ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.107 by root, Mon Nov 12 01:20:25 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY /* required for microsofts broken pseudo-c compiler */
173
144typedef struct ev_watcher *W; 174typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 175typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 176typedef struct ev_watcher_time *WT;
147 177
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 179
180#ifdef _WIN32
181# include "ev_win32.c"
182#endif
183
150/*****************************************************************************/ 184/*****************************************************************************/
151 185
186static void (*syserr_cb)(const char *msg);
187
188void ev_set_syserr_cb (void (*cb)(const char *msg))
189{
190 syserr_cb = cb;
191}
192
193static void
194syserr (const char *msg)
195{
196 if (!msg)
197 msg = "(libev) system error";
198
199 if (syserr_cb)
200 syserr_cb (msg);
201 else
202 {
203 perror (msg);
204 abort ();
205 }
206}
207
208static void *(*alloc)(void *ptr, long size);
209
210void ev_set_allocator (void *(*cb)(void *ptr, long size))
211{
212 alloc = cb;
213}
214
215static void *
216ev_realloc (void *ptr, long size)
217{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
219
220 if (!ptr && size)
221 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort ();
224 }
225
226 return ptr;
227}
228
229#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0)
231
232/*****************************************************************************/
233
152typedef struct 234typedef struct
153{ 235{
154 struct ev_watcher_list *head; 236 WL head;
155 unsigned char events; 237 unsigned char events;
156 unsigned char reify; 238 unsigned char reify;
239#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle;
241#endif
157} ANFD; 242} ANFD;
158 243
159typedef struct 244typedef struct
160{ 245{
161 W w; 246 W w;
162 int events; 247 int events;
163} ANPENDING; 248} ANPENDING;
164 249
165#if EV_MULTIPLICITY 250#if EV_MULTIPLICITY
166 251
167struct ev_loop 252 struct ev_loop
168{ 253 {
254 ev_tstamp ev_rt_now;
255 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 256 #define VAR(name,decl) decl;
170# include "ev_vars.h" 257 #include "ev_vars.h"
171};
172# undef VAR 258 #undef VAR
259 };
173# include "ev_wrap.h" 260 #include "ev_wrap.h"
261
262 struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop;
174 264
175#else 265#else
176 266
267 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 268 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 269 #include "ev_vars.h"
179# undef VAR 270 #undef VAR
271
272 static int default_loop;
180 273
181#endif 274#endif
182 275
183/*****************************************************************************/ 276/*****************************************************************************/
184 277
185inline ev_tstamp 278ev_tstamp
186ev_time (void) 279ev_time (void)
187{ 280{
188#if EV_USE_REALTIME 281#if EV_USE_REALTIME
189 struct timespec ts; 282 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 283 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 302#endif
210 303
211 return ev_time (); 304 return ev_time ();
212} 305}
213 306
307#if EV_MULTIPLICITY
214ev_tstamp 308ev_tstamp
215ev_now (EV_P) 309ev_now (EV_P)
216{ 310{
217 return rt_now; 311 return ev_rt_now;
218} 312}
313#endif
219 314
220#define array_roundsize(base,n) ((n) | 4 & ~3) 315#define array_roundsize(type,n) ((n) | 4 & ~3)
221 316
222#define array_needsize(base,cur,cnt,init) \ 317#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 318 if (expect_false ((cnt) > cur)) \
224 { \ 319 { \
225 int newcnt = cur; \ 320 int newcnt = cur; \
226 do \ 321 do \
227 { \ 322 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 323 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 324 } \
230 while ((cnt) > newcnt); \ 325 while ((cnt) > newcnt); \
231 \ 326 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 328 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 329 cur = newcnt; \
235 } 330 }
331
332#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 }
339
340#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 342
237/*****************************************************************************/ 343/*****************************************************************************/
238 344
239static void 345static void
240anfds_init (ANFD *base, int count) 346anfds_init (ANFD *base, int count)
247 353
248 ++base; 354 ++base;
249 } 355 }
250} 356}
251 357
252static void 358void
253event (EV_P_ W w, int events) 359ev_feed_event (EV_P_ void *w, int revents)
254{ 360{
361 W w_ = (W)w;
362
255 if (w->pending) 363 if (w_->pending)
256 { 364 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 366 return;
259 } 367 }
260 368
261 w->pending = ++pendingcnt [ABSPRI (w)]; 369 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 373}
266 374
267static void 375static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 376queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 377{
270 int i; 378 int i;
271 379
272 for (i = 0; i < eventcnt; ++i) 380 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 381 ev_feed_event (EV_A_ events [i], type);
274} 382}
275 383
276static void 384inline void
277fd_event (EV_P_ int fd, int events) 385fd_event (EV_P_ int fd, int revents)
278{ 386{
279 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 388 struct ev_io *w;
281 389
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 391 {
284 int ev = w->events & events; 392 int ev = w->events & revents;
285 393
286 if (ev) 394 if (ev)
287 event (EV_A_ (W)w, ev); 395 ev_feed_event (EV_A_ (W)w, ev);
288 } 396 }
397}
398
399void
400ev_feed_fd_event (EV_P_ int fd, int revents)
401{
402 fd_event (EV_A_ fd, revents);
289} 403}
290 404
291/*****************************************************************************/ 405/*****************************************************************************/
292 406
293static void 407static void
304 int events = 0; 418 int events = 0;
305 419
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 421 events |= w->events;
308 422
423#if EV_SELECT_IS_WINSOCKET
424 if (events)
425 {
426 unsigned long argp;
427 anfd->handle = _get_osfhandle (fd);
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
429 }
430#endif
431
309 anfd->reify = 0; 432 anfd->reify = 0;
310 433
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 434 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 435 anfd->events = events;
315 }
316 } 436 }
317 437
318 fdchangecnt = 0; 438 fdchangecnt = 0;
319} 439}
320 440
321static void 441static void
322fd_change (EV_P_ int fd) 442fd_change (EV_P_ int fd)
323{ 443{
324 if (anfds [fd].reify || fdchangecnt < 0) 444 if (anfds [fd].reify)
325 return; 445 return;
326 446
327 anfds [fd].reify = 1; 447 anfds [fd].reify = 1;
328 448
329 ++fdchangecnt; 449 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 451 fdchanges [fdchangecnt - 1] = fd;
332} 452}
333 453
334static void 454static void
335fd_kill (EV_P_ int fd) 455fd_kill (EV_P_ int fd)
337 struct ev_io *w; 457 struct ev_io *w;
338 458
339 while ((w = (struct ev_io *)anfds [fd].head)) 459 while ((w = (struct ev_io *)anfds [fd].head))
340 { 460 {
341 ev_io_stop (EV_A_ w); 461 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 463 }
464}
465
466static int
467fd_valid (int fd)
468{
469#ifdef _WIN32
470 return _get_osfhandle (fd) != -1;
471#else
472 return fcntl (fd, F_GETFD) != -1;
473#endif
344} 474}
345 475
346/* called on EBADF to verify fds */ 476/* called on EBADF to verify fds */
347static void 477static void
348fd_ebadf (EV_P) 478fd_ebadf (EV_P)
349{ 479{
350 int fd; 480 int fd;
351 481
352 for (fd = 0; fd < anfdmax; ++fd) 482 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 483 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 484 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 485 fd_kill (EV_A_ fd);
356} 486}
357 487
358/* called on ENOMEM in select/poll to kill some fds and retry */ 488/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 489static void
362 int fd; 492 int fd;
363 493
364 for (fd = anfdmax; fd--; ) 494 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 495 if (anfds [fd].events)
366 { 496 {
367 close (fd);
368 fd_kill (EV_A_ fd); 497 fd_kill (EV_A_ fd);
369 return; 498 return;
370 } 499 }
371} 500}
372 501
373/* susually called after fork if method needs to re-arm all fds from scratch */ 502/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 503static void
375fd_rearm_all (EV_P) 504fd_rearm_all (EV_P)
376{ 505{
377 int fd; 506 int fd;
378 507
426 555
427 heap [k] = w; 556 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 557 ((W)heap [k])->active = k + 1;
429} 558}
430 559
560inline void
561adjustheap (WT *heap, int N, int k)
562{
563 upheap (heap, k);
564 downheap (heap, N, k);
565}
566
431/*****************************************************************************/ 567/*****************************************************************************/
432 568
433typedef struct 569typedef struct
434{ 570{
435 struct ev_watcher_list *head; 571 WL head;
436 sig_atomic_t volatile gotsig; 572 sig_atomic_t volatile gotsig;
437} ANSIG; 573} ANSIG;
438 574
439static ANSIG *signals; 575static ANSIG *signals;
440static int signalmax; 576static int signalmax;
456} 592}
457 593
458static void 594static void
459sighandler (int signum) 595sighandler (int signum)
460{ 596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
461 signals [signum - 1].gotsig = 1; 601 signals [signum - 1].gotsig = 1;
462 602
463 if (!gotsig) 603 if (!gotsig)
464 { 604 {
465 int old_errno = errno; 605 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 607 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 608 errno = old_errno;
469 } 609 }
470} 610}
471 611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
472static void 632static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 633sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 634{
475 struct ev_watcher_list *w;
476 int signum; 635 int signum;
477 636
478 read (sigpipe [0], &revents, 1); 637 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 638 gotsig = 0;
480 639
481 for (signum = signalmax; signum--; ) 640 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 641 if (signals [signum].gotsig)
483 { 642 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 643}
485 644
486 for (w = signals [signum].head; w; w = w->next) 645inline void
487 event (EV_A_ (W)w, EV_SIGNAL); 646fd_intern (int fd)
488 } 647{
648#ifdef _WIN32
649 int arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif
489} 655}
490 656
491static void 657static void
492siginit (EV_P) 658siginit (EV_P)
493{ 659{
494#ifndef WIN32 660 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 661 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 662
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 663 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 664 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 665 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 666}
507 667
508/*****************************************************************************/ 668/*****************************************************************************/
509 669
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 670static struct ev_child *childs [PID_HASHSIZE];
671
672#ifndef _WIN32
673
513static struct ev_signal childev; 674static struct ev_signal childev;
514 675
515#ifndef WCONTINUED 676#ifndef WCONTINUED
516# define WCONTINUED 0 677# define WCONTINUED 0
517#endif 678#endif
522 struct ev_child *w; 683 struct ev_child *w;
523 684
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 686 if (w->pid == pid || !w->pid)
526 { 687 {
527 w->priority = sw->priority; /* need to do it *now* */ 688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 689 w->rpid = pid;
529 w->rstatus = status; 690 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 692 }
532} 693}
533 694
534static void 695static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 696childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 698 int pid, status;
538 699
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 701 {
541 /* make sure we are called again until all childs have been reaped */ 702 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 704
544 child_reap (EV_A_ sw, pid, pid, status); 705 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 707 }
547} 708}
577 738
578/* return true if we are running with elevated privileges and should ignore env variables */ 739/* return true if we are running with elevated privileges and should ignore env variables */
579static int 740static int
580enable_secure (void) 741enable_secure (void)
581{ 742{
582#ifdef WIN32 743#ifdef _WIN32
583 return 0; 744 return 0;
584#else 745#else
585 return getuid () != geteuid () 746 return getuid () != geteuid ()
586 || getgid () != getegid (); 747 || getgid () != getegid ();
587#endif 748#endif
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 765 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 766 have_monotonic = 1;
606 } 767 }
607#endif 768#endif
608 769
609 rt_now = ev_time (); 770 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 771 mn_now = get_clock ();
611 now_floor = mn_now; 772 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 773 rtmn_diff = ev_rt_now - mn_now;
613 774
614 if (methods == EVMETHOD_AUTO) 775 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 776 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 777 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 778 else
618 methods = EVMETHOD_ANY; 779 methods = EVMETHOD_ANY;
619 780
620 method = 0; 781 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE 782#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 783 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif 784#endif
627#if EV_USE_EPOLL 785#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 786 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 789 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 790#endif
633#if EV_USE_SELECT 791#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 792 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 793#endif
794
795 ev_init (&sigev, sigcb);
796 ev_set_priority (&sigev, EV_MAXPRI);
636 } 797 }
637} 798}
638 799
639void 800void
640loop_destroy (EV_P) 801loop_destroy (EV_P)
641{ 802{
642#if EV_USE_WIN32 803 int i;
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 804
644#endif
645#if EV_USE_KQUEUE 805#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif 807#endif
648#if EV_USE_EPOLL 808#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
653#endif 813#endif
654#if EV_USE_SELECT 814#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 815 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 816#endif
657 817
818 for (i = NUMPRI; i--; )
819 array_free (pending, [i]);
820
821 /* have to use the microsoft-never-gets-it-right macro */
822 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY);
824#if EV_PERIODICS
825 array_free (periodic, EMPTY);
826#endif
827 array_free (idle, EMPTY);
828 array_free (prepare, EMPTY);
829 array_free (check, EMPTY);
830
658 method = 0; 831 method = 0;
659 /*TODO*/
660} 832}
661 833
662void 834static void
663loop_fork (EV_P) 835loop_fork (EV_P)
664{ 836{
665 /*TODO*/
666#if EV_USE_EPOLL 837#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 839#endif
669#if EV_USE_KQUEUE 840#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 842#endif
843
844 if (ev_is_active (&sigev))
845 {
846 /* default loop */
847
848 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev);
850 close (sigpipe [0]);
851 close (sigpipe [1]);
852
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A);
857 }
858
859 postfork = 0;
672} 860}
673 861
674#if EV_MULTIPLICITY 862#if EV_MULTIPLICITY
675struct ev_loop * 863struct ev_loop *
676ev_loop_new (int methods) 864ev_loop_new (int methods)
677{ 865{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
679 869
680 loop_init (EV_A_ methods); 870 loop_init (EV_A_ methods);
681 871
682 if (ev_method (EV_A)) 872 if (ev_method (EV_A))
683 return loop; 873 return loop;
687 877
688void 878void
689ev_loop_destroy (EV_P) 879ev_loop_destroy (EV_P)
690{ 880{
691 loop_destroy (EV_A); 881 loop_destroy (EV_A);
692 free (loop); 882 ev_free (loop);
693} 883}
694 884
695void 885void
696ev_loop_fork (EV_P) 886ev_loop_fork (EV_P)
697{ 887{
698 loop_fork (EV_A); 888 postfork = 1;
699} 889}
700 890
701#endif 891#endif
702 892
703#if EV_MULTIPLICITY 893#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 894struct ev_loop *
708#else 895#else
709static int default_loop;
710
711int 896int
712#endif 897#endif
713ev_default_loop (int methods) 898ev_default_loop (int methods)
714{ 899{
715 if (sigpipe [0] == sigpipe [1]) 900 if (sigpipe [0] == sigpipe [1])
726 911
727 loop_init (EV_A_ methods); 912 loop_init (EV_A_ methods);
728 913
729 if (ev_method (EV_A)) 914 if (ev_method (EV_A))
730 { 915 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 916 siginit (EV_A);
734 917
735#ifndef WIN32 918#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 919 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 920 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 921 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 922 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 923#endif
751{ 934{
752#if EV_MULTIPLICITY 935#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 936 struct ev_loop *loop = default_loop;
754#endif 937#endif
755 938
939#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 940 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 941 ev_signal_stop (EV_A_ &childev);
942#endif
758 943
759 ev_ref (EV_A); /* signal watcher */ 944 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 945 ev_io_stop (EV_A_ &sigev);
761 946
762 close (sigpipe [0]); sigpipe [0] = 0; 947 close (sigpipe [0]); sigpipe [0] = 0;
770{ 955{
771#if EV_MULTIPLICITY 956#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 957 struct ev_loop *loop = default_loop;
773#endif 958#endif
774 959
775 loop_fork (EV_A); 960 if (method)
776 961 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 962}
785 963
786/*****************************************************************************/ 964/*****************************************************************************/
965
966static int
967any_pending (EV_P)
968{
969 int pri;
970
971 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri])
973 return 1;
974
975 return 0;
976}
787 977
788static void 978static void
789call_pending (EV_P) 979call_pending (EV_P)
790{ 980{
791 int pri; 981 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 986 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 987
798 if (p->w) 988 if (p->w)
799 { 989 {
800 p->w->pending = 0; 990 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 991 EV_CB_INVOKE (p->w, p->events);
802 } 992 }
803 } 993 }
804} 994}
805 995
806static void 996static void
807timers_reify (EV_P) 997timers_reify (EV_P)
808{ 998{
809 while (timercnt && timers [0]->at <= mn_now) 999 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 1000 {
811 struct ev_timer *w = timers [0]; 1001 struct ev_timer *w = timers [0];
812 1002
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 1004
815 /* first reschedule or stop timer */ 1005 /* first reschedule or stop timer */
816 if (w->repeat) 1006 if (w->repeat)
817 { 1007 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009
819 w->at = mn_now + w->repeat; 1010 ((WT)w)->at += w->repeat;
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
820 downheap ((WT *)timers, timercnt, 0); 1014 downheap ((WT *)timers, timercnt, 0);
821 } 1015 }
822 else 1016 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1018
825 event (EV_A_ (W)w, EV_TIMEOUT); 1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1020 }
827} 1021}
828 1022
1023#if EV_PERIODICS
829static void 1024static void
830periodics_reify (EV_P) 1025periodics_reify (EV_P)
831{ 1026{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1028 {
834 struct ev_periodic *w = periodics [0]; 1029 struct ev_periodic *w = periodics [0];
835 1030
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1031 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1032
838 /* first reschedule or stop timer */ 1033 /* first reschedule or stop timer */
839 if (w->interval) 1034 if (w->reschedule_cb)
840 { 1035 {
1036 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1037
1038 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else if (w->interval)
1042 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1043 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1044 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1045 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1046 }
845 else 1047 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1049
848 event (EV_A_ (W)w, EV_PERIODIC); 1050 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1051 }
850} 1052}
851 1053
852static void 1054static void
853periodics_reschedule (EV_P) 1055periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1059 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1060 for (i = 0; i < periodiccnt; ++i)
859 { 1061 {
860 struct ev_periodic *w = periodics [i]; 1062 struct ev_periodic *w = periodics [i];
861 1063
1064 if (w->reschedule_cb)
1065 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1066 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1067 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1068 }
1069
1070 /* now rebuild the heap */
1071 for (i = periodiccnt >> 1; i--; )
1072 downheap ((WT *)periodics, periodiccnt, i);
875} 1073}
1074#endif
876 1075
877inline int 1076inline int
878time_update_monotonic (EV_P) 1077time_update_monotonic (EV_P)
879{ 1078{
880 mn_now = get_clock (); 1079 mn_now = get_clock ();
881 1080
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1081 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1082 {
884 rt_now = rtmn_diff + mn_now; 1083 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1084 return 0;
886 } 1085 }
887 else 1086 else
888 { 1087 {
889 now_floor = mn_now; 1088 now_floor = mn_now;
890 rt_now = ev_time (); 1089 ev_rt_now = ev_time ();
891 return 1; 1090 return 1;
892 } 1091 }
893} 1092}
894 1093
895static void 1094static void
904 { 1103 {
905 ev_tstamp odiff = rtmn_diff; 1104 ev_tstamp odiff = rtmn_diff;
906 1105
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1106 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1107 {
909 rtmn_diff = rt_now - mn_now; 1108 rtmn_diff = ev_rt_now - mn_now;
910 1109
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1110 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1111 return; /* all is well */
913 1112
914 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1114 mn_now = get_clock ();
916 now_floor = mn_now; 1115 now_floor = mn_now;
917 } 1116 }
918 1117
1118# if EV_PERIODICS
919 periodics_reschedule (EV_A); 1119 periodics_reschedule (EV_A);
1120# endif
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 1121 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1122 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 } 1123 }
923 } 1124 }
924 else 1125 else
925#endif 1126#endif
926 { 1127 {
927 rt_now = ev_time (); 1128 ev_rt_now = ev_time ();
928 1129
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1130 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1131 {
1132#if EV_PERIODICS
931 periodics_reschedule (EV_A); 1133 periodics_reschedule (EV_A);
1134#endif
932 1135
933 /* adjust timers. this is easy, as the offset is the same for all */ 1136 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1137 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1138 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1139 }
937 1140
938 mn_now = rt_now; 1141 mn_now = ev_rt_now;
939 } 1142 }
940} 1143}
941 1144
942void 1145void
943ev_ref (EV_P) 1146ev_ref (EV_P)
966 { 1169 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1170 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1171 call_pending (EV_A);
969 } 1172 }
970 1173
1174 /* we might have forked, so reify kernel state if necessary */
1175 if (expect_false (postfork))
1176 loop_fork (EV_A);
1177
971 /* update fd-related kernel structures */ 1178 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1179 fd_reify (EV_A);
973 1180
974 /* calculate blocking time */ 1181 /* calculate blocking time */
975 1182
976 /* we only need this for !monotonic clockor timers, but as we basically 1183 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1184 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1185#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1186 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1187 time_update_monotonic (EV_A);
981 else 1188 else
982#endif 1189#endif
983 { 1190 {
984 rt_now = ev_time (); 1191 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1192 mn_now = ev_rt_now;
986 } 1193 }
987 1194
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1195 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1196 block = 0.;
990 else 1197 else
991 { 1198 {
992 block = MAX_BLOCKTIME; 1199 block = MAX_BLOCKTIME;
993 1200
994 if (timercnt) 1201 if (timercnt)
995 { 1202 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1203 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1204 if (block > to) block = to;
998 } 1205 }
999 1206
1207#if EV_PERIODICS
1000 if (periodiccnt) 1208 if (periodiccnt)
1001 { 1209 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1210 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1211 if (block > to) block = to;
1004 } 1212 }
1213#endif
1005 1214
1006 if (block < 0.) block = 0.; 1215 if (block < 0.) block = 0.;
1007 } 1216 }
1008 1217
1009 method_poll (EV_A_ block); 1218 method_poll (EV_A_ block);
1010 1219
1011 /* update rt_now, do magic */ 1220 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1221 time_update (EV_A);
1013 1222
1014 /* queue pending timers and reschedule them */ 1223 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1224 timers_reify (EV_A); /* relative timers called last */
1225#if EV_PERIODICS
1016 periodics_reify (EV_A); /* absolute timers called first */ 1226 periodics_reify (EV_A); /* absolute timers called first */
1227#endif
1017 1228
1018 /* queue idle watchers unless io or timers are pending */ 1229 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1230 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1231 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1232
1022 /* queue check watchers, to be executed first */ 1233 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1234 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1235 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1310 return;
1100 1311
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1312 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1313
1103 ev_start (EV_A_ (W)w, 1); 1314 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1315 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1316 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1317
1107 fd_change (EV_A_ fd); 1318 fd_change (EV_A_ fd);
1108} 1319}
1109 1320
1112{ 1323{
1113 ev_clear_pending (EV_A_ (W)w); 1324 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1325 if (!ev_is_active (w))
1115 return; 1326 return;
1116 1327
1328 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1329
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1330 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1331 ev_stop (EV_A_ (W)w);
1119 1332
1120 fd_change (EV_A_ w->fd); 1333 fd_change (EV_A_ w->fd);
1121} 1334}
1124ev_timer_start (EV_P_ struct ev_timer *w) 1337ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1338{
1126 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1127 return; 1340 return;
1128 1341
1129 w->at += mn_now; 1342 ((WT)w)->at += mn_now;
1130 1343
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1344 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1345
1133 ev_start (EV_A_ (W)w, ++timercnt); 1346 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1347 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1348 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1349 upheap ((WT *)timers, timercnt - 1);
1137 1350
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1351 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1352}
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1361 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149 1362
1150 if (((W)w)->active < timercnt--) 1363 if (((W)w)->active < timercnt--)
1151 { 1364 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1365 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1366 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1367 }
1155 1368
1156 w->at = w->repeat; 1369 ((WT)w)->at -= mn_now;
1157 1370
1158 ev_stop (EV_A_ (W)w); 1371 ev_stop (EV_A_ (W)w);
1159} 1372}
1160 1373
1161void 1374void
1163{ 1376{
1164 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1165 { 1378 {
1166 if (w->repeat) 1379 if (w->repeat)
1167 { 1380 {
1168 w->at = mn_now + w->repeat; 1381 ((WT)w)->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1382 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1170 } 1383 }
1171 else 1384 else
1172 ev_timer_stop (EV_A_ w); 1385 ev_timer_stop (EV_A_ w);
1173 } 1386 }
1174 else if (w->repeat) 1387 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1388 ev_timer_start (EV_A_ w);
1176} 1389}
1177 1390
1391#if EV_PERIODICS
1178void 1392void
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1393ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1394{
1181 if (ev_is_active (w)) 1395 if (ev_is_active (w))
1182 return; 1396 return;
1183 1397
1398 if (w->reschedule_cb)
1399 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1400 else if (w->interval)
1401 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1402 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1403 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1404 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1405 }
1189 1406
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1407 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1408 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1409 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1410 upheap ((WT *)periodics, periodiccnt - 1);
1194 1411
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1412 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1413}
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1422 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206 1423
1207 if (((W)w)->active < periodiccnt--) 1424 if (((W)w)->active < periodiccnt--)
1208 { 1425 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1426 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1427 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1211 } 1428 }
1212 1429
1213 ev_stop (EV_A_ (W)w); 1430 ev_stop (EV_A_ (W)w);
1214} 1431}
1215 1432
1216void 1433void
1434ev_periodic_again (EV_P_ struct ev_periodic *w)
1435{
1436 /* TODO: use adjustheap and recalculation */
1437 ev_periodic_stop (EV_A_ w);
1438 ev_periodic_start (EV_A_ w);
1439}
1440#endif
1441
1442void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1443ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1444{
1219 if (ev_is_active (w)) 1445 if (ev_is_active (w))
1220 return; 1446 return;
1221 1447
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1448 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1449 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1450 idles [idlecnt - 1] = w;
1225} 1451}
1226 1452
1227void 1453void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1454ev_idle_stop (EV_P_ struct ev_idle *w)
1229{ 1455{
1230 ev_clear_pending (EV_A_ (W)w); 1456 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1457 if (!ev_is_active (w))
1232 return; 1458 return;
1233 1459
1234 idles [((W)w)->active - 1] = idles [--idlecnt]; 1460 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 1461 ev_stop (EV_A_ (W)w);
1236} 1462}
1240{ 1466{
1241 if (ev_is_active (w)) 1467 if (ev_is_active (w))
1242 return; 1468 return;
1243 1469
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1470 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1471 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1472 prepares [preparecnt - 1] = w;
1247} 1473}
1248 1474
1249void 1475void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1476ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{ 1477{
1252 ev_clear_pending (EV_A_ (W)w); 1478 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1479 if (!ev_is_active (w))
1254 return; 1480 return;
1255 1481
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1482 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w); 1483 ev_stop (EV_A_ (W)w);
1258} 1484}
1262{ 1488{
1263 if (ev_is_active (w)) 1489 if (ev_is_active (w))
1264 return; 1490 return;
1265 1491
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1492 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1493 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1494 checks [checkcnt - 1] = w;
1269} 1495}
1270 1496
1271void 1497void
1272ev_check_stop (EV_P_ struct ev_check *w) 1498ev_check_stop (EV_P_ struct ev_check *w)
1273{ 1499{
1274 ev_clear_pending (EV_A_ (W)w); 1500 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w)) 1501 if (!ev_is_active (w))
1276 return; 1502 return;
1277 1503
1278 checks [((W)w)->active - 1] = checks [--checkcnt]; 1504 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w); 1505 ev_stop (EV_A_ (W)w);
1280} 1506}
1293 return; 1519 return;
1294 1520
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1521 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1522
1297 ev_start (EV_A_ (W)w, 1); 1523 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1524 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1525 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1526
1301 if (!w->next) 1527 if (!((WL)w)->next)
1302 { 1528 {
1529#if _WIN32
1530 signal (w->signum, sighandler);
1531#else
1303 struct sigaction sa; 1532 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1533 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1534 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1535 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1536 sigaction (w->signum, &sa, 0);
1537#endif
1308 } 1538 }
1309} 1539}
1310 1540
1311void 1541void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1542ev_signal_stop (EV_P_ struct ev_signal *w)
1337 1567
1338void 1568void
1339ev_child_stop (EV_P_ struct ev_child *w) 1569ev_child_stop (EV_P_ struct ev_child *w)
1340{ 1570{
1341 ev_clear_pending (EV_A_ (W)w); 1571 ev_clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 1572 if (!ev_is_active (w))
1343 return; 1573 return;
1344 1574
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1575 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 1576 ev_stop (EV_A_ (W)w);
1347} 1577}
1362 void (*cb)(int revents, void *arg) = once->cb; 1592 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1593 void *arg = once->arg;
1364 1594
1365 ev_io_stop (EV_A_ &once->io); 1595 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1596 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1597 ev_free (once);
1368 1598
1369 cb (revents, arg); 1599 cb (revents, arg);
1370} 1600}
1371 1601
1372static void 1602static void
1382} 1612}
1383 1613
1384void 1614void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1615ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1616{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1617 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1618
1389 if (!once) 1619 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1620 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1621 else
1392 { 1622 {
1393 once->cb = cb; 1623 once->cb = cb;
1394 once->arg = arg; 1624 once->arg = arg;
1395 1625
1396 ev_watcher_init (&once->io, once_cb_io); 1626 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1627 if (fd >= 0)
1398 { 1628 {
1399 ev_io_set (&once->io, fd, events); 1629 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1630 ev_io_start (EV_A_ &once->io);
1401 } 1631 }
1402 1632
1403 ev_watcher_init (&once->to, once_cb_to); 1633 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1634 if (timeout >= 0.)
1405 { 1635 {
1406 ev_timer_set (&once->to, timeout, 0.); 1636 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1637 ev_timer_start (EV_A_ &once->to);
1408 } 1638 }
1409 } 1639 }
1410} 1640}
1411 1641
1642#ifdef __cplusplus
1643}
1644#endif
1645

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines