ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
90# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
91#endif 101#endif
92 102
93#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
95#endif 115#endif
96 116
97#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
99#endif 119#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 139
140#ifdef EV_H
141# include EV_H
142#else
120#include "ev.h" 143# include "ev.h"
144#endif
121 145
122#if __GNUC__ >= 3 146#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 148# define inline inline
125#else 149#else
137typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
139 163
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 165
166#include "ev_win32.c"
167
142/*****************************************************************************/ 168/*****************************************************************************/
143 169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
144typedef struct 218typedef struct
145{ 219{
146 struct ev_watcher_list *head; 220 WL head;
147 unsigned char events; 221 unsigned char events;
148 unsigned char reify; 222 unsigned char reify;
149} ANFD; 223} ANFD;
150 224
151typedef struct 225typedef struct
154 int events; 228 int events;
155} ANPENDING; 229} ANPENDING;
156 230
157#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
158 232
159struct ev_loop 233 struct ev_loop
160{ 234 {
235 ev_tstamp ev_rt_now;
161# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
162# include "ev_vars.h" 237 #include "ev_vars.h"
163};
164# undef VAR 238 #undef VAR
239 };
165# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
166 244
167#else 245#else
168 246
247 ev_tstamp ev_rt_now;
169# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 249 #include "ev_vars.h"
171# undef VAR 250 #undef VAR
251
252 static int default_loop;
172 253
173#endif 254#endif
174 255
175/*****************************************************************************/ 256/*****************************************************************************/
176 257
177inline ev_tstamp 258ev_tstamp
178ev_time (void) 259ev_time (void)
179{ 260{
180#if EV_USE_REALTIME 261#if EV_USE_REALTIME
181 struct timespec ts; 262 struct timespec ts;
182 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
201#endif 282#endif
202 283
203 return ev_time (); 284 return ev_time ();
204} 285}
205 286
287#if EV_MULTIPLICITY
206ev_tstamp 288ev_tstamp
207ev_now (EV_P) 289ev_now (EV_P)
208{ 290{
209 return rt_now; 291 return ev_rt_now;
210} 292}
293#endif
211 294
212#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
213 296
214#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
216 { \ 299 { \
217 int newcnt = cur; \ 300 int newcnt = cur; \
218 do \ 301 do \
219 { \ 302 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 304 } \
222 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
223 \ 306 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 309 cur = newcnt; \
227 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324
325#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 327
229/*****************************************************************************/ 328/*****************************************************************************/
230 329
231static void 330static void
232anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
239 338
240 ++base; 339 ++base;
241 } 340 }
242} 341}
243 342
244static void 343void
245event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
246{ 345{
346 W w_ = (W)w;
347
247 if (w->pending) 348 if (w_->pending)
248 { 349 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 351 return;
251 } 352 }
252 353
253 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 358}
258 359
259static void 360static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 362{
262 int i; 363 int i;
263 364
264 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
266} 367}
267 368
268static void 369inline void
269fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
270{ 371{
271 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 373 struct ev_io *w;
273 374
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 376 {
276 int ev = w->events & events; 377 int ev = w->events & revents;
277 378
278 if (ev) 379 if (ev)
279 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
280 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
281} 388}
282 389
283/*****************************************************************************/ 390/*****************************************************************************/
284 391
285static void 392static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 406 events |= w->events;
300 407
301 anfd->reify = 0; 408 anfd->reify = 0;
302 409
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 410 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 411 anfd->events = events;
307 }
308 } 412 }
309 413
310 fdchangecnt = 0; 414 fdchangecnt = 0;
311} 415}
312 416
313static void 417static void
314fd_change (EV_P_ int fd) 418fd_change (EV_P_ int fd)
315{ 419{
316 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
317 return; 421 return;
318 422
319 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
320 424
321 ++fdchangecnt; 425 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
324} 428}
325 429
326static void 430static void
327fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
329 struct ev_io *w; 433 struct ev_io *w;
330 434
331 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
332 { 436 {
333 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
336} 450}
337 451
338/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
339static void 453static void
340fd_ebadf (EV_P) 454fd_ebadf (EV_P)
341{ 455{
342 int fd; 456 int fd;
343 457
344 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 459 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 461 fd_kill (EV_A_ fd);
348} 462}
349 463
350/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 465static void
352fd_enomem (EV_P) 466fd_enomem (EV_P)
353{ 467{
354 int fd = anfdmax; 468 int fd;
355 469
356 while (fd--) 470 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 471 if (anfds [fd].events)
358 { 472 {
359 close (fd);
360 fd_kill (EV_A_ fd); 473 fd_kill (EV_A_ fd);
361 return; 474 return;
362 } 475 }
363} 476}
364 477
365/* susually called after fork if method needs to re-arm all fds from scratch */ 478/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 479static void
367fd_rearm_all (EV_P) 480fd_rearm_all (EV_P)
368{ 481{
369 int fd; 482 int fd;
370 483
385 WT w = heap [k]; 498 WT w = heap [k];
386 499
387 while (k && heap [k >> 1]->at > w->at) 500 while (k && heap [k >> 1]->at > w->at)
388 { 501 {
389 heap [k] = heap [k >> 1]; 502 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
391 k >>= 1; 504 k >>= 1;
392 } 505 }
393 506
394 heap [k] = w; 507 heap [k] = w;
395 heap [k]->active = k + 1; 508 ((W)heap [k])->active = k + 1;
396 509
397} 510}
398 511
399static void 512static void
400downheap (WT *heap, int N, int k) 513downheap (WT *heap, int N, int k)
410 523
411 if (w->at <= heap [j]->at) 524 if (w->at <= heap [j]->at)
412 break; 525 break;
413 526
414 heap [k] = heap [j]; 527 heap [k] = heap [j];
415 heap [k]->active = k + 1; 528 ((W)heap [k])->active = k + 1;
416 k = j; 529 k = j;
417 } 530 }
418 531
419 heap [k] = w; 532 heap [k] = w;
420 heap [k]->active = k + 1; 533 ((W)heap [k])->active = k + 1;
534}
535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
421} 546}
422 547
423/*****************************************************************************/ 548/*****************************************************************************/
424 549
425typedef struct 550typedef struct
426{ 551{
427 struct ev_watcher_list *head; 552 WL head;
428 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
429} ANSIG; 554} ANSIG;
430 555
431static ANSIG *signals; 556static ANSIG *signals;
432static int signalmax; 557static int signalmax;
448} 573}
449 574
450static void 575static void
451sighandler (int signum) 576sighandler (int signum)
452{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
453 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
454 583
455 if (!gotsig) 584 if (!gotsig)
456 { 585 {
457 int old_errno = errno; 586 int old_errno = errno;
458 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
459 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
460 errno = old_errno; 593 errno = old_errno;
461 } 594 }
462} 595}
463 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
464static void 617static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 619{
467 struct ev_watcher_list *w;
468 int signum; 620 int signum;
469 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
470 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
471 gotsig = 0; 627 gotsig = 0;
472 628
473 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
475 { 631 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 632}
482 633
483static void 634static void
484siginit (EV_P) 635siginit (EV_P)
485{ 636{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 648 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 649}
499 650
500/*****************************************************************************/ 651/*****************************************************************************/
501 652
653static struct ev_child *childs [PID_HASHSIZE];
654
502#ifndef WIN32 655#ifndef WIN32
503 656
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 657static struct ev_signal childev;
506 658
507#ifndef WCONTINUED 659#ifndef WCONTINUED
508# define WCONTINUED 0 660# define WCONTINUED 0
509#endif 661#endif
514 struct ev_child *w; 666 struct ev_child *w;
515 667
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
518 { 670 {
519 w->priority = sw->priority; /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 672 w->rpid = pid;
521 w->rstatus = status; 673 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 675 }
524} 676}
525 677
526static void 678static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 681 int pid, status;
530 682
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 684 {
533 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 687
536 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 690 }
539} 691}
596 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
597 have_monotonic = 1; 749 have_monotonic = 1;
598 } 750 }
599#endif 751#endif
600 752
601 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
602 mn_now = get_clock (); 754 mn_now = get_clock ();
603 now_floor = mn_now; 755 now_floor = mn_now;
604 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
605 757
606 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
607 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
608 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 761 else
610 methods = EVMETHOD_ANY; 762 methods = EVMETHOD_ANY;
611 763
612 method = 0; 764 method = 0;
765#if EV_USE_WIN32
766 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
767#endif
613#if EV_USE_KQUEUE 768#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 770#endif
616#if EV_USE_EPOLL 771#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 772 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 776#endif
622#if EV_USE_SELECT 777#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 779#endif
780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
625 } 783 }
626} 784}
627 785
628void 786void
629loop_destroy (EV_P) 787loop_destroy (EV_P)
630{ 788{
789 int i;
790
791#if EV_USE_WIN32
792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
793#endif
631#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 796#endif
634#if EV_USE_EPOLL 797#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 802#endif
640#if EV_USE_SELECT 803#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 805#endif
643 806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free_microshit (fdchange);
812 array_free_microshit (timer);
813#if EV_PERIODICS
814 array_free_microshit (periodic);
815#endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
644 method = 0; 820 method = 0;
645 /*TODO*/
646} 821}
647 822
648void 823static void
649loop_fork (EV_P) 824loop_fork (EV_P)
650{ 825{
651 /*TODO*/
652#if EV_USE_EPOLL 826#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 828#endif
655#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
658} 849}
659 850
660#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
661struct ev_loop * 852struct ev_loop *
662ev_loop_new (int methods) 853ev_loop_new (int methods)
663{ 854{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
665 858
666 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
667 860
668 if (ev_method (EV_A)) 861 if (ev_method (EV_A))
669 return loop; 862 return loop;
673 866
674void 867void
675ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
676{ 869{
677 loop_destroy (EV_A); 870 loop_destroy (EV_A);
678 free (loop); 871 ev_free (loop);
679} 872}
680 873
681void 874void
682ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
683{ 876{
684 loop_fork (EV_A); 877 postfork = 1;
685} 878}
686 879
687#endif 880#endif
688 881
689#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 883struct ev_loop *
694#else 884#else
695static int default_loop;
696
697int 885int
698#endif 886#endif
699ev_default_loop (int methods) 887ev_default_loop (int methods)
700{ 888{
701 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
712 900
713 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
714 902
715 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
716 { 904 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 905 siginit (EV_A);
720 906
721#ifndef WIN32 907#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
737{ 923{
738#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
740#endif 926#endif
741 927
928#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
744 932
745 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
747 935
748 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
756{ 944{
757#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
759#endif 947#endif
760 948
761 loop_fork (EV_A); 949 if (method)
762 950 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 951}
771 952
772/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
773 966
774static void 967static void
775call_pending (EV_P) 968call_pending (EV_P)
776{ 969{
777 int pri; 970 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 976
784 if (p->w) 977 if (p->w)
785 { 978 {
786 p->w->pending = 0; 979 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
788 } 981 }
789 } 982 }
790} 983}
791 984
792static void 985static void
793timers_reify (EV_P) 986timers_reify (EV_P)
794{ 987{
795 while (timercnt && timers [0]->at <= mn_now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 989 {
797 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
798 991
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 993
801 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
802 if (w->repeat) 995 if (w->repeat)
803 { 996 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
805 w->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
806 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
807 } 1004 }
808 else 1005 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 1007
811 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 1009 }
813} 1010}
814 1011
1012#if EV_PERIODICS
815static void 1013static void
816periodics_reify (EV_P) 1014periodics_reify (EV_P)
817{ 1015{
818 while (periodiccnt && periodics [0]->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
819 { 1017 {
820 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
821 1019
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1021
824 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
825 if (w->interval) 1023 if (w->reschedule_cb)
826 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1035 }
831 else 1036 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1038
834 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1040 }
836} 1041}
837 1042
838static void 1043static void
839periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
845 { 1050 {
846 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
847 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
848 if (w->interval) 1055 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
861} 1062}
1063#endif
862 1064
863inline int 1065inline int
864time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
865{ 1067{
866 mn_now = get_clock (); 1068 mn_now = get_clock ();
867 1069
868 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
869 { 1071 {
870 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
871 return 0; 1073 return 0;
872 } 1074 }
873 else 1075 else
874 { 1076 {
875 now_floor = mn_now; 1077 now_floor = mn_now;
876 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
877 return 1; 1079 return 1;
878 } 1080 }
879} 1081}
880 1082
881static void 1083static void
890 { 1092 {
891 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
892 1094
893 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
894 { 1096 {
895 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
896 1098
897 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
898 return; /* all is well */ 1100 return; /* all is well */
899 1101
900 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
901 mn_now = get_clock (); 1103 mn_now = get_clock ();
902 now_floor = mn_now; 1104 now_floor = mn_now;
903 } 1105 }
904 1106
1107# if EV_PERIODICS
905 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
906 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
907 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
908 } 1112 }
909 } 1113 }
910 else 1114 else
911#endif 1115#endif
912 { 1116 {
913 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
914 1118
915 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
916 { 1120 {
1121#if EV_PERIODICS
917 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
918 1124
919 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1128 }
923 1129
924 mn_now = rt_now; 1130 mn_now = ev_rt_now;
925 } 1131 }
926} 1132}
927 1133
928void 1134void
929ev_ref (EV_P) 1135ev_ref (EV_P)
952 { 1158 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1160 call_pending (EV_A);
955 } 1161 }
956 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
957 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1168 fd_reify (EV_A);
959 1169
960 /* calculate blocking time */ 1170 /* calculate blocking time */
961 1171
962 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
967 else 1177 else
968#endif 1178#endif
969 { 1179 {
970 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
971 mn_now = rt_now; 1181 mn_now = ev_rt_now;
972 } 1182 }
973 1183
974 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
975 block = 0.; 1185 block = 0.;
976 else 1186 else
977 { 1187 {
978 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
979 1189
980 if (timercnt) 1190 if (timercnt)
981 { 1191 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1193 if (block > to) block = to;
984 } 1194 }
985 1195
1196#if EV_PERIODICS
986 if (periodiccnt) 1197 if (periodiccnt)
987 { 1198 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
989 if (block > to) block = to; 1200 if (block > to) block = to;
990 } 1201 }
1202#endif
991 1203
992 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
993 } 1205 }
994 1206
995 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
996 1208
997 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
998 time_update (EV_A); 1210 time_update (EV_A);
999 1211
1000 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1002 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1003 1217
1004 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1221
1008 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1223 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1299 return;
1086 1300
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1302
1089 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1306
1093 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1094} 1308}
1095 1309
1098{ 1312{
1099 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1100 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1101 return; 1315 return;
1102 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1103 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1104 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1105 1321
1106 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1107} 1323}
1110ev_timer_start (EV_P_ struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1327{
1112 if (ev_is_active (w)) 1328 if (ev_is_active (w))
1113 return; 1329 return;
1114 1330
1115 w->at += mn_now; 1331 ((WT)w)->at += mn_now;
1116 1332
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1334
1119 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1341}
1124 1342
1125void 1343void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1344ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1345{
1128 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
1130 return; 1348 return;
1131 1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
1132 if (w->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
1133 { 1353 {
1134 timers [w->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1356 }
1137 1357
1138 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1139 1359
1140 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1141} 1361}
1142 1362
1143void 1363void
1144ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1145{ 1365{
1146 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1147 { 1367 {
1148 if (w->repeat) 1368 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1152 }
1153 else 1370 else
1154 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1155 } 1372 }
1156 else if (w->repeat) 1373 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1158} 1375}
1159 1376
1377#if EV_PERIODICS
1160void 1378void
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1380{
1163 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1164 return; 1382 return;
1165 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1171 1392
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1397
1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1399}
1177 1400
1178void 1401void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1402ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1403{
1181 ev_clear_pending (EV_A_ (W)w); 1404 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1405 if (!ev_is_active (w))
1183 return; 1406 return;
1184 1407
1408 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1409
1185 if (w->active < periodiccnt--) 1410 if (((W)w)->active < periodiccnt--)
1186 { 1411 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1412 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1413 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1414 }
1190 1415
1191 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1192} 1417}
1193 1418
1194void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1430{
1197 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1198 return; 1432 return;
1199 1433
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1203} 1437}
1204 1438
1205void 1439void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1441{
1208 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1443 if (ev_is_active (w))
1210 return; 1444 return;
1211 1445
1212 idles [w->active - 1] = idles [--idlecnt]; 1446 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1447 ev_stop (EV_A_ (W)w);
1214} 1448}
1215 1449
1216void 1450void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1451ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1452{
1219 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1220 return; 1454 return;
1221 1455
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1224 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1225} 1459}
1226 1460
1227void 1461void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1463{
1230 ev_clear_pending (EV_A_ (W)w); 1464 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1465 if (ev_is_active (w))
1232 return; 1466 return;
1233 1467
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1468 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1469 ev_stop (EV_A_ (W)w);
1236} 1470}
1237 1471
1238void 1472void
1239ev_check_start (EV_P_ struct ev_check *w) 1473ev_check_start (EV_P_ struct ev_check *w)
1240{ 1474{
1241 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1242 return; 1476 return;
1243 1477
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1246 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1247} 1481}
1248 1482
1249void 1483void
1250ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1485{
1252 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1254 return; 1488 return;
1255 1489
1256 checks [w->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1258} 1492}
1259 1493
1260#ifndef SA_RESTART 1494#ifndef SA_RESTART
1261# define SA_RESTART 0 1495# define SA_RESTART 0
1271 return; 1505 return;
1272 1506
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1508
1275 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1512
1279 if (!w->next) 1513 if (!((WL)w)->next)
1280 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1281 struct sigaction sa; 1518 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1286 } 1524 }
1287} 1525}
1288 1526
1289void 1527void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1315 1553
1316void 1554void
1317ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1318{ 1556{
1319 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1320 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1321 return; 1559 return;
1322 1560
1323 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1324 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1325} 1563}
1340 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1579 void *arg = once->arg;
1342 1580
1343 ev_io_stop (EV_A_ &once->io); 1581 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1583 ev_free (once);
1346 1584
1347 cb (revents, arg); 1585 cb (revents, arg);
1348} 1586}
1349 1587
1350static void 1588static void
1360} 1598}
1361 1599
1362void 1600void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1602{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1604
1367 if (!once) 1605 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1607 else
1370 { 1608 {
1371 once->cb = cb; 1609 once->cb = cb;
1372 once->arg = arg; 1610 once->arg = arg;
1373 1611
1374 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1613 if (fd >= 0)
1376 { 1614 {
1377 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1379 } 1617 }
1380 1618
1381 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1620 if (timeout >= 0.)
1383 { 1621 {
1384 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1386 } 1624 }
1387 } 1625 }
1388} 1626}
1389 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines