ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.90 by root, Sun Nov 11 00:05:59 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
90# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
91#endif 97#endif
92 98
93#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
95#endif 111#endif
96 112
97#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
99#endif 115#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 135
136#ifdef EV_H
137# include EV_H
138#else
120#include "ev.h" 139# include "ev.h"
140#endif
121 141
122#if __GNUC__ >= 3 142#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 144# define inline inline
125#else 145#else
137typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
139 159
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 161
162#include "ev_win32.c"
163
142/*****************************************************************************/ 164/*****************************************************************************/
143 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
144typedef struct 214typedef struct
145{ 215{
146 struct ev_watcher_list *head; 216 WL head;
147 unsigned char events; 217 unsigned char events;
148 unsigned char reify; 218 unsigned char reify;
149} ANFD; 219} ANFD;
150 220
151typedef struct 221typedef struct
154 int events; 224 int events;
155} ANPENDING; 225} ANPENDING;
156 226
157#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
158 228
159struct ev_loop 229 struct ev_loop
160{ 230 {
231 ev_tstamp ev_rt_now;
161# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
162# include "ev_vars.h" 233 #include "ev_vars.h"
163};
164# undef VAR 234 #undef VAR
235 };
165# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
166 240
167#else 241#else
168 242
243 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 245 #include "ev_vars.h"
171# undef VAR 246 #undef VAR
247
248 static int default_loop;
172 249
173#endif 250#endif
174 251
175/*****************************************************************************/ 252/*****************************************************************************/
176 253
201#endif 278#endif
202 279
203 return ev_time (); 280 return ev_time ();
204} 281}
205 282
283#if EV_MULTIPLICITY
206ev_tstamp 284ev_tstamp
207ev_now (EV_P) 285ev_now (EV_P)
208{ 286{
209 return rt_now; 287 return ev_rt_now;
210} 288}
289#endif
211 290
212#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
213 292
214#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
216 { \ 295 { \
217 int newcnt = cur; \ 296 int newcnt = cur; \
218 do \ 297 do \
219 { \ 298 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 300 } \
222 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
223 \ 302 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 305 cur = newcnt; \
227 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 323
229/*****************************************************************************/ 324/*****************************************************************************/
230 325
231static void 326static void
232anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
239 334
240 ++base; 335 ++base;
241 } 336 }
242} 337}
243 338
244static void 339void
245event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
246{ 341{
342 W w_ = (W)w;
343
247 if (w->pending) 344 if (w_->pending)
248 { 345 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 347 return;
251 } 348 }
252 349
253 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 354}
258 355
259static void 356static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 358{
262 int i; 359 int i;
263 360
264 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
266} 363}
267 364
268static void 365inline void
269fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
270{ 367{
271 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 369 struct ev_io *w;
273 370
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 372 {
276 int ev = w->events & events; 373 int ev = w->events & revents;
277 374
278 if (ev) 375 if (ev)
279 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
280 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
281} 384}
282 385
283/*****************************************************************************/ 386/*****************************************************************************/
284 387
285static void 388static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 402 events |= w->events;
300 403
301 anfd->reify = 0; 404 anfd->reify = 0;
302 405
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 407 anfd->events = events;
307 }
308 } 408 }
309 409
310 fdchangecnt = 0; 410 fdchangecnt = 0;
311} 411}
312 412
313static void 413static void
314fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
315{ 415{
316 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
317 return; 417 return;
318 418
319 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
320 420
321 ++fdchangecnt; 421 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
324} 424}
325 425
326static void 426static void
327fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
329 struct ev_io *w; 429 struct ev_io *w;
330 430
331 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
332 { 432 {
333 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
336} 446}
337 447
338/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
339static void 449static void
340fd_ebadf (EV_P) 450fd_ebadf (EV_P)
341{ 451{
342 int fd; 452 int fd;
343 453
344 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 455 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
348} 458}
349 459
350/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 461static void
352fd_enomem (EV_P) 462fd_enomem (EV_P)
353{ 463{
354 int fd = anfdmax; 464 int fd;
355 465
356 while (fd--) 466 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 467 if (anfds [fd].events)
358 { 468 {
359 close (fd);
360 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
361 return; 470 return;
362 } 471 }
363} 472}
364 473
365/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 475static void
367fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
368{ 477{
369 int fd; 478 int fd;
370 479
385 WT w = heap [k]; 494 WT w = heap [k];
386 495
387 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
388 { 497 {
389 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
391 k >>= 1; 500 k >>= 1;
392 } 501 }
393 502
394 heap [k] = w; 503 heap [k] = w;
395 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
396 505
397} 506}
398 507
399static void 508static void
400downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
410 519
411 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
412 break; 521 break;
413 522
414 heap [k] = heap [j]; 523 heap [k] = heap [j];
415 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
416 k = j; 525 k = j;
417 } 526 }
418 527
419 heap [k] = w; 528 heap [k] = w;
420 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
421} 542}
422 543
423/*****************************************************************************/ 544/*****************************************************************************/
424 545
425typedef struct 546typedef struct
426{ 547{
427 struct ev_watcher_list *head; 548 WL head;
428 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
429} ANSIG; 550} ANSIG;
430 551
431static ANSIG *signals; 552static ANSIG *signals;
432static int signalmax; 553static int signalmax;
448} 569}
449 570
450static void 571static void
451sighandler (int signum) 572sighandler (int signum)
452{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
453 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
454 579
455 if (!gotsig) 580 if (!gotsig)
456 { 581 {
457 int old_errno = errno; 582 int old_errno = errno;
458 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
459 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
460 errno = old_errno; 589 errno = old_errno;
461 } 590 }
462} 591}
463 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
464static void 613static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 615{
467 struct ev_watcher_list *w;
468 int signum; 616 int signum;
469 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
470 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
471 gotsig = 0; 623 gotsig = 0;
472 624
473 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
475 { 627 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 628}
482 629
483static void 630static void
484siginit (EV_P) 631siginit (EV_P)
485{ 632{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 645}
499 646
500/*****************************************************************************/ 647/*****************************************************************************/
501 648
649static struct ev_child *childs [PID_HASHSIZE];
650
502#ifndef WIN32 651#ifndef WIN32
503 652
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 653static struct ev_signal childev;
506 654
507#ifndef WCONTINUED 655#ifndef WCONTINUED
508# define WCONTINUED 0 656# define WCONTINUED 0
509#endif 657#endif
514 struct ev_child *w; 662 struct ev_child *w;
515 663
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
518 { 666 {
519 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 668 w->rpid = pid;
521 w->rstatus = status; 669 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 671 }
524} 672}
525 673
526static void 674static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 677 int pid, status;
530 678
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 680 {
533 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 683
536 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 686 }
539} 687}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 745 have_monotonic = 1;
598 } 746 }
599#endif 747#endif
600 748
601 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 750 mn_now = get_clock ();
603 now_floor = mn_now; 751 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
605 753
606 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 757 else
610 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
611 759
612 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
613#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 766#endif
616#if EV_USE_EPOLL 767#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 772#endif
622#if EV_USE_SELECT 773#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
625 } 779 }
626} 780}
627 781
628void 782void
629loop_destroy (EV_P) 783loop_destroy (EV_P)
630{ 784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
631#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 792#endif
634#if EV_USE_EPOLL 793#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 798#endif
640#if EV_USE_SELECT 799#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 801#endif
643 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
644 method = 0; 814 method = 0;
645 /*TODO*/
646} 815}
647 816
648void 817static void
649loop_fork (EV_P) 818loop_fork (EV_P)
650{ 819{
651 /*TODO*/
652#if EV_USE_EPOLL 820#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 822#endif
655#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
658} 843}
659 844
660#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
661struct ev_loop * 846struct ev_loop *
662ev_loop_new (int methods) 847ev_loop_new (int methods)
663{ 848{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
665 852
666 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
667 854
668 if (ev_method (EV_A)) 855 if (ev_method (EV_A))
669 return loop; 856 return loop;
673 860
674void 861void
675ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
676{ 863{
677 loop_destroy (EV_A); 864 loop_destroy (EV_A);
678 free (loop); 865 ev_free (loop);
679} 866}
680 867
681void 868void
682ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
683{ 870{
684 loop_fork (EV_A); 871 postfork = 1;
685} 872}
686 873
687#endif 874#endif
688 875
689#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 877struct ev_loop *
694#else 878#else
695static int default_loop;
696
697int 879int
698#endif 880#endif
699ev_default_loop (int methods) 881ev_default_loop (int methods)
700{ 882{
701 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
712 894
713 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
714 896
715 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
716 { 898 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 899 siginit (EV_A);
720 900
721#ifndef WIN32 901#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
737{ 917{
738#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
740#endif 920#endif
741 921
922#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
744 926
745 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
747 929
748 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
756{ 938{
757#if EV_MULTIPLICITY 939#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 940 struct ev_loop *loop = default_loop;
759#endif 941#endif
760 942
761 loop_fork (EV_A); 943 if (method)
762 944 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 945}
771 946
772/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
773 960
774static void 961static void
775call_pending (EV_P) 962call_pending (EV_P)
776{ 963{
777 int pri; 964 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 970
784 if (p->w) 971 if (p->w)
785 { 972 {
786 p->w->pending = 0; 973 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
788 } 975 }
789 } 976 }
790} 977}
791 978
792static void 979static void
793timers_reify (EV_P) 980timers_reify (EV_P)
794{ 981{
795 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 983 {
797 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
798 985
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 987
801 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
802 if (w->repeat) 989 if (w->repeat)
803 { 990 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992
805 w->at = mn_now + w->repeat; 993 ((WT)w)->at += w->repeat;
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
806 downheap ((WT *)timers, timercnt, 0); 997 downheap ((WT *)timers, timercnt, 0);
807 } 998 }
808 else 999 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1001
811 event (EV_A_ (W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1003 }
813} 1004}
814 1005
815static void 1006static void
816periodics_reify (EV_P) 1007periodics_reify (EV_P)
817{ 1008{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1010 {
820 struct ev_periodic *w = periodics [0]; 1011 struct ev_periodic *w = periodics [0];
821 1012
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1013 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1014
824 /* first reschedule or stop timer */ 1015 /* first reschedule or stop timer */
825 if (w->interval) 1016 if (w->reschedule_cb)
826 { 1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval)
1024 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1027 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1028 }
831 else 1029 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1031
834 event (EV_A_ (W)w, EV_PERIODIC); 1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1033 }
836} 1034}
837 1035
838static void 1036static void
839periodics_reschedule (EV_P) 1037periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1041 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1042 for (i = 0; i < periodiccnt; ++i)
845 { 1043 {
846 struct ev_periodic *w = periodics [i]; 1044 struct ev_periodic *w = periodics [i];
847 1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1048 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
861} 1055}
862 1056
863inline int 1057inline int
864time_update_monotonic (EV_P) 1058time_update_monotonic (EV_P)
865{ 1059{
866 mn_now = get_clock (); 1060 mn_now = get_clock ();
867 1061
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1063 {
870 rt_now = rtmn_diff + mn_now; 1064 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1065 return 0;
872 } 1066 }
873 else 1067 else
874 { 1068 {
875 now_floor = mn_now; 1069 now_floor = mn_now;
876 rt_now = ev_time (); 1070 ev_rt_now = ev_time ();
877 return 1; 1071 return 1;
878 } 1072 }
879} 1073}
880 1074
881static void 1075static void
890 { 1084 {
891 ev_tstamp odiff = rtmn_diff; 1085 ev_tstamp odiff = rtmn_diff;
892 1086
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1088 {
895 rtmn_diff = rt_now - mn_now; 1089 rtmn_diff = ev_rt_now - mn_now;
896 1090
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1092 return; /* all is well */
899 1093
900 rt_now = ev_time (); 1094 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1095 mn_now = get_clock ();
902 now_floor = mn_now; 1096 now_floor = mn_now;
903 } 1097 }
904 1098
905 periodics_reschedule (EV_A); 1099 periodics_reschedule (EV_A);
908 } 1102 }
909 } 1103 }
910 else 1104 else
911#endif 1105#endif
912 { 1106 {
913 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
914 1108
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1110 {
917 periodics_reschedule (EV_A); 1111 periodics_reschedule (EV_A);
918 1112
919 /* adjust timers. this is easy, as the offset is the same for all */ 1113 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1114 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1116 }
923 1117
924 mn_now = rt_now; 1118 mn_now = ev_rt_now;
925 } 1119 }
926} 1120}
927 1121
928void 1122void
929ev_ref (EV_P) 1123ev_ref (EV_P)
952 { 1146 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1148 call_pending (EV_A);
955 } 1149 }
956 1150
1151 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork))
1153 loop_fork (EV_A);
1154
957 /* update fd-related kernel structures */ 1155 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1156 fd_reify (EV_A);
959 1157
960 /* calculate blocking time */ 1158 /* calculate blocking time */
961 1159
962 /* we only need this for !monotonic clockor timers, but as we basically 1160 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1161 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1163 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1164 time_update_monotonic (EV_A);
967 else 1165 else
968#endif 1166#endif
969 { 1167 {
970 rt_now = ev_time (); 1168 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1169 mn_now = ev_rt_now;
972 } 1170 }
973 1171
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1173 block = 0.;
976 else 1174 else
977 { 1175 {
978 block = MAX_BLOCKTIME; 1176 block = MAX_BLOCKTIME;
979 1177
980 if (timercnt) 1178 if (timercnt)
981 { 1179 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1181 if (block > to) block = to;
984 } 1182 }
985 1183
986 if (periodiccnt) 1184 if (periodiccnt)
987 { 1185 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1187 if (block > to) block = to;
990 } 1188 }
991 1189
992 if (block < 0.) block = 0.; 1190 if (block < 0.) block = 0.;
993 } 1191 }
994 1192
995 method_poll (EV_A_ block); 1193 method_poll (EV_A_ block);
996 1194
997 /* update rt_now, do magic */ 1195 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1196 time_update (EV_A);
999 1197
1000 /* queue pending timers and reschedule them */ 1198 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1199 timers_reify (EV_A); /* relative timers called last */
1002 periodics_reify (EV_A); /* absolute timers called first */ 1200 periodics_reify (EV_A); /* absolute timers called first */
1003 1201
1004 /* queue idle watchers unless io or timers are pending */ 1202 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1203 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1205
1008 /* queue check watchers, to be executed first */ 1206 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1207 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1283 return;
1086 1284
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1285 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1286
1089 ev_start (EV_A_ (W)w, 1); 1287 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1290
1093 fd_change (EV_A_ fd); 1291 fd_change (EV_A_ fd);
1094} 1292}
1095 1293
1098{ 1296{
1099 ev_clear_pending (EV_A_ (W)w); 1297 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1298 if (!ev_is_active (w))
1101 return; 1299 return;
1102 1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1304 ev_stop (EV_A_ (W)w);
1105 1305
1106 fd_change (EV_A_ w->fd); 1306 fd_change (EV_A_ w->fd);
1107} 1307}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1310ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1311{
1112 if (ev_is_active (w)) 1312 if (ev_is_active (w))
1113 return; 1313 return;
1114 1314
1115 w->at += mn_now; 1315 ((WT)w)->at += mn_now;
1116 1316
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1318
1119 ev_start (EV_A_ (W)w, ++timercnt); 1319 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1321 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1322 upheap ((WT *)timers, timercnt - 1);
1323
1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1325}
1124 1326
1125void 1327void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1328ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1329{
1128 ev_clear_pending (EV_A_ (W)w); 1330 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1331 if (!ev_is_active (w))
1130 return; 1332 return;
1131 1333
1334 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1335
1132 if (w->active < timercnt--) 1336 if (((W)w)->active < timercnt--)
1133 { 1337 {
1134 timers [w->active - 1] = timers [timercnt]; 1338 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1340 }
1137 1341
1138 w->at = w->repeat; 1342 ((WT)w)->at = w->repeat;
1139 1343
1140 ev_stop (EV_A_ (W)w); 1344 ev_stop (EV_A_ (W)w);
1141} 1345}
1142 1346
1143void 1347void
1144ev_timer_again (EV_P_ struct ev_timer *w) 1348ev_timer_again (EV_P_ struct ev_timer *w)
1145{ 1349{
1146 if (ev_is_active (w)) 1350 if (ev_is_active (w))
1147 { 1351 {
1148 if (w->repeat) 1352 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1152 }
1153 else 1354 else
1154 ev_timer_stop (EV_A_ w); 1355 ev_timer_stop (EV_A_ w);
1155 } 1356 }
1156 else if (w->repeat) 1357 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1358 ev_timer_start (EV_A_ w);
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1363{
1163 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1164 return; 1365 return;
1165 1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1171 1375
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1378 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1379 upheap ((WT *)periodics, periodiccnt - 1);
1380
1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1382}
1177 1383
1178void 1384void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1385ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1386{
1181 ev_clear_pending (EV_A_ (W)w); 1387 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1388 if (!ev_is_active (w))
1183 return; 1389 return;
1184 1390
1391 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1392
1185 if (w->active < periodiccnt--) 1393 if (((W)w)->active < periodiccnt--)
1186 { 1394 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1395 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1396 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1397 }
1190 1398
1191 ev_stop (EV_A_ (W)w); 1399 ev_stop (EV_A_ (W)w);
1192} 1400}
1193 1401
1194void 1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w)
1404{
1405 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w);
1408}
1409
1410void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1411ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1412{
1197 if (ev_is_active (w)) 1413 if (ev_is_active (w))
1198 return; 1414 return;
1199 1415
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1416 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1418 idles [idlecnt - 1] = w;
1203} 1419}
1204 1420
1205void 1421void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1422ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1423{
1208 ev_clear_pending (EV_A_ (W)w); 1424 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1425 if (ev_is_active (w))
1210 return; 1426 return;
1211 1427
1212 idles [w->active - 1] = idles [--idlecnt]; 1428 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1429 ev_stop (EV_A_ (W)w);
1214} 1430}
1215 1431
1216void 1432void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1433ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1434{
1219 if (ev_is_active (w)) 1435 if (ev_is_active (w))
1220 return; 1436 return;
1221 1437
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1438 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1224 prepares [preparecnt - 1] = w; 1440 prepares [preparecnt - 1] = w;
1225} 1441}
1226 1442
1227void 1443void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1445{
1230 ev_clear_pending (EV_A_ (W)w); 1446 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1447 if (ev_is_active (w))
1232 return; 1448 return;
1233 1449
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1450 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1451 ev_stop (EV_A_ (W)w);
1236} 1452}
1237 1453
1238void 1454void
1239ev_check_start (EV_P_ struct ev_check *w) 1455ev_check_start (EV_P_ struct ev_check *w)
1240{ 1456{
1241 if (ev_is_active (w)) 1457 if (ev_is_active (w))
1242 return; 1458 return;
1243 1459
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1460 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1246 checks [checkcnt - 1] = w; 1462 checks [checkcnt - 1] = w;
1247} 1463}
1248 1464
1249void 1465void
1250ev_check_stop (EV_P_ struct ev_check *w) 1466ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1467{
1252 ev_clear_pending (EV_A_ (W)w); 1468 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1469 if (ev_is_active (w))
1254 return; 1470 return;
1255 1471
1256 checks [w->active - 1] = checks [--checkcnt]; 1472 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1473 ev_stop (EV_A_ (W)w);
1258} 1474}
1259 1475
1260#ifndef SA_RESTART 1476#ifndef SA_RESTART
1261# define SA_RESTART 0 1477# define SA_RESTART 0
1271 return; 1487 return;
1272 1488
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1490
1275 ev_start (EV_A_ (W)w, 1); 1491 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1494
1279 if (!w->next) 1495 if (!((WL)w)->next)
1280 { 1496 {
1497#if WIN32
1498 signal (w->signum, sighandler);
1499#else
1281 struct sigaction sa; 1500 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1501 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1502 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1504 sigaction (w->signum, &sa, 0);
1505#endif
1286 } 1506 }
1287} 1507}
1288 1508
1289void 1509void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1510ev_signal_stop (EV_P_ struct ev_signal *w)
1340 void (*cb)(int revents, void *arg) = once->cb; 1560 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1561 void *arg = once->arg;
1342 1562
1343 ev_io_stop (EV_A_ &once->io); 1563 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1564 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1565 ev_free (once);
1346 1566
1347 cb (revents, arg); 1567 cb (revents, arg);
1348} 1568}
1349 1569
1350static void 1570static void
1360} 1580}
1361 1581
1362void 1582void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1584{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1586
1367 if (!once) 1587 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1589 else
1370 { 1590 {
1371 once->cb = cb; 1591 once->cb = cb;
1372 once->arg = arg; 1592 once->arg = arg;
1373 1593
1374 ev_watcher_init (&once->io, once_cb_io); 1594 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1595 if (fd >= 0)
1376 { 1596 {
1377 ev_io_set (&once->io, fd, events); 1597 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1598 ev_io_start (EV_A_ &once->io);
1379 } 1599 }
1380 1600
1381 ev_watcher_init (&once->to, once_cb_to); 1601 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1602 if (timeout >= 0.)
1383 { 1603 {
1384 ev_timer_set (&once->to, timeout, 0.); 1604 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1605 ev_timer_start (EV_A_ &once->to);
1386 } 1606 }
1387 } 1607 }
1388} 1608}
1389 1609
1610#ifdef __cplusplus
1611}
1612#endif
1613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines