
3119 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3120
3121 EV_FREQUENT_CHECK;
3122 feed_reverse (EV_A_ (W)w);
3123 }
3124 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3125
3126 feed_reverse_done (EV_A_ EV_TIMER);
874 { 3127 }
875 now_floor = mn_now; 3128}
876 rt_now = ev_time (); 3129
877 return 1; 3130#if EV_PERIODIC_ENABLE
3131
3132static void noinline
3133periodic_recalc (EV_P_ ev_periodic *w)
3134{
3135 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3136 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3137
3138 /* the above almost always errs on the low side */
3139 while (at <= ev_rt_now)
878 } 3140 {
879} 3141 ev_tstamp nat = at + w->interval;
880 3142
881static void 3143 /* when resolution fails us, we use ev_rt_now */
882time_update (EV_P) 3144 if (expect_false (nat == at))
3145 {
3146 at = ev_rt_now;
3147 break;
3148 }
3149
3150 at = nat;
3151 }
3152
3153 ev_at (w) = at;
3154}
3155
3156/* make periodics pending */
3157inline_size void
3158periodics_reify (EV_P)
3159{
3160 EV_FREQUENT_CHECK;
3161
3162 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3163 {
3164 do
3165 {
3166 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3167
3168 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3169
3170 /* first reschedule or stop timer */
3171 if (w->reschedule_cb)
3172 {
3173 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3174
3175 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3176
3177 ANHE_at_cache (periodics [HEAP0]);
3178 downheap (periodics, periodiccnt, HEAP0);
3179 }
3180 else if (w->interval)
3181 {
3182 periodic_recalc (EV_A_ w);
3183 ANHE_at_cache (periodics [HEAP0]);
3184 downheap (periodics, periodiccnt, HEAP0);
3185 }
3186 else
3187 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3188
3189 EV_FREQUENT_CHECK;
3190 feed_reverse (EV_A_ (W)w);
3191 }
3192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3193
3194 feed_reverse_done (EV_A_ EV_PERIODIC);
3195 }
3196}
3197
3198/* simply recalculate all periodics */
3199/* TODO: maybe ensure that at least one event happens when jumping forward? */
3200static void noinline ecb_cold
3201periodics_reschedule (EV_P)
883{ 3202{
884 int i; 3203 int i;
885 3204
3205 /* adjust periodics after time jump */
3206 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3207 {
3208 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3209
3210 if (w->reschedule_cb)
3211 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3212 else if (w->interval)
3213 periodic_recalc (EV_A_ w);
3214
3215 ANHE_at_cache (periodics [i]);
3216 }
3217
3218 reheap (periodics, periodiccnt);
3219}
3220#endif
3221
3222/* adjust all timers by a given offset */
3223static void noinline ecb_cold
3224timers_reschedule (EV_P_ ev_tstamp adjust)
3225{
3226 int i;
3227
3228 for (i = 0; i < timercnt; ++i)
3229 {
3230 ANHE *he = timers + i + HEAP0;
3231 ANHE_w (*he)->at += adjust;
3232 ANHE_at_cache (*he);
3233 }
3234}
3235
3236/* fetch new monotonic and realtime times from the kernel */
3237/* also detect if there was a timejump, and act accordingly */
3238inline_speed void
3239time_update (EV_P_ ev_tstamp max_block)
3240{
886#if EV_USE_MONOTONIC 3241#if EV_USE_MONOTONIC
887 if (expect_true (have_monotonic)) 3242 if (expect_true (have_monotonic))
888 { 3243 {
889 if (time_update_monotonic (EV_A)) 3244 int i;
3245 ev_tstamp odiff = rtmn_diff;
3246
3247 mn_now = get_clock ();
3248
3249 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3250 /* interpolate in the meantime */
3251 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
890 { 3252 {
891 ev_tstamp odiff = rtmn_diff; 3253 ev_rt_now = rtmn_diff + mn_now;
3254 return;
3255 }
892 3256
3257 now_floor = mn_now;
3258 ev_rt_now = ev_time ();
3259
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3260 /* loop a few times, before making important decisions.
3261 * on the choice of "4": one iteration isn't enough,
3262 * in case we get preempted during the calls to
3263 * ev_time and get_clock. a second call is almost guaranteed
3264 * to succeed in that case, though. and looping a few more times
3265 * doesn't hurt either as we only do this on time-jumps or
3266 * in the unlikely event of having been preempted here.
3267 */
3268 for (i = 4; --i; )
894 { 3269 {
3270 ev_tstamp diff;
895 rtmn_diff = rt_now - mn_now; 3271 rtmn_diff = ev_rt_now - mn_now;
896 3272
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3273 diff = odiff - rtmn_diff;
3274
3275 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
898 return; /* all is well */ 3276 return; /* all is well */
899 3277
900 rt_now = ev_time (); 3278 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 3279 mn_now = get_clock ();
902 now_floor = mn_now; 3280 now_floor = mn_now;
903 } 3281 }
904 3282
3283 /* no timer adjustment, as the monotonic clock doesn't jump */
3284 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3285# if EV_PERIODIC_ENABLE
3286 periodics_reschedule (EV_A);
3287# endif
3288 }
3289 else
3290#endif
3291 {
3292 ev_rt_now = ev_time ();
3293
3294 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3295 {
3296 /* adjust timers. this is easy, as the offset is the same for all of them */
3297 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3298#if EV_PERIODIC_ENABLE
905 periodics_reschedule (EV_A); 3299 periodics_reschedule (EV_A);
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 3300#endif
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 3301 }
909 }
910 else
911#endif
912 {
913 rt_now = ev_time ();
914 3302
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 {
917 periodics_reschedule (EV_A);
918
919 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now;
922 }
923
924 mn_now = rt_now; 3303 mn_now = ev_rt_now;
925 } 3304 }
926} 3305}
927 3306
928void 3307int
929ev_ref (EV_P)
930{
931 ++activecnt;
932}
933
934void
935ev_unref (EV_P)
936{
937 --activecnt;
938}
939
940static int loop_done;
941
942void
943ev_loop (EV_P_ int flags) 3308ev_run (EV_P_ int flags)
944{ 3309{
945 double block; 3310#if EV_FEATURE_API
946 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3311 ++loop_depth;
3312#endif
3313
3314 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3315
3316 loop_done = EVBREAK_CANCEL;
3317
3318 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
947 3319
948 do 3320 do
949 { 3321 {
3322#if EV_VERIFY >= 2
3323 ev_verify (EV_A);
3324#endif
3325
3326#ifndef _WIN32
3327 if (expect_false (curpid)) /* penalise the forking check even more */
3328 if (expect_false (getpid () != curpid))
3329 {
3330 curpid = getpid ();
3331 postfork = 1;
3332 }
3333#endif
3334
3335#if EV_FORK_ENABLE
3336 /* we might have forked, so queue fork handlers */
3337 if (expect_false (postfork))
3338 if (forkcnt)
3339 {
3340 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3341 EV_INVOKE_PENDING;
3342 }
3343#endif
3344
3345#if EV_PREPARE_ENABLE
950 /* queue check watchers (and execute them) */ 3346 /* queue prepare watchers (and execute them) */
951 if (expect_false (preparecnt)) 3347 if (expect_false (preparecnt))
952 { 3348 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3349 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 3350 EV_INVOKE_PENDING;
955 } 3351 }
3352#endif
3353
3354 if (expect_false (loop_done))
3355 break;
3356
3357 /* we might have forked, so reify kernel state if necessary */
3358 if (expect_false (postfork))
3359 loop_fork (EV_A);
956 3360
957 /* update fd-related kernel structures */ 3361 /* update fd-related kernel structures */
958 fd_reify (EV_A); 3362 fd_reify (EV_A);
959 3363
960 /* calculate blocking time */ 3364 /* calculate blocking time */
3365 {
3366 ev_tstamp waittime = 0.;
3367 ev_tstamp sleeptime = 0.;
961 3368
962 /* we only need this for !monotonic clockor timers, but as we basically 3369 /* remember old timestamp for io_blocktime calculation */
963 always have timers, we just calculate it always */ 3370 ev_tstamp prev_mn_now = mn_now;
964#if EV_USE_MONOTONIC 3371
965 if (expect_true (have_monotonic)) 3372 /* update time to cancel out callback processing overhead */
966 time_update_monotonic (EV_A); 3373 time_update (EV_A_ 1e100);
967 else 3374
968#endif 3375 /* from now on, we want a pipe-wake-up */
3376 pipe_write_wanted = 1;
3377
3378 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3379
3380 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
969 { 3381 {
970 rt_now = ev_time ();
971 mn_now = rt_now;
972 }
973
974 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.;
976 else
977 {
978 block = MAX_BLOCKTIME; 3382 waittime = MAX_BLOCKTIME;
979 3383
980 if (timercnt) 3384 if (timercnt)
981 { 3385 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 3386 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
983 if (block > to) block = to; 3387 if (waittime > to) waittime = to;
984 } 3388 }
985 3389
3390#if EV_PERIODIC_ENABLE
986 if (periodiccnt) 3391 if (periodiccnt)
987 { 3392 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 3393 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
989 if (block > to) block = to; 3394 if (waittime > to) waittime = to;
990 } 3395 }
3396#endif
991 3397
992 if (block < 0.) block = 0.; 3398 /* don't let timeouts decrease the waittime below timeout_blocktime */
3399 if (expect_false (waittime < timeout_blocktime))
3400 waittime = timeout_blocktime;
3401
3402 /* at this point, we NEED to wait, so we have to ensure */
3403 /* to pass a minimum nonzero value to the backend */
3404 if (expect_false (waittime < backend_mintime))
3405 waittime = backend_mintime;
3406
3407 /* extra check because io_blocktime is commonly 0 */
3408 if (expect_false (io_blocktime))
3409 {
3410 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3411
3412 if (sleeptime > waittime - backend_mintime)
3413 sleeptime = waittime - backend_mintime;
3414
3415 if (expect_true (sleeptime > 0.))
3416 {
3417 ev_sleep (sleeptime);
3418 waittime -= sleeptime;
3419 }
3420 }
993 } 3421 }
994 3422
995 method_poll (EV_A_ block); 3423#if EV_FEATURE_API
3424 ++loop_count;
3425#endif
3426 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3427 backend_poll (EV_A_ waittime);
3428 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
996 3429
3430 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3431
3432 ECB_MEMORY_FENCE_ACQUIRE;
3433 if (pipe_write_skipped)
3434 {
3435 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3436 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3437 }
3438
3439
997 /* update rt_now, do magic */ 3440 /* update ev_rt_now, do magic */
998 time_update (EV_A); 3441 time_update (EV_A_ waittime + sleeptime);
3442 }
999 3443
1000 /* queue pending timers and reschedule them */ 3444 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 3445 timers_reify (EV_A); /* relative timers called last */
3446#if EV_PERIODIC_ENABLE
1002 periodics_reify (EV_A); /* absolute timers called first */ 3447 periodics_reify (EV_A); /* absolute timers called first */
3448#endif
1003 3449
3450#if EV_IDLE_ENABLE
1004 /* queue idle watchers unless io or timers are pending */ 3451 /* queue idle watchers unless other events are pending */
1005 if (!pendingcnt) 3452 idle_reify (EV_A);
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3453#endif
1007 3454
3455#if EV_CHECK_ENABLE
1008 /* queue check watchers, to be executed first */ 3456 /* queue check watchers, to be executed first */
1009 if (checkcnt) 3457 if (expect_false (checkcnt))
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3458 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3459#endif
1011 3460
1012 call_pending (EV_A); 3461 EV_INVOKE_PENDING;
1013 } 3462 }
1014 while (activecnt && !loop_done); 3463 while (expect_true (
3464 activecnt
3465 && !loop_done
3466 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3467 ));
1015 3468
1016 if (loop_done != 2) 3469 if (loop_done == EVBREAK_ONE)
1017 loop_done = 0; 3470 loop_done = EVBREAK_CANCEL;
3471
3472#if EV_FEATURE_API
3473 --loop_depth;
3474#endif
3475
3476 return activecnt;
1018} 3477}
1019 3478
1020void 3479void
1021ev_unloop (EV_P_ int how) 3480ev_break (EV_P_ int how) EV_THROW
1022{ 3481{
1023 loop_done = how; 3482 loop_done = how;
1024} 3483}
1025 3484
3485void
3486ev_ref (EV_P) EV_THROW
3487{
3488 ++activecnt;
3489}
3490
3491void
3492ev_unref (EV_P) EV_THROW
3493{
3494 --activecnt;
3495}
3496
3497void
3498ev_now_update (EV_P) EV_THROW
3499{
3500 time_update (EV_A_ 1e100);
3501}
3502
3503void
3504ev_suspend (EV_P) EV_THROW
3505{
3506 ev_now_update (EV_A);
3507}
3508
3509void
3510ev_resume (EV_P) EV_THROW
3511{
3512 ev_tstamp mn_prev = mn_now;
3513
3514 ev_now_update (EV_A);
3515 timers_reschedule (EV_A_ mn_now - mn_prev);
3516#if EV_PERIODIC_ENABLE
3517 /* TODO: really do this? */
3518 periodics_reschedule (EV_A);
3519#endif
3520}
3521
1026/*****************************************************************************/ 3522/*****************************************************************************/
3523/* singly-linked list management, used when the expected list length is short */
1027 3524
1028inline void 3525inline_size void
1029wlist_add (WL *head, WL elem) 3526wlist_add (WL *head, WL elem)
1030{ 3527{
1031 elem->next = *head; 3528 elem->next = *head;
1032 *head = elem; 3529 *head = elem;
1033} 3530}
1034 3531
1035inline void 3532inline_size void
1036wlist_del (WL *head, WL elem) 3533wlist_del (WL *head, WL elem)
1037{ 3534{
1038 while (*head) 3535 while (*head)
1039 { 3536 {
1040 if (*head == elem) 3537 if (expect_true (*head == elem))
1041 { 3538 {
1042 *head = elem->next; 3539 *head = elem->next;
1043 return; 3540 break;
1044 } 3541 }
1045 3542
1046 head = &(*head)->next; 3543 head = &(*head)->next;
1047 } 3544 }
1048} 3545}
1049 3546
3547/* internal, faster, version of ev_clear_pending */
1050inline void 3548inline_speed void
1051ev_clear_pending (EV_P_ W w) 3549clear_pending (EV_P_ W w)
1052{ 3550{
1053 if (w->pending) 3551 if (w->pending)
1054 { 3552 {
1055 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3553 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1056 w->pending = 0; 3554 w->pending = 0;
1057 } 3555 }
1058} 3556}
1059 3557
3558int
3559ev_clear_pending (EV_P_ void *w) EV_THROW
3560{
3561 W w_ = (W)w;
3562 int pending = w_->pending;
3563
3564 if (expect_true (pending))
3565 {
3566 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3567 p->w = (W)&pending_w;
3568 w_->pending = 0;
3569 return p->events;
3570 }
3571 else
3572 return 0;
3573}
3574
1060inline void 3575inline_size void
3576pri_adjust (EV_P_ W w)
3577{
3578 int pri = ev_priority (w);
3579 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3580 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3581 ev_set_priority (w, pri);
3582}
3583
3584inline_speed void
1061ev_start (EV_P_ W w, int active) 3585ev_start (EV_P_ W w, int active)
1062{ 3586{
1063 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3587 pri_adjust (EV_A_ w);
1064 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1065
1066 w->active = active; 3588 w->active = active;
1067 ev_ref (EV_A); 3589 ev_ref (EV_A);
1068} 3590}
1069 3591
1070inline void 3592inline_size void
1071ev_stop (EV_P_ W w) 3593ev_stop (EV_P_ W w)
1072{ 3594{
1073 ev_unref (EV_A); 3595 ev_unref (EV_A);
1074 w->active = 0; 3596 w->active = 0;
1075} 3597}
1076 3598
1077/*****************************************************************************/ 3599/*****************************************************************************/
1078 3600
1079void 3601void noinline
1080ev_io_start (EV_P_ struct ev_io *w) 3602ev_io_start (EV_P_ ev_io *w) EV_THROW
1081{ 3603{
1082 int fd = w->fd; 3604 int fd = w->fd;
1083 3605
1084 if (ev_is_active (w)) 3606 if (expect_false (ev_is_active (w)))
1085 return; 3607 return;
1086 3608
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 3609 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3610 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3611
3612 EV_FREQUENT_CHECK;
1088 3613
1089 ev_start (EV_A_ (W)w, 1); 3614 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 3615 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3616 wlist_add (&anfds[fd].head, (WL)w);
1092 3617
1093 fd_change (EV_A_ fd); 3618 /* common bug, apparently */
1094} 3619 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1095 3620
1096void 3621 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3622 w->events &= ~EV__IOFDSET;
3623
3624 EV_FREQUENT_CHECK;
3625}
3626
3627void noinline
1097ev_io_stop (EV_P_ struct ev_io *w) 3628ev_io_stop (EV_P_ ev_io *w) EV_THROW
1098{ 3629{
1099 ev_clear_pending (EV_A_ (W)w); 3630 clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 3631 if (expect_false (!ev_is_active (w)))
1101 return; 3632 return;
1102 3633
3634 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3635
3636 EV_FREQUENT_CHECK;
3637
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3638 wlist_del (&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
1105 3640
1106 fd_change (EV_A_ w->fd); 3641 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1107}
1108 3642
1109void 3643 EV_FREQUENT_CHECK;
3644}
3645
3646void noinline
1110ev_timer_start (EV_P_ struct ev_timer *w) 3647ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1111{ 3648{
1112 if (ev_is_active (w)) 3649 if (expect_false (ev_is_active (w)))
1113 return; 3650 return;
1114 3651
1115 w->at += mn_now; 3652 ev_at (w) += mn_now;
1116 3653
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3654 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 3655
3656 EV_FREQUENT_CHECK;
3657
3658 ++timercnt;
1119 ev_start (EV_A_ (W)w, ++timercnt); 3659 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1120 array_needsize (timers, timermax, timercnt, ); 3660 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1121 timers [timercnt - 1] = w; 3661 ANHE_w (timers [ev_active (w)]) = (WT)w;
1122 upheap ((WT *)timers, timercnt - 1); 3662 ANHE_at_cache (timers [ev_active (w)]);
1123} 3663 upheap (timers, ev_active (w));
1124 3664
1125void 3665 EV_FREQUENT_CHECK;
3666
3667 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3668}
3669
3670void noinline
1126ev_timer_stop (EV_P_ struct ev_timer *w) 3671ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1127{ 3672{
1128 ev_clear_pending (EV_A_ (W)w); 3673 clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 3674 if (expect_false (!ev_is_active (w)))
1130 return; 3675 return;
1131 3676
1132 if (w->active < timercnt--) 3677 EV_FREQUENT_CHECK;
3678
3679 {
3680 int active = ev_active (w);
3681
3682 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3683
3684 --timercnt;
3685
3686 if (expect_true (active < timercnt + HEAP0))
1133 { 3687 {
1134 timers [w->active - 1] = timers [timercnt]; 3688 timers [active] = timers [timercnt + HEAP0];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 3689 adjustheap (timers, timercnt, active);
1136 } 3690 }
3691 }
1137 3692
1138 w->at = w->repeat; 3693 ev_at (w) -= mn_now;
1139 3694
1140 ev_stop (EV_A_ (W)w); 3695 ev_stop (EV_A_ (W)w);
1141}
1142 3696
1143void 3697 EV_FREQUENT_CHECK;
3698}
3699
3700void noinline
1144ev_timer_again (EV_P_ struct ev_timer *w) 3701ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1145{ 3702{
3703 EV_FREQUENT_CHECK;
3704
3705 clear_pending (EV_A_ (W)w);
3706
1146 if (ev_is_active (w)) 3707 if (ev_is_active (w))
1147 { 3708 {
1148 if (w->repeat) 3709 if (w->repeat)
1149 { 3710 {
1150 w->at = mn_now + w->repeat; 3711 ev_at (w) = mn_now + w->repeat;
3712 ANHE_at_cache (timers [ev_active (w)]);
1151 downheap ((WT *)timers, timercnt, w->active - 1); 3713 adjustheap (timers, timercnt, ev_active (w));
1152 } 3714 }
1153 else 3715 else
1154 ev_timer_stop (EV_A_ w); 3716 ev_timer_stop (EV_A_ w);
1155 } 3717 }
1156 else if (w->repeat) 3718 else if (w->repeat)
3719 {
3720 ev_at (w) = w->repeat;
1157 ev_timer_start (EV_A_ w); 3721 ev_timer_start (EV_A_ w);
1158} 3722 }
1159 3723
1160void 3724 EV_FREQUENT_CHECK;
3725}
3726
3727ev_tstamp
3728ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3729{
3730 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3731}
3732
3733#if EV_PERIODIC_ENABLE
3734void noinline
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 3735ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1162{ 3736{
1163 if (ev_is_active (w)) 3737 if (expect_false (ev_is_active (w)))
1164 return; 3738 return;
1165 3739
3740 if (w->reschedule_cb)
3741 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3742 else if (w->interval)
3743 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3744 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3745 periodic_recalc (EV_A_ w);
3746 }
3747 else
3748 ev_at (w) = w->offset;
1167 3749
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 3750 EV_FREQUENT_CHECK;
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
1171 3751
3752 ++periodiccnt;
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 3753 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 3754 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1174 periodics [periodiccnt - 1] = w; 3755 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 3756 ANHE_at_cache (periodics [ev_active (w)]);
1176} 3757 upheap (periodics, ev_active (w));
1177 3758
1178void 3759 EV_FREQUENT_CHECK;
3760
3761 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3762}
3763
3764void noinline
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 3765ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1180{ 3766{
1181 ev_clear_pending (EV_A_ (W)w); 3767 clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 3768 if (expect_false (!ev_is_active (w)))
1183 return; 3769 return;
1184 3770
1185 if (w->active < periodiccnt--) 3771 EV_FREQUENT_CHECK;
3772
3773 {
3774 int active = ev_active (w);
3775
3776 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3777
3778 --periodiccnt;
3779
3780 if (expect_true (active < periodiccnt + HEAP0))
1186 { 3781 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 3782 periodics [active] = periodics [periodiccnt + HEAP0];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 3783 adjustheap (periodics, periodiccnt, active);
1189 } 3784 }
3785 }
1190 3786
1191 ev_stop (EV_A_ (W)w); 3787 ev_stop (EV_A_ (W)w);
1192}
1193 3788
1194void 3789 EV_FREQUENT_CHECK;
1195ev_idle_start (EV_P_ struct ev_idle *w)
1196{
1197 if (ev_is_active (w))
1198 return;
1199
1200 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, );
1202 idles [idlecnt - 1] = w;
1203} 3790}
1204 3791
1205void 3792void noinline
1206ev_idle_stop (EV_P_ struct ev_idle *w) 3793ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1207{ 3794{
1208 ev_clear_pending (EV_A_ (W)w); 3795 /* TODO: use adjustheap and recalculation */
1209 if (ev_is_active (w))
1210 return;
1211
1212 idles [w->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 3796 ev_periodic_stop (EV_A_ w);
3797 ev_periodic_start (EV_A_ w);
1214} 3798}
1215 3799#endif
1216void
1217ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{
1219 if (ev_is_active (w))
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, );
1224 prepares [preparecnt - 1] = w;
1225}
1226
1227void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 prepares [w->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_check_start (EV_P_ struct ev_check *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, );
1246 checks [checkcnt - 1] = w;
1247}
1248
1249void
1250ev_check_stop (EV_P_ struct ev_check *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 checks [w->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259 3800
1260#ifndef SA_RESTART 3801#ifndef SA_RESTART
1261# define SA_RESTART 0 3802# define SA_RESTART 0
1262#endif 3803#endif
1263 3804
3805#if EV_SIGNAL_ENABLE
3806
3807void noinline
3808ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3809{
3810 if (expect_false (ev_is_active (w)))
3811 return;
3812
3813 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3814
3815#if EV_MULTIPLICITY
3816 assert (("libev: a signal must not be attached to two different loops",
3817 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3818
3819 signals [w->signum - 1].loop = EV_A;
3820 ECB_MEMORY_FENCE_RELEASE;
3821#endif
3822
3823 EV_FREQUENT_CHECK;
3824
3825#if EV_USE_SIGNALFD
3826 if (sigfd == -2)
3827 {
3828 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3829 if (sigfd < 0 && errno == EINVAL)
3830 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3831
3832 if (sigfd >= 0)
3833 {
3834 fd_intern (sigfd); /* doing it twice will not hurt */
3835
3836 sigemptyset (&sigfd_set);
3837
3838 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3839 ev_set_priority (&sigfd_w, EV_MAXPRI);
3840 ev_io_start (EV_A_ &sigfd_w);
3841 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3842 }
3843 }
3844
3845 if (sigfd >= 0)
3846 {
3847 /* TODO: check .head */
3848 sigaddset (&sigfd_set, w->signum);
3849 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3850
3851 signalfd (sigfd, &sigfd_set, 0);
3852 }
3853#endif
3854
3855 ev_start (EV_A_ (W)w, 1);
3856 wlist_add (&signals [w->signum - 1].head, (WL)w);
3857
3858 if (!((WL)w)->next)
3859# if EV_USE_SIGNALFD
3860 if (sigfd < 0) /*TODO*/
3861# endif
3862 {
3863# ifdef _WIN32
3864 evpipe_init (EV_A);
3865
3866 signal (w->signum, ev_sighandler);
3867# else
3868 struct sigaction sa;
3869
3870 evpipe_init (EV_A);
3871
3872 sa.sa_handler = ev_sighandler;
3873 sigfillset (&sa.sa_mask);
3874 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3875 sigaction (w->signum, &sa, 0);
3876
3877 if (origflags & EVFLAG_NOSIGMASK)
3878 {
3879 sigemptyset (&sa.sa_mask);
3880 sigaddset (&sa.sa_mask, w->signum);
3881 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3882 }
3883#endif
3884 }
3885
3886 EV_FREQUENT_CHECK;
3887}
3888
3889void noinline
3890ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3891{
3892 clear_pending (EV_A_ (W)w);
3893 if (expect_false (!ev_is_active (w)))
3894 return;
3895
3896 EV_FREQUENT_CHECK;
3897
3898 wlist_del (&signals [w->signum - 1].head, (WL)w);
3899 ev_stop (EV_A_ (W)w);
3900
3901 if (!signals [w->signum - 1].head)
3902 {
3903#if EV_MULTIPLICITY
3904 signals [w->signum - 1].loop = 0; /* unattach from signal */
3905#endif
3906#if EV_USE_SIGNALFD
3907 if (sigfd >= 0)
3908 {
3909 sigset_t ss;
3910
3911 sigemptyset (&ss);
3912 sigaddset (&ss, w->signum);
3913 sigdelset (&sigfd_set, w->signum);
3914
3915 signalfd (sigfd, &sigfd_set, 0);
3916 sigprocmask (SIG_UNBLOCK, &ss, 0);
3917 }
3918 else
3919#endif
3920 signal (w->signum, SIG_DFL);
3921 }
3922
3923 EV_FREQUENT_CHECK;
3924}
3925
3926#endif
3927
3928#if EV_CHILD_ENABLE
3929
1264void 3930void
1265ev_signal_start (EV_P_ struct ev_signal *w) 3931ev_child_start (EV_P_ ev_child *w) EV_THROW
1266{ 3932{
1267#if EV_MULTIPLICITY 3933#if EV_MULTIPLICITY
1268 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1269#endif 3935#endif
1270 if (ev_is_active (w)) 3936 if (expect_false (ev_is_active (w)))
1271 return; 3937 return;
1272 3938
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3939 EV_FREQUENT_CHECK;
1274 3940
1275 ev_start (EV_A_ (W)w, 1); 3941 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 3942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 3943
1279 if (!w->next) 3944 EV_FREQUENT_CHECK;
1280 {
1281 struct sigaction sa;
1282 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0);
1286 }
1287} 3945}
1288 3946
1289void 3947void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 3948ev_child_stop (EV_P_ ev_child *w) EV_THROW
1291{ 3949{
1292 ev_clear_pending (EV_A_ (W)w); 3950 clear_pending (EV_A_ (W)w);
1293 if (!ev_is_active (w)) 3951 if (expect_false (!ev_is_active (w)))
1294 return; 3952 return;
1295 3953
1296 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3954 EV_FREQUENT_CHECK;
3955
3956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1297 ev_stop (EV_A_ (W)w); 3957 ev_stop (EV_A_ (W)w);
1298 3958
1299 if (!signals [w->signum - 1].head) 3959 EV_FREQUENT_CHECK;
1300 signal (w->signum, SIG_DFL);
1301} 3960}
3961
3962#endif
3963
3964#if EV_STAT_ENABLE
3965
3966# ifdef _WIN32
3967# undef lstat
3968# define lstat(a,b) _stati64 (a,b)
3969# endif
3970
3971#define DEF_STAT_INTERVAL 5.0074891
3972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3973#define MIN_STAT_INTERVAL 0.1074891
3974
3975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3976
3977#if EV_USE_INOTIFY
3978
3979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3981
3982static void noinline
3983infy_add (EV_P_ ev_stat *w)
3984{
3985 w->wd = inotify_add_watch (fs_fd, w->path,
3986 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3987 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3988 | IN_DONT_FOLLOW | IN_MASK_ADD);
3989
3990 if (w->wd >= 0)
3991 {
3992 struct statfs sfs;
3993
3994 /* now local changes will be tracked by inotify, but remote changes won't */
3995 /* unless the filesystem is known to be local, we therefore still poll */
3996 /* also do poll on <2.6.25, but with normal frequency */
3997
3998 if (!fs_2625)
3999 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4000 else if (!statfs (w->path, &sfs)
4001 && (sfs.f_type == 0x1373 /* devfs */
4002 || sfs.f_type == 0x4006 /* fat */
4003 || sfs.f_type == 0x4d44 /* msdos */
4004 || sfs.f_type == 0xEF53 /* ext2/3 */
4005 || sfs.f_type == 0x72b6 /* jffs2 */
4006 || sfs.f_type == 0x858458f6 /* ramfs */
4007 || sfs.f_type == 0x5346544e /* ntfs */
4008 || sfs.f_type == 0x3153464a /* jfs */
4009 || sfs.f_type == 0x9123683e /* btrfs */
4010 || sfs.f_type == 0x52654973 /* reiser3 */
4011 || sfs.f_type == 0x01021994 /* tmpfs */
4012 || sfs.f_type == 0x58465342 /* xfs */))
4013 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4014 else
4015 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4016 }
4017 else
4018 {
4019 /* can't use inotify, continue to stat */
4020 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4021
4022 /* if path is not there, monitor some parent directory for speedup hints */
4023 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4024 /* but an efficiency issue only */
4025 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4026 {
4027 char path [4096];
4028 strcpy (path, w->path);
4029
4030 do
4031 {
4032 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4033 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4034
4035 char *pend = strrchr (path, '/');
4036
4037 if (!pend || pend == path)
4038 break;
4039
4040 *pend = 0;
4041 w->wd = inotify_add_watch (fs_fd, path, mask);
4042 }
4043 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4044 }
4045 }
4046
4047 if (w->wd >= 0)
4048 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4049
4050 /* now re-arm timer, if required */
4051 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4052 ev_timer_again (EV_A_ &w->timer);
4053 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4054}
4055
4056static void noinline
4057infy_del (EV_P_ ev_stat *w)
4058{
4059 int slot;
4060 int wd = w->wd;
4061
4062 if (wd < 0)
4063 return;
4064
4065 w->wd = -2;
4066 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4067 wlist_del (&fs_hash [slot].head, (WL)w);
4068
4069 /* remove this watcher, if others are watching it, they will rearm */
4070 inotify_rm_watch (fs_fd, wd);
4071}
4072
4073static void noinline
4074infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4075{
4076 if (slot < 0)
4077 /* overflow, need to check for all hash slots */
4078 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4079 infy_wd (EV_A_ slot, wd, ev);
4080 else
4081 {
4082 WL w_;
4083
4084 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4085 {
4086 ev_stat *w = (ev_stat *)w_;
4087 w_ = w_->next; /* lets us remove this watcher and all before it */
4088
4089 if (w->wd == wd || wd == -1)
4090 {
4091 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4092 {
4093 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4094 w->wd = -1;
4095 infy_add (EV_A_ w); /* re-add, no matter what */
4096 }
4097
4098 stat_timer_cb (EV_A_ &w->timer, 0);
4099 }
4100 }
4101 }
4102}
4103
4104static void
4105infy_cb (EV_P_ ev_io *w, int revents)
4106{
4107 char buf [EV_INOTIFY_BUFSIZE];
4108 int ofs;
4109 int len = read (fs_fd, buf, sizeof (buf));
4110
4111 for (ofs = 0; ofs < len; )
4112 {
4113 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4114 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4115 ofs += sizeof (struct inotify_event) + ev->len;
4116 }
4117}
4118
4119inline_size void ecb_cold
4120ev_check_2625 (EV_P)
4121{
4122 /* kernels < 2.6.25 are borked
4123 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4124 */
4125 if (ev_linux_version () < 0x020619)
4126 return;
4127
4128 fs_2625 = 1;
4129}
4130
4131inline_size int
4132infy_newfd (void)
4133{
4134#if defined IN_CLOEXEC && defined IN_NONBLOCK
4135 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4136 if (fd >= 0)
4137 return fd;
4138#endif
4139 return inotify_init ();
4140}
4141
4142inline_size void
4143infy_init (EV_P)
4144{
4145 if (fs_fd != -2)
4146 return;
4147
4148 fs_fd = -1;
4149
4150 ev_check_2625 (EV_A);
4151
4152 fs_fd = infy_newfd ();
4153
4154 if (fs_fd >= 0)
4155 {
4156 fd_intern (fs_fd);
4157 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4158 ev_set_priority (&fs_w, EV_MAXPRI);
4159 ev_io_start (EV_A_ &fs_w);
4160 ev_unref (EV_A);
4161 }
4162}
4163
4164inline_size void
4165infy_fork (EV_P)
4166{
4167 int slot;
4168
4169 if (fs_fd < 0)
4170 return;
4171
4172 ev_ref (EV_A);
4173 ev_io_stop (EV_A_ &fs_w);
4174 close (fs_fd);
4175 fs_fd = infy_newfd ();
4176
4177 if (fs_fd >= 0)
4178 {
4179 fd_intern (fs_fd);
4180 ev_io_set (&fs_w, fs_fd, EV_READ);
4181 ev_io_start (EV_A_ &fs_w);
4182 ev_unref (EV_A);
4183 }
4184
4185 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4186 {
4187 WL w_ = fs_hash [slot].head;
4188 fs_hash [slot].head = 0;
4189
4190 while (w_)
4191 {
4192 ev_stat *w = (ev_stat *)w_;
4193 w_ = w_->next; /* lets us add this watcher */
4194
4195 w->wd = -1;
4196
4197 if (fs_fd >= 0)
4198 infy_add (EV_A_ w); /* re-add, no matter what */
4199 else
4200 {
4201 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4202 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4203 ev_timer_again (EV_A_ &w->timer);
4204 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4205 }
4206 }
4207 }
4208}
4209
4210#endif
4211
4212#ifdef _WIN32
4213# define EV_LSTAT(p,b) _stati64 (p, b)
4214#else
4215# define EV_LSTAT(p,b) lstat (p, b)
4216#endif
1302 4217
1303void 4218void
1304ev_child_start (EV_P_ struct ev_child *w) 4219ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1305{ 4220{
1306#if EV_MULTIPLICITY 4221 if (lstat (w->path, &w->attr) < 0)
1307 assert (("child watchers are only supported in the default loop", loop == default_loop)); 4222 w->attr.st_nlink = 0;
1308#endif 4223 else if (!w->attr.st_nlink)
4224 w->attr.st_nlink = 1;
4225}
4226
4227static void noinline
4228stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4229{
4230 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4231
4232 ev_statdata prev = w->attr;
4233 ev_stat_stat (EV_A_ w);
4234
4235 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4236 if (
4237 prev.st_dev != w->attr.st_dev
4238 || prev.st_ino != w->attr.st_ino
4239 || prev.st_mode != w->attr.st_mode
4240 || prev.st_nlink != w->attr.st_nlink
4241 || prev.st_uid != w->attr.st_uid
4242 || prev.st_gid != w->attr.st_gid
4243 || prev.st_rdev != w->attr.st_rdev
4244 || prev.st_size != w->attr.st_size
4245 || prev.st_atime != w->attr.st_atime
4246 || prev.st_mtime != w->attr.st_mtime
4247 || prev.st_ctime != w->attr.st_ctime
4248 ) {
4249 /* we only update w->prev on actual differences */
4250 /* in case we test more often than invoke the callback, */
4251 /* to ensure that prev is always different to attr */
4252 w->prev = prev;
4253
4254 #if EV_USE_INOTIFY
4255 if (fs_fd >= 0)
4256 {
4257 infy_del (EV_A_ w);
4258 infy_add (EV_A_ w);
4259 ev_stat_stat (EV_A_ w); /* avoid race... */
4260 }
4261 #endif
4262
4263 ev_feed_event (EV_A_ w, EV_STAT);
4264 }
4265}
4266
4267void
4268ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4269{
1309 if (ev_is_active (w)) 4270 if (expect_false (ev_is_active (w)))
1310 return; 4271 return;
1311 4272
4273 ev_stat_stat (EV_A_ w);
4274
4275 if (w->interval < MIN_STAT_INTERVAL && w->interval)
4276 w->interval = MIN_STAT_INTERVAL;
4277
4278 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4279 ev_set_priority (&w->timer, ev_priority (w));
4280
4281#if EV_USE_INOTIFY
4282 infy_init (EV_A);
4283
4284 if (fs_fd >= 0)
4285 infy_add (EV_A_ w);
4286 else
4287#endif
4288 {
4289 ev_timer_again (EV_A_ &w->timer);
4290 ev_unref (EV_A);
4291 }
4292
1312 ev_start (EV_A_ (W)w, 1); 4293 ev_start (EV_A_ (W)w, 1);
1313 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4294
4295 EV_FREQUENT_CHECK;
1314} 4296}
1315 4297
1316void 4298void
1317ev_child_stop (EV_P_ struct ev_child *w) 4299ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
1318{ 4300{
1319 ev_clear_pending (EV_A_ (W)w); 4301 clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 4302 if (expect_false (!ev_is_active (w)))
1321 return; 4303 return;
1322 4304
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4305 EV_FREQUENT_CHECK;
4306
4307#if EV_USE_INOTIFY
4308 infy_del (EV_A_ w);
4309#endif
4310
4311 if (ev_is_active (&w->timer))
4312 {
4313 ev_ref (EV_A);
4314 ev_timer_stop (EV_A_ &w->timer);
4315 }
4316
1324 ev_stop (EV_A_ (W)w); 4317 ev_stop (EV_A_ (W)w);
4318
4319 EV_FREQUENT_CHECK;
1325} 4320}
4321#endif
4322
4323#if EV_IDLE_ENABLE
4324void
4325ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4326{
4327 if (expect_false (ev_is_active (w)))
4328 return;
4329
4330 pri_adjust (EV_A_ (W)w);
4331
4332 EV_FREQUENT_CHECK;
4333
4334 {
4335 int active = ++idlecnt [ABSPRI (w)];
4336
4337 ++idleall;
4338 ev_start (EV_A_ (W)w, active);
4339
4340 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4341 idles [ABSPRI (w)][active - 1] = w;
4342 }
4343
4344 EV_FREQUENT_CHECK;
4345}
4346
4347void
4348ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4349{
4350 clear_pending (EV_A_ (W)w);
4351 if (expect_false (!ev_is_active (w)))
4352 return;
4353
4354 EV_FREQUENT_CHECK;
4355
4356 {
4357 int active = ev_active (w);
4358
4359 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4360 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4361
4362 ev_stop (EV_A_ (W)w);
4363 --idleall;
4364 }
4365
4366 EV_FREQUENT_CHECK;
4367}
4368#endif
4369
4370#if EV_PREPARE_ENABLE
4371void
4372ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4373{
4374 if (expect_false (ev_is_active (w)))
4375 return;
4376
4377 EV_FREQUENT_CHECK;
4378
4379 ev_start (EV_A_ (W)w, ++preparecnt);
4380 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4381 prepares [preparecnt - 1] = w;
4382
4383 EV_FREQUENT_CHECK;
4384}
4385
4386void
4387ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4388{
4389 clear_pending (EV_A_ (W)w);
4390 if (expect_false (!ev_is_active (w)))
4391 return;
4392
4393 EV_FREQUENT_CHECK;
4394
4395 {
4396 int active = ev_active (w);
4397
4398 prepares [active - 1] = prepares [--preparecnt];
4399 ev_active (prepares [active - 1]) = active;
4400 }
4401
4402 ev_stop (EV_A_ (W)w);
4403
4404 EV_FREQUENT_CHECK;
4405}
4406#endif
4407
4408#if EV_CHECK_ENABLE
4409void
4410ev_check_start (EV_P_ ev_check *w) EV_THROW
4411{
4412 if (expect_false (ev_is_active (w)))
4413 return;
4414
4415 EV_FREQUENT_CHECK;
4416
4417 ev_start (EV_A_ (W)w, ++checkcnt);
4418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4419 checks [checkcnt - 1] = w;
4420
4421 EV_FREQUENT_CHECK;
4422}
4423
4424void
4425ev_check_stop (EV_P_ ev_check *w) EV_THROW
4426{
4427 clear_pending (EV_A_ (W)w);
4428 if (expect_false (!ev_is_active (w)))
4429 return;
4430
4431 EV_FREQUENT_CHECK;
4432
4433 {
4434 int active = ev_active (w);
4435
4436 checks [active - 1] = checks [--checkcnt];
4437 ev_active (checks [active - 1]) = active;
4438 }
4439
4440 ev_stop (EV_A_ (W)w);
4441
4442 EV_FREQUENT_CHECK;
4443}
4444#endif
4445
4446#if EV_EMBED_ENABLE
4447void noinline
4448ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4449{
4450 ev_run (w->other, EVRUN_NOWAIT);
4451}
4452
4453static void
4454embed_io_cb (EV_P_ ev_io *io, int revents)
4455{
4456 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4457
4458 if (ev_cb (w))
4459 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4460 else
4461 ev_run (w->other, EVRUN_NOWAIT);
4462}
4463
4464static void
4465embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4466{
4467 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4468
4469 {
4470 EV_P = w->other;
4471
4472 while (fdchangecnt)
4473 {
4474 fd_reify (EV_A);
4475 ev_run (EV_A_ EVRUN_NOWAIT);
4476 }
4477 }
4478}
4479
4480static void
4481embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4482{
4483 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4484
4485 ev_embed_stop (EV_A_ w);
4486
4487 {
4488 EV_P = w->other;
4489
4490 ev_loop_fork (EV_A);
4491 ev_run (EV_A_ EVRUN_NOWAIT);
4492 }
4493
4494 ev_embed_start (EV_A_ w);
4495}
4496
4497#if 0
4498static void
4499embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4500{
4501 ev_idle_stop (EV_A_ idle);
4502}
4503#endif
4504
4505void
4506ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4507{
4508 if (expect_false (ev_is_active (w)))
4509 return;
4510
4511 {
4512 EV_P = w->other;
4513 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4514 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4515 }
4516
4517 EV_FREQUENT_CHECK;
4518
4519 ev_set_priority (&w->io, ev_priority (w));
4520 ev_io_start (EV_A_ &w->io);
4521
4522 ev_prepare_init (&w->prepare, embed_prepare_cb);
4523 ev_set_priority (&w->prepare, EV_MINPRI);
4524 ev_prepare_start (EV_A_ &w->prepare);
4525
4526 ev_fork_init (&w->fork, embed_fork_cb);
4527 ev_fork_start (EV_A_ &w->fork);
4528
4529 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4530
4531 ev_start (EV_A_ (W)w, 1);
4532
4533 EV_FREQUENT_CHECK;
4534}
4535
4536void
4537ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4538{
4539 clear_pending (EV_A_ (W)w);
4540 if (expect_false (!ev_is_active (w)))
4541 return;
4542
4543 EV_FREQUENT_CHECK;
4544
4545 ev_io_stop (EV_A_ &w->io);
4546 ev_prepare_stop (EV_A_ &w->prepare);
4547 ev_fork_stop (EV_A_ &w->fork);
4548
4549 ev_stop (EV_A_ (W)w);
4550
4551 EV_FREQUENT_CHECK;
4552}
4553#endif
4554
4555#if EV_FORK_ENABLE
4556void
4557ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4558{
4559 if (expect_false (ev_is_active (w)))
4560 return;
4561
4562 EV_FREQUENT_CHECK;
4563
4564 ev_start (EV_A_ (W)w, ++forkcnt);
4565 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4566 forks [forkcnt - 1] = w;
4567
4568 EV_FREQUENT_CHECK;
4569}
4570
4571void
4572ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4573{
4574 clear_pending (EV_A_ (W)w);
4575 if (expect_false (!ev_is_active (w)))
4576 return;
4577
4578 EV_FREQUENT_CHECK;
4579
4580 {
4581 int active = ev_active (w);
4582
4583 forks [active - 1] = forks [--forkcnt];
4584 ev_active (forks [active - 1]) = active;
4585 }
4586
4587 ev_stop (EV_A_ (W)w);
4588
4589 EV_FREQUENT_CHECK;
4590}
4591#endif
4592
4593#if EV_CLEANUP_ENABLE
4594void
4595ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4596{
4597 if (expect_false (ev_is_active (w)))
4598 return;
4599
4600 EV_FREQUENT_CHECK;
4601
4602 ev_start (EV_A_ (W)w, ++cleanupcnt);
4603 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4604 cleanups [cleanupcnt - 1] = w;
4605
4606 /* cleanup watchers should never keep a refcount on the loop */
4607 ev_unref (EV_A);
4608 EV_FREQUENT_CHECK;
4609}
4610
4611void
4612ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4613{
4614 clear_pending (EV_A_ (W)w);
4615 if (expect_false (!ev_is_active (w)))
4616 return;
4617
4618 EV_FREQUENT_CHECK;
4619 ev_ref (EV_A);
4620
4621 {
4622 int active = ev_active (w);
4623
4624 cleanups [active - 1] = cleanups [--cleanupcnt];
4625 ev_active (cleanups [active - 1]) = active;
4626 }
4627
4628 ev_stop (EV_A_ (W)w);
4629
4630 EV_FREQUENT_CHECK;
4631}
4632#endif
4633
4634#if EV_ASYNC_ENABLE
4635void
4636ev_async_start (EV_P_ ev_async *w) EV_THROW
4637{
4638 if (expect_false (ev_is_active (w)))
4639 return;
4640
4641 w->sent = 0;
4642
4643 evpipe_init (EV_A);
4644
4645 EV_FREQUENT_CHECK;
4646
4647 ev_start (EV_A_ (W)w, ++asynccnt);
4648 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4649 asyncs [asynccnt - 1] = w;
4650
4651 EV_FREQUENT_CHECK;
4652}
4653
4654void
4655ev_async_stop (EV_P_ ev_async *w) EV_THROW
4656{
4657 clear_pending (EV_A_ (W)w);
4658 if (expect_false (!ev_is_active (w)))
4659 return;
4660
4661 EV_FREQUENT_CHECK;
4662
4663 {
4664 int active = ev_active (w);
4665
4666 asyncs [active - 1] = asyncs [--asynccnt];
4667 ev_active (asyncs [active - 1]) = active;
4668 }
4669
4670 ev_stop (EV_A_ (W)w);
4671
4672 EV_FREQUENT_CHECK;
4673}
4674
4675void
4676ev_async_send (EV_P_ ev_async *w) EV_THROW
4677{
4678 w->sent = 1;
4679 evpipe_write (EV_A_ &async_pending);
4680}
4681#endif
1326 4682
1327/*****************************************************************************/ 4683/*****************************************************************************/
1328 4684
1329struct ev_once 4685struct ev_once
1330{ 4686{
1331 struct ev_io io; 4687 ev_io io;
1332 struct ev_timer to; 4688 ev_timer to;
1333 void (*cb)(int revents, void *arg); 4689 void (*cb)(int revents, void *arg);
1334 void *arg; 4690 void *arg;
1335}; 4691};
1336 4692
1337static void 4693static void
1338once_cb (EV_P_ struct ev_once *once, int revents) 4694once_cb (EV_P_ struct ev_once *once, int revents)
1339{ 4695{
1340 void (*cb)(int revents, void *arg) = once->cb; 4696 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 4697 void *arg = once->arg;
1342 4698
1343 ev_io_stop (EV_A_ &once->io); 4699 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 4700 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 4701 ev_free (once);
1346 4702
1347 cb (revents, arg); 4703 cb (revents, arg);
1348} 4704}
1349 4705
1350static void 4706static void
1351once_cb_io (EV_P_ struct ev_io *w, int revents) 4707once_cb_io (EV_P_ ev_io *w, int revents)
1352{ 4708{
1353 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4709 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4710
4711 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1354} 4712}
1355 4713
1356static void 4714static void
1357once_cb_to (EV_P_ struct ev_timer *w, int revents) 4715once_cb_to (EV_P_ ev_timer *w, int revents)
1358{ 4716{
1359 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4717 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4718
4719 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1360} 4720}
1361 4721
1362void 4722void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4723ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1364{ 4724{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 4725 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 4726
1367 if (!once) 4727 if (expect_false (!once))
4728 {
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4729 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1369 else 4730 return;
1370 { 4731 }
4732
1371 once->cb = cb; 4733 once->cb = cb;
1372 once->arg = arg; 4734 once->arg = arg;
1373 4735
1374 ev_watcher_init (&once->io, once_cb_io); 4736 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 4737 if (fd >= 0)
4738 {
4739 ev_io_set (&once->io, fd, events);
4740 ev_io_start (EV_A_ &once->io);
4741 }
4742
4743 ev_init (&once->to, once_cb_to);
4744 if (timeout >= 0.)
4745 {
4746 ev_timer_set (&once->to, timeout, 0.);
4747 ev_timer_start (EV_A_ &once->to);
4748 }
4749}
4750
4751/*****************************************************************************/
4752
4753#if EV_WALK_ENABLE
4754void ecb_cold
4755ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4756{
4757 int i, j;
4758 ev_watcher_list *wl, *wn;
4759
4760 if (types & (EV_IO | EV_EMBED))
4761 for (i = 0; i < anfdmax; ++i)
4762 for (wl = anfds [i].head; wl; )
1376 { 4763 {
1377 ev_io_set (&once->io, fd, events); 4764 wn = wl->next;
1378 ev_io_start (EV_A_ &once->io); 4765
4766#if EV_EMBED_ENABLE
4767 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4768 {
4769 if (types & EV_EMBED)
4770 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4771 }
4772 else
4773#endif
4774#if EV_USE_INOTIFY
4775 if (ev_cb ((ev_io *)wl) == infy_cb)
4776 ;
4777 else
4778#endif
4779 if ((ev_io *)wl != &pipe_w)
4780 if (types & EV_IO)
4781 cb (EV_A_ EV_IO, wl);
4782
4783 wl = wn;
1379 } 4784 }
1380 4785
1381 ev_watcher_init (&once->to, once_cb_to); 4786 if (types & (EV_TIMER | EV_STAT))
1382 if (timeout >= 0.) 4787 for (i = timercnt + HEAP0; i-- > HEAP0; )
4788#if EV_STAT_ENABLE
4789 /*TODO: timer is not always active*/
4790 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1383 { 4791 {
1384 ev_timer_set (&once->to, timeout, 0.); 4792 if (types & EV_STAT)
1385 ev_timer_start (EV_A_ &once->to); 4793 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1386 } 4794 }
1387 } 4795 else
1388} 4796#endif
4797 if (types & EV_TIMER)
4798 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1389 4799
4800#if EV_PERIODIC_ENABLE
4801 if (types & EV_PERIODIC)
4802 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4803 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4804#endif
4805
4806#if EV_IDLE_ENABLE
4807 if (types & EV_IDLE)
4808 for (j = NUMPRI; j--; )
4809 for (i = idlecnt [j]; i--; )
4810 cb (EV_A_ EV_IDLE, idles [j][i]);
4811#endif
4812
4813#if EV_FORK_ENABLE
4814 if (types & EV_FORK)
4815 for (i = forkcnt; i--; )
4816 if (ev_cb (forks [i]) != embed_fork_cb)
4817 cb (EV_A_ EV_FORK, forks [i]);
4818#endif
4819
4820#if EV_ASYNC_ENABLE
4821 if (types & EV_ASYNC)
4822 for (i = asynccnt; i--; )
4823 cb (EV_A_ EV_ASYNC, asyncs [i]);
4824#endif
4825
4826#if EV_PREPARE_ENABLE
4827 if (types & EV_PREPARE)
4828 for (i = preparecnt; i--; )
4829# if EV_EMBED_ENABLE
4830 if (ev_cb (prepares [i]) != embed_prepare_cb)
4831# endif
4832 cb (EV_A_ EV_PREPARE, prepares [i]);
4833#endif
4834
4835#if EV_CHECK_ENABLE
4836 if (types & EV_CHECK)
4837 for (i = checkcnt; i--; )
4838 cb (EV_A_ EV_CHECK, checks [i]);
4839#endif
4840
4841#if EV_SIGNAL_ENABLE
4842 if (types & EV_SIGNAL)
4843 for (i = 0; i < EV_NSIG - 1; ++i)
4844 for (wl = signals [i].head; wl; )
4845 {
4846 wn = wl->next;
4847 cb (EV_A_ EV_SIGNAL, wl);
4848 wl = wn;
4849 }
4850#endif
4851
4852#if EV_CHILD_ENABLE
4853 if (types & EV_CHILD)
4854 for (i = (EV_PID_HASHSIZE); i--; )
4855 for (wl = childs [i]; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_CHILD, wl);
4859 wl = wn;
4860 }
4861#endif
4862/* EV_STAT 0x00001000 /* stat data changed */
4863/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4864}
4865#endif
4866
4867#if EV_MULTIPLICITY
4868 #include "ev_wrap.h"
4869#endif
4870

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines