ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
90# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
91#endif 92#endif
92 93
93#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
95#endif 106#endif
96 107
97#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
99#endif 110#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 130
131#ifdef EV_H
132# include EV_H
133#else
120#include "ev.h" 134# include "ev.h"
135#endif
121 136
122#if __GNUC__ >= 3 137#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 139# define inline inline
125#else 140#else
137typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
139 154
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 156
157#include "ev_win32.c"
158
142/*****************************************************************************/ 159/*****************************************************************************/
143 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
144typedef struct 209typedef struct
145{ 210{
146 struct ev_watcher_list *head; 211 WL head;
147 unsigned char events; 212 unsigned char events;
148 unsigned char reify; 213 unsigned char reify;
149} ANFD; 214} ANFD;
150 215
151typedef struct 216typedef struct
154 int events; 219 int events;
155} ANPENDING; 220} ANPENDING;
156 221
157#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
158 223
159struct ev_loop 224 struct ev_loop
160{ 225 {
161# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
162# include "ev_vars.h" 227 #include "ev_vars.h"
163};
164# undef VAR 228 #undef VAR
229 };
165# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
166 234
167#else 235#else
168 236
169# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 238 #include "ev_vars.h"
171# undef VAR 239 #undef VAR
240
241 static int default_loop;
172 242
173#endif 243#endif
174 244
175/*****************************************************************************/ 245/*****************************************************************************/
176 246
201#endif 271#endif
202 272
203 return ev_time (); 273 return ev_time ();
204} 274}
205 275
276#if EV_MULTIPLICITY
206ev_tstamp 277ev_tstamp
207ev_now (EV_P) 278ev_now (EV_P)
208{ 279{
209 return rt_now; 280 return ev_rt_now;
210} 281}
282#endif
211 283
212#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
213 285
214#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
216 { \ 288 { \
217 int newcnt = cur; \ 289 int newcnt = cur; \
218 do \ 290 do \
219 { \ 291 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 293 } \
222 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
223 \ 295 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 298 cur = newcnt; \
227 } 299 }
300
301#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 }
308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313
314#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 316
229/*****************************************************************************/ 317/*****************************************************************************/
230 318
231static void 319static void
232anfds_init (ANFD *base, int count) 320anfds_init (ANFD *base, int count)
239 327
240 ++base; 328 ++base;
241 } 329 }
242} 330}
243 331
244static void 332void
245event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
246{ 334{
335 W w_ = (W)w;
336
247 if (w->pending) 337 if (w_->pending)
248 { 338 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 340 return;
251 } 341 }
252 342
253 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 347}
258 348
259static void 349static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 351{
262 int i; 352 int i;
263 353
264 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
266} 356}
267 357
268static void 358inline void
269fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
270{ 360{
271 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 362 struct ev_io *w;
273 363
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 365 {
276 int ev = w->events & events; 366 int ev = w->events & revents;
277 367
278 if (ev) 368 if (ev)
279 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
280 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
281} 377}
282 378
283/*****************************************************************************/ 379/*****************************************************************************/
284 380
285static void 381static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 395 events |= w->events;
300 396
301 anfd->reify = 0; 397 anfd->reify = 0;
302 398
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 399 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 400 anfd->events = events;
307 }
308 } 401 }
309 402
310 fdchangecnt = 0; 403 fdchangecnt = 0;
311} 404}
312 405
313static void 406static void
314fd_change (EV_P_ int fd) 407fd_change (EV_P_ int fd)
315{ 408{
316 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
317 return; 410 return;
318 411
319 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
320 413
321 ++fdchangecnt; 414 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
324} 417}
325 418
326static void 419static void
327fd_kill (EV_P_ int fd) 420fd_kill (EV_P_ int fd)
329 struct ev_io *w; 422 struct ev_io *w;
330 423
331 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
332 { 425 {
333 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
336} 439}
337 440
338/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
339static void 442static void
340fd_ebadf (EV_P) 443fd_ebadf (EV_P)
341{ 444{
342 int fd; 445 int fd;
343 446
344 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 448 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 450 fd_kill (EV_A_ fd);
348} 451}
349 452
350/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 454static void
352fd_enomem (EV_P) 455fd_enomem (EV_P)
353{ 456{
354 int fd = anfdmax; 457 int fd;
355 458
356 while (fd--) 459 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 460 if (anfds [fd].events)
358 { 461 {
359 close (fd);
360 fd_kill (EV_A_ fd); 462 fd_kill (EV_A_ fd);
361 return; 463 return;
362 } 464 }
363} 465}
364 466
365/* susually called after fork if method needs to re-arm all fds from scratch */ 467/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 468static void
367fd_rearm_all (EV_P) 469fd_rearm_all (EV_P)
368{ 470{
369 int fd; 471 int fd;
370 472
385 WT w = heap [k]; 487 WT w = heap [k];
386 488
387 while (k && heap [k >> 1]->at > w->at) 489 while (k && heap [k >> 1]->at > w->at)
388 { 490 {
389 heap [k] = heap [k >> 1]; 491 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 492 ((W)heap [k])->active = k + 1;
391 k >>= 1; 493 k >>= 1;
392 } 494 }
393 495
394 heap [k] = w; 496 heap [k] = w;
395 heap [k]->active = k + 1; 497 ((W)heap [k])->active = k + 1;
396 498
397} 499}
398 500
399static void 501static void
400downheap (WT *heap, int N, int k) 502downheap (WT *heap, int N, int k)
410 512
411 if (w->at <= heap [j]->at) 513 if (w->at <= heap [j]->at)
412 break; 514 break;
413 515
414 heap [k] = heap [j]; 516 heap [k] = heap [j];
415 heap [k]->active = k + 1; 517 ((W)heap [k])->active = k + 1;
416 k = j; 518 k = j;
417 } 519 }
418 520
419 heap [k] = w; 521 heap [k] = w;
420 heap [k]->active = k + 1; 522 ((W)heap [k])->active = k + 1;
523}
524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
421} 535}
422 536
423/*****************************************************************************/ 537/*****************************************************************************/
424 538
425typedef struct 539typedef struct
426{ 540{
427 struct ev_watcher_list *head; 541 WL head;
428 sig_atomic_t volatile gotsig; 542 sig_atomic_t volatile gotsig;
429} ANSIG; 543} ANSIG;
430 544
431static ANSIG *signals; 545static ANSIG *signals;
432static int signalmax; 546static int signalmax;
448} 562}
449 563
450static void 564static void
451sighandler (int signum) 565sighandler (int signum)
452{ 566{
567#if WIN32
568 signal (signum, sighandler);
569#endif
570
453 signals [signum - 1].gotsig = 1; 571 signals [signum - 1].gotsig = 1;
454 572
455 if (!gotsig) 573 if (!gotsig)
456 { 574 {
457 int old_errno = errno; 575 int old_errno = errno;
458 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
459 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
460 errno = old_errno; 582 errno = old_errno;
461 } 583 }
462} 584}
463 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
464static void 606static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 608{
467 struct ev_watcher_list *w;
468 int signum; 609 int signum;
469 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
470 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
471 gotsig = 0; 616 gotsig = 0;
472 617
473 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
475 { 620 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 621}
482 622
483static void 623static void
484siginit (EV_P) 624siginit (EV_P)
485{ 625{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 637 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 638}
499 639
500/*****************************************************************************/ 640/*****************************************************************************/
501 641
642static struct ev_child *childs [PID_HASHSIZE];
643
502#ifndef WIN32 644#ifndef WIN32
503 645
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 646static struct ev_signal childev;
506 647
507#ifndef WCONTINUED 648#ifndef WCONTINUED
508# define WCONTINUED 0 649# define WCONTINUED 0
509#endif 650#endif
514 struct ev_child *w; 655 struct ev_child *w;
515 656
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
518 { 659 {
519 w->priority = sw->priority; /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 661 w->rpid = pid;
521 w->rstatus = status; 662 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 664 }
524} 665}
525 666
526static void 667static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 670 int pid, status;
530 671
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 673 {
533 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 676
536 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 679 }
539} 680}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 738 have_monotonic = 1;
598 } 739 }
599#endif 740#endif
600 741
601 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 743 mn_now = get_clock ();
603 now_floor = mn_now; 744 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
605 746
606 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 750 else
610 methods = EVMETHOD_ANY; 751 methods = EVMETHOD_ANY;
611 752
612 method = 0; 753 method = 0;
754#if EV_USE_WIN32
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
756#endif
613#if EV_USE_KQUEUE 757#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 759#endif
616#if EV_USE_EPOLL 760#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 765#endif
622#if EV_USE_SELECT 766#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 768#endif
769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
625 } 772 }
626} 773}
627 774
628void 775void
629loop_destroy (EV_P) 776loop_destroy (EV_P)
630{ 777{
778 int i;
779
780#if EV_USE_WIN32
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
782#endif
631#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 785#endif
634#if EV_USE_EPOLL 786#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 791#endif
640#if EV_USE_SELECT 792#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 793 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 794#endif
643 795
796 for (i = NUMPRI; i--; )
797 array_free (pending, [i]);
798
799 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange);
801 array_free_microshit (timer);
802 array_free_microshit (periodic);
803 array_free_microshit (idle);
804 array_free_microshit (prepare);
805 array_free_microshit (check);
806
644 method = 0; 807 method = 0;
645 /*TODO*/
646} 808}
647 809
648void 810static void
649loop_fork (EV_P) 811loop_fork (EV_P)
650{ 812{
651 /*TODO*/
652#if EV_USE_EPOLL 813#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 815#endif
655#if EV_USE_KQUEUE 816#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
658} 836}
659 837
660#if EV_MULTIPLICITY 838#if EV_MULTIPLICITY
661struct ev_loop * 839struct ev_loop *
662ev_loop_new (int methods) 840ev_loop_new (int methods)
663{ 841{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843
844 memset (loop, 0, sizeof (struct ev_loop));
665 845
666 loop_init (EV_A_ methods); 846 loop_init (EV_A_ methods);
667 847
668 if (ev_method (EV_A)) 848 if (ev_method (EV_A))
669 return loop; 849 return loop;
673 853
674void 854void
675ev_loop_destroy (EV_P) 855ev_loop_destroy (EV_P)
676{ 856{
677 loop_destroy (EV_A); 857 loop_destroy (EV_A);
678 free (loop); 858 ev_free (loop);
679} 859}
680 860
681void 861void
682ev_loop_fork (EV_P) 862ev_loop_fork (EV_P)
683{ 863{
684 loop_fork (EV_A); 864 postfork = 1;
685} 865}
686 866
687#endif 867#endif
688 868
689#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 870struct ev_loop *
694#else 871#else
695static int default_loop;
696
697int 872int
698#endif 873#endif
699ev_default_loop (int methods) 874ev_default_loop (int methods)
700{ 875{
701 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
712 887
713 loop_init (EV_A_ methods); 888 loop_init (EV_A_ methods);
714 889
715 if (ev_method (EV_A)) 890 if (ev_method (EV_A))
716 { 891 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 892 siginit (EV_A);
720 893
721#ifndef WIN32 894#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
737{ 910{
738#if EV_MULTIPLICITY 911#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 912 struct ev_loop *loop = default_loop;
740#endif 913#endif
741 914
915#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 916 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 917 ev_signal_stop (EV_A_ &childev);
918#endif
744 919
745 ev_ref (EV_A); /* signal watcher */ 920 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 921 ev_io_stop (EV_A_ &sigev);
747 922
748 close (sigpipe [0]); sigpipe [0] = 0; 923 close (sigpipe [0]); sigpipe [0] = 0;
756{ 931{
757#if EV_MULTIPLICITY 932#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 933 struct ev_loop *loop = default_loop;
759#endif 934#endif
760 935
761 loop_fork (EV_A); 936 if (method)
762 937 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 938}
771 939
772/*****************************************************************************/ 940/*****************************************************************************/
941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
773 953
774static void 954static void
775call_pending (EV_P) 955call_pending (EV_P)
776{ 956{
777 int pri; 957 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 963
784 if (p->w) 964 if (p->w)
785 { 965 {
786 p->w->pending = 0; 966 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
788 } 968 }
789 } 969 }
790} 970}
791 971
792static void 972static void
793timers_reify (EV_P) 973timers_reify (EV_P)
794{ 974{
795 while (timercnt && timers [0]->at <= mn_now) 975 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 976 {
797 struct ev_timer *w = timers [0]; 977 struct ev_timer *w = timers [0];
798 978
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 979 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 980
801 /* first reschedule or stop timer */ 981 /* first reschedule or stop timer */
802 if (w->repeat) 982 if (w->repeat)
803 { 983 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
805 w->at = mn_now + w->repeat; 985 ((WT)w)->at = mn_now + w->repeat;
806 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
807 } 987 }
808 else 988 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 990
811 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 992 }
813} 993}
814 994
815static void 995static void
816periodics_reify (EV_P) 996periodics_reify (EV_P)
817{ 997{
818 while (periodiccnt && periodics [0]->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 999 {
820 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
821 1001
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1003
824 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
825 if (w->interval) 1005 if (w->reschedule_cb)
826 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1017 }
831 else 1018 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1020
834 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1022 }
836} 1023}
837 1024
838static void 1025static void
839periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
845 { 1032 {
846 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
847 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1037 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
861} 1044}
862 1045
863inline int 1046inline int
864time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
865{ 1048{
866 mn_now = get_clock (); 1049 mn_now = get_clock ();
867 1050
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1052 {
870 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1054 return 0;
872 } 1055 }
873 else 1056 else
874 { 1057 {
875 now_floor = mn_now; 1058 now_floor = mn_now;
876 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
877 return 1; 1060 return 1;
878 } 1061 }
879} 1062}
880 1063
881static void 1064static void
890 { 1073 {
891 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
892 1075
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1077 {
895 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
896 1079
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1081 return; /* all is well */
899 1082
900 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1084 mn_now = get_clock ();
902 now_floor = mn_now; 1085 now_floor = mn_now;
903 } 1086 }
904 1087
905 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
908 } 1091 }
909 } 1092 }
910 else 1093 else
911#endif 1094#endif
912 { 1095 {
913 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
914 1097
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1099 {
917 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
918 1101
919 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1105 }
923 1106
924 mn_now = rt_now; 1107 mn_now = ev_rt_now;
925 } 1108 }
926} 1109}
927 1110
928void 1111void
929ev_ref (EV_P) 1112ev_ref (EV_P)
952 { 1135 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1137 call_pending (EV_A);
955 } 1138 }
956 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
957 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1145 fd_reify (EV_A);
959 1146
960 /* calculate blocking time */ 1147 /* calculate blocking time */
961 1148
962 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
967 else 1154 else
968#endif 1155#endif
969 { 1156 {
970 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1158 mn_now = ev_rt_now;
972 } 1159 }
973 1160
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1162 block = 0.;
976 else 1163 else
977 { 1164 {
978 block = MAX_BLOCKTIME; 1165 block = MAX_BLOCKTIME;
979 1166
980 if (timercnt) 1167 if (timercnt)
981 { 1168 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1170 if (block > to) block = to;
984 } 1171 }
985 1172
986 if (periodiccnt) 1173 if (periodiccnt)
987 { 1174 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1176 if (block > to) block = to;
990 } 1177 }
991 1178
992 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
993 } 1180 }
994 1181
995 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
996 1183
997 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1185 time_update (EV_A);
999 1186
1000 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1002 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1003 1190
1004 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1194
1008 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1196 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1272 return;
1086 1273
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1275
1089 ev_start (EV_A_ (W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1279
1093 fd_change (EV_A_ fd); 1280 fd_change (EV_A_ fd);
1094} 1281}
1095 1282
1110ev_timer_start (EV_P_ struct ev_timer *w) 1297ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1298{
1112 if (ev_is_active (w)) 1299 if (ev_is_active (w))
1113 return; 1300 return;
1114 1301
1115 w->at += mn_now; 1302 ((WT)w)->at += mn_now;
1116 1303
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1305
1119 ev_start (EV_A_ (W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
1310
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1312}
1124 1313
1125void 1314void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1315ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1316{
1128 ev_clear_pending (EV_A_ (W)w); 1317 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1318 if (!ev_is_active (w))
1130 return; 1319 return;
1131 1320
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322
1132 if (w->active < timercnt--) 1323 if (((W)w)->active < timercnt--)
1133 { 1324 {
1134 timers [w->active - 1] = timers [timercnt]; 1325 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1327 }
1137 1328
1138 w->at = w->repeat; 1329 ((WT)w)->at = w->repeat;
1139 1330
1140 ev_stop (EV_A_ (W)w); 1331 ev_stop (EV_A_ (W)w);
1141} 1332}
1142 1333
1143void 1334void
1144ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1145{ 1336{
1146 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1147 { 1338 {
1148 if (w->repeat) 1339 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1152 }
1153 else 1341 else
1154 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1155 } 1343 }
1156 else if (w->repeat) 1344 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1350{
1163 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1164 return; 1352 return;
1165 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1171 1362
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1367
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1369}
1177 1370
1178void 1371void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1372ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1373{
1181 ev_clear_pending (EV_A_ (W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1375 if (!ev_is_active (w))
1183 return; 1376 return;
1184 1377
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1379
1185 if (w->active < periodiccnt--) 1380 if (((W)w)->active < periodiccnt--)
1186 { 1381 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1382 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1384 }
1190 1385
1191 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1192} 1387}
1193 1388
1194void 1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1399{
1197 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1198 return; 1401 return;
1199 1402
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1403 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1405 idles [idlecnt - 1] = w;
1203} 1406}
1204 1407
1205void 1408void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1409ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1410{
1208 ev_clear_pending (EV_A_ (W)w); 1411 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1412 if (ev_is_active (w))
1210 return; 1413 return;
1211 1414
1212 idles [w->active - 1] = idles [--idlecnt]; 1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1214} 1417}
1215 1418
1216void 1419void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1421{
1219 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1220 return; 1423 return;
1221 1424
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1425 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1224 prepares [preparecnt - 1] = w; 1427 prepares [preparecnt - 1] = w;
1225} 1428}
1226 1429
1227void 1430void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1432{
1230 ev_clear_pending (EV_A_ (W)w); 1433 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1434 if (ev_is_active (w))
1232 return; 1435 return;
1233 1436
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1438 ev_stop (EV_A_ (W)w);
1236} 1439}
1237 1440
1238void 1441void
1239ev_check_start (EV_P_ struct ev_check *w) 1442ev_check_start (EV_P_ struct ev_check *w)
1240{ 1443{
1241 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1242 return; 1445 return;
1243 1446
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1447 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1246 checks [checkcnt - 1] = w; 1449 checks [checkcnt - 1] = w;
1247} 1450}
1248 1451
1249void 1452void
1250ev_check_stop (EV_P_ struct ev_check *w) 1453ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1454{
1252 ev_clear_pending (EV_A_ (W)w); 1455 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1456 if (ev_is_active (w))
1254 return; 1457 return;
1255 1458
1256 checks [w->active - 1] = checks [--checkcnt]; 1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1460 ev_stop (EV_A_ (W)w);
1258} 1461}
1259 1462
1260#ifndef SA_RESTART 1463#ifndef SA_RESTART
1261# define SA_RESTART 0 1464# define SA_RESTART 0
1271 return; 1474 return;
1272 1475
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1477
1275 ev_start (EV_A_ (W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1481
1279 if (!w->next) 1482 if (!((WL)w)->next)
1280 { 1483 {
1484#if WIN32
1485 signal (w->signum, sighandler);
1486#else
1281 struct sigaction sa; 1487 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1488 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1489 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1490 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1491 sigaction (w->signum, &sa, 0);
1492#endif
1286 } 1493 }
1287} 1494}
1288 1495
1289void 1496void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1497ev_signal_stop (EV_P_ struct ev_signal *w)
1340 void (*cb)(int revents, void *arg) = once->cb; 1547 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1548 void *arg = once->arg;
1342 1549
1343 ev_io_stop (EV_A_ &once->io); 1550 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1551 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1552 ev_free (once);
1346 1553
1347 cb (revents, arg); 1554 cb (revents, arg);
1348} 1555}
1349 1556
1350static void 1557static void
1360} 1567}
1361 1568
1362void 1569void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1571{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1573
1367 if (!once) 1574 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1576 else
1370 { 1577 {
1371 once->cb = cb; 1578 once->cb = cb;
1372 once->arg = arg; 1579 once->arg = arg;
1373 1580
1374 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1582 if (fd >= 0)
1376 { 1583 {
1377 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1379 } 1586 }
1380 1587
1381 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1589 if (timeout >= 0.)
1383 { 1590 {
1384 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1386 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines