ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
84#else
85# define WIN32_LEAN_AND_MEAN
86# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1
71#endif 89# endif
72#include <sys/time.h> 90#endif
73#include <time.h>
74 91
75/**/ 92/**/
76 93
77#ifndef EV_USE_MONOTONIC 94#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 95# define EV_USE_MONOTONIC 1
79#endif 96#endif
80 97
81#ifndef EV_USE_SELECT 98#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 99# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
83#endif 101#endif
84 102
85#ifndef EV_USE_POLL 103#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 104# ifdef _WIN32
105# define EV_USE_POLL 0
106# else
107# define EV_USE_POLL 1
108# endif
87#endif 109#endif
88 110
89#ifndef EV_USE_EPOLL 111#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 112# define EV_USE_EPOLL 0
91#endif 113#endif
92 114
93#ifndef EV_USE_KQUEUE 115#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 116# define EV_USE_KQUEUE 0
95#endif 117#endif
96 118
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME 119#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1 120# define EV_USE_REALTIME 1
107#endif 121#endif
108 122
109/**/ 123/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
110 130
111#ifndef CLOCK_MONOTONIC 131#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 132# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 133# define EV_USE_MONOTONIC 0
114#endif 134#endif
115 135
116#ifndef CLOCK_REALTIME 136#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 137# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 138# define EV_USE_REALTIME 0
139#endif
140
141#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h>
119#endif 143#endif
120 144
121/**/ 145/**/
122 146
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 151
152#ifdef EV_H
153# include EV_H
154#else
128#include "ev.h" 155# include "ev.h"
156#endif
129 157
130#if __GNUC__ >= 3 158#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 159# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 160# define inline inline
133#else 161#else
139#define expect_true(expr) expect ((expr) != 0, 1) 167#define expect_true(expr) expect ((expr) != 0, 1)
140 168
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 170#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143 171
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */
174
144typedef struct ev_watcher *W; 175typedef struct ev_watcher *W;
145typedef struct ev_watcher_list *WL; 176typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 177typedef struct ev_watcher_time *WT;
147 178
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 180
181#ifdef _WIN32
182# include "ev_win32.c"
183#endif
184
150/*****************************************************************************/ 185/*****************************************************************************/
151 186
187static void (*syserr_cb)(const char *msg);
188
189void ev_set_syserr_cb (void (*cb)(const char *msg))
190{
191 syserr_cb = cb;
192}
193
194static void
195syserr (const char *msg)
196{
197 if (!msg)
198 msg = "(libev) system error";
199
200 if (syserr_cb)
201 syserr_cb (msg);
202 else
203 {
204 perror (msg);
205 abort ();
206 }
207}
208
209static void *(*alloc)(void *ptr, long size);
210
211void ev_set_allocator (void *(*cb)(void *ptr, long size))
212{
213 alloc = cb;
214}
215
216static void *
217ev_realloc (void *ptr, long size)
218{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220
221 if (!ptr && size)
222 {
223 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
224 abort ();
225 }
226
227 return ptr;
228}
229
230#define ev_malloc(size) ev_realloc (0, (size))
231#define ev_free(ptr) ev_realloc ((ptr), 0)
232
233/*****************************************************************************/
234
152typedef struct 235typedef struct
153{ 236{
154 struct ev_watcher_list *head; 237 WL head;
155 unsigned char events; 238 unsigned char events;
156 unsigned char reify; 239 unsigned char reify;
240#if EV_SELECT_IS_WINSOCKET
241 SOCKET handle;
242#endif
157} ANFD; 243} ANFD;
158 244
159typedef struct 245typedef struct
160{ 246{
161 W w; 247 W w;
162 int events; 248 int events;
163} ANPENDING; 249} ANPENDING;
164 250
165#if EV_MULTIPLICITY 251#if EV_MULTIPLICITY
166 252
167struct ev_loop 253 struct ev_loop
168{ 254 {
255 ev_tstamp ev_rt_now;
256 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 257 #define VAR(name,decl) decl;
170# include "ev_vars.h" 258 #include "ev_vars.h"
171};
172# undef VAR 259 #undef VAR
260 };
173# include "ev_wrap.h" 261 #include "ev_wrap.h"
262
263 static struct ev_loop default_loop_struct;
264 struct ev_loop *ev_default_loop_ptr;
174 265
175#else 266#else
176 267
268 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 269 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 270 #include "ev_vars.h"
179# undef VAR 271 #undef VAR
272
273 static int ev_default_loop_ptr;
180 274
181#endif 275#endif
182 276
183/*****************************************************************************/ 277/*****************************************************************************/
184 278
185inline ev_tstamp 279ev_tstamp
186ev_time (void) 280ev_time (void)
187{ 281{
188#if EV_USE_REALTIME 282#if EV_USE_REALTIME
189 struct timespec ts; 283 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 284 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 303#endif
210 304
211 return ev_time (); 305 return ev_time ();
212} 306}
213 307
308#if EV_MULTIPLICITY
214ev_tstamp 309ev_tstamp
215ev_now (EV_P) 310ev_now (EV_P)
216{ 311{
217 return rt_now; 312 return ev_rt_now;
218} 313}
314#endif
219 315
220#define array_roundsize(base,n) ((n) | 4 & ~3) 316#define array_roundsize(type,n) (((n) | 4) & ~3)
221 317
222#define array_needsize(base,cur,cnt,init) \ 318#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 319 if (expect_false ((cnt) > cur)) \
224 { \ 320 { \
225 int newcnt = cur; \ 321 int newcnt = cur; \
226 do \ 322 do \
227 { \ 323 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 324 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 325 } \
230 while ((cnt) > newcnt); \ 326 while ((cnt) > newcnt); \
231 \ 327 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 329 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 330 cur = newcnt; \
235 } 331 }
332
333#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 }
340
341#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 343
237/*****************************************************************************/ 344/*****************************************************************************/
238 345
239static void 346static void
240anfds_init (ANFD *base, int count) 347anfds_init (ANFD *base, int count)
247 354
248 ++base; 355 ++base;
249 } 356 }
250} 357}
251 358
252static void 359void
253event (EV_P_ W w, int events) 360ev_feed_event (EV_P_ void *w, int revents)
254{ 361{
362 W w_ = (W)w;
363
255 if (w->pending) 364 if (w_->pending)
256 { 365 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 367 return;
259 } 368 }
260 369
261 w->pending = ++pendingcnt [ABSPRI (w)]; 370 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 374}
266 375
267static void 376static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 377queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 378{
270 int i; 379 int i;
271 380
272 for (i = 0; i < eventcnt; ++i) 381 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 382 ev_feed_event (EV_A_ events [i], type);
274} 383}
275 384
276static void 385inline void
277fd_event (EV_P_ int fd, int events) 386fd_event (EV_P_ int fd, int revents)
278{ 387{
279 ANFD *anfd = anfds + fd; 388 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 389 struct ev_io *w;
281 390
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 392 {
284 int ev = w->events & events; 393 int ev = w->events & revents;
285 394
286 if (ev) 395 if (ev)
287 event (EV_A_ (W)w, ev); 396 ev_feed_event (EV_A_ (W)w, ev);
288 } 397 }
398}
399
400void
401ev_feed_fd_event (EV_P_ int fd, int revents)
402{
403 fd_event (EV_A_ fd, revents);
289} 404}
290 405
291/*****************************************************************************/ 406/*****************************************************************************/
292 407
293static void 408static void
304 int events = 0; 419 int events = 0;
305 420
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 422 events |= w->events;
308 423
424#if EV_SELECT_IS_WINSOCKET
425 if (events)
426 {
427 unsigned long argp;
428 anfd->handle = _get_osfhandle (fd);
429 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
430 }
431#endif
432
309 anfd->reify = 0; 433 anfd->reify = 0;
310 434
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 435 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 436 anfd->events = events;
315 }
316 } 437 }
317 438
318 fdchangecnt = 0; 439 fdchangecnt = 0;
319} 440}
320 441
321static void 442static void
322fd_change (EV_P_ int fd) 443fd_change (EV_P_ int fd)
323{ 444{
324 if (anfds [fd].reify || fdchangecnt < 0) 445 if (anfds [fd].reify)
325 return; 446 return;
326 447
327 anfds [fd].reify = 1; 448 anfds [fd].reify = 1;
328 449
329 ++fdchangecnt; 450 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 452 fdchanges [fdchangecnt - 1] = fd;
332} 453}
333 454
334static void 455static void
335fd_kill (EV_P_ int fd) 456fd_kill (EV_P_ int fd)
337 struct ev_io *w; 458 struct ev_io *w;
338 459
339 while ((w = (struct ev_io *)anfds [fd].head)) 460 while ((w = (struct ev_io *)anfds [fd].head))
340 { 461 {
341 ev_io_stop (EV_A_ w); 462 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 464 }
465}
466
467static int
468fd_valid (int fd)
469{
470#ifdef _WIN32
471 return _get_osfhandle (fd) != -1;
472#else
473 return fcntl (fd, F_GETFD) != -1;
474#endif
344} 475}
345 476
346/* called on EBADF to verify fds */ 477/* called on EBADF to verify fds */
347static void 478static void
348fd_ebadf (EV_P) 479fd_ebadf (EV_P)
349{ 480{
350 int fd; 481 int fd;
351 482
352 for (fd = 0; fd < anfdmax; ++fd) 483 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 484 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 485 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 486 fd_kill (EV_A_ fd);
356} 487}
357 488
358/* called on ENOMEM in select/poll to kill some fds and retry */ 489/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 490static void
362 int fd; 493 int fd;
363 494
364 for (fd = anfdmax; fd--; ) 495 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 496 if (anfds [fd].events)
366 { 497 {
367 close (fd);
368 fd_kill (EV_A_ fd); 498 fd_kill (EV_A_ fd);
369 return; 499 return;
370 } 500 }
371} 501}
372 502
373/* susually called after fork if method needs to re-arm all fds from scratch */ 503/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 504static void
375fd_rearm_all (EV_P) 505fd_rearm_all (EV_P)
376{ 506{
377 int fd; 507 int fd;
378 508
426 556
427 heap [k] = w; 557 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 558 ((W)heap [k])->active = k + 1;
429} 559}
430 560
561inline void
562adjustheap (WT *heap, int N, int k)
563{
564 upheap (heap, k);
565 downheap (heap, N, k);
566}
567
431/*****************************************************************************/ 568/*****************************************************************************/
432 569
433typedef struct 570typedef struct
434{ 571{
435 struct ev_watcher_list *head; 572 WL head;
436 sig_atomic_t volatile gotsig; 573 sig_atomic_t volatile gotsig;
437} ANSIG; 574} ANSIG;
438 575
439static ANSIG *signals; 576static ANSIG *signals;
440static int signalmax; 577static int signalmax;
456} 593}
457 594
458static void 595static void
459sighandler (int signum) 596sighandler (int signum)
460{ 597{
598#if _WIN32
599 signal (signum, sighandler);
600#endif
601
461 signals [signum - 1].gotsig = 1; 602 signals [signum - 1].gotsig = 1;
462 603
463 if (!gotsig) 604 if (!gotsig)
464 { 605 {
465 int old_errno = errno; 606 int old_errno = errno;
467 write (sigpipe [1], &signum, 1); 608 write (sigpipe [1], &signum, 1);
468 errno = old_errno; 609 errno = old_errno;
469 } 610 }
470} 611}
471 612
613void
614ev_feed_signal_event (EV_P_ int signum)
615{
616 WL w;
617
618#if EV_MULTIPLICITY
619 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
620#endif
621
622 --signum;
623
624 if (signum < 0 || signum >= signalmax)
625 return;
626
627 signals [signum].gotsig = 0;
628
629 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631}
632
472static void 633static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 634sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 635{
475 struct ev_watcher_list *w;
476 int signum; 636 int signum;
477 637
478 read (sigpipe [0], &revents, 1); 638 read (sigpipe [0], &revents, 1);
479 gotsig = 0; 639 gotsig = 0;
480 640
481 for (signum = signalmax; signum--; ) 641 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 642 if (signals [signum].gotsig)
483 { 643 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0; 644}
485 645
486 for (w = signals [signum].head; w; w = w->next) 646inline void
487 event (EV_A_ (W)w, EV_SIGNAL); 647fd_intern (int fd)
488 } 648{
649#ifdef _WIN32
650 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
652#else
653 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif
489} 656}
490 657
491static void 658static void
492siginit (EV_P) 659siginit (EV_P)
493{ 660{
494#ifndef WIN32 661 fd_intern (sigpipe [0]);
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 662 fd_intern (sigpipe [1]);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502 663
503 ev_io_set (&sigev, sigpipe [0], EV_READ); 664 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev); 665 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 666 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 667}
507 668
508/*****************************************************************************/ 669/*****************************************************************************/
509 670
510#ifndef WIN32
511
512static struct ev_child *childs [PID_HASHSIZE]; 671static struct ev_child *childs [PID_HASHSIZE];
672
673#ifndef _WIN32
674
513static struct ev_signal childev; 675static struct ev_signal childev;
514 676
515#ifndef WCONTINUED 677#ifndef WCONTINUED
516# define WCONTINUED 0 678# define WCONTINUED 0
517#endif 679#endif
522 struct ev_child *w; 684 struct ev_child *w;
523 685
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 687 if (w->pid == pid || !w->pid)
526 { 688 {
527 w->priority = sw->priority; /* need to do it *now* */ 689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 690 w->rpid = pid;
529 w->rstatus = status; 691 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 693 }
532} 694}
533 695
534static void 696static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 697childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 699 int pid, status;
538 700
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 702 {
541 /* make sure we are called again until all childs have been reaped */ 703 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 705
544 child_reap (EV_A_ sw, pid, pid, status); 706 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 708 }
547} 709}
577 739
578/* return true if we are running with elevated privileges and should ignore env variables */ 740/* return true if we are running with elevated privileges and should ignore env variables */
579static int 741static int
580enable_secure (void) 742enable_secure (void)
581{ 743{
582#ifdef WIN32 744#ifdef _WIN32
583 return 0; 745 return 0;
584#else 746#else
585 return getuid () != geteuid () 747 return getuid () != geteuid ()
586 || getgid () != getegid (); 748 || getgid () != getegid ();
587#endif 749#endif
588} 750}
589 751
590int 752unsigned int
591ev_method (EV_P) 753ev_method (EV_P)
592{ 754{
593 return method; 755 return method;
594} 756}
595 757
596static void 758static void
597loop_init (EV_P_ int methods) 759loop_init (EV_P_ unsigned int flags)
598{ 760{
599 if (!method) 761 if (!method)
600 { 762 {
601#if EV_USE_MONOTONIC 763#if EV_USE_MONOTONIC
602 { 764 {
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 766 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 767 have_monotonic = 1;
606 } 768 }
607#endif 769#endif
608 770
609 rt_now = ev_time (); 771 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 772 mn_now = get_clock ();
611 now_floor = mn_now; 773 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 774 rtmn_diff = ev_rt_now - mn_now;
613 775
614 if (methods == EVMETHOD_AUTO) 776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS"))
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 777 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else 778
618 methods = EVMETHOD_ANY; 779 if (!(flags & 0x0000ffff))
780 flags |= 0x0000ffff;
619 781
620 method = 0; 782 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags);
626#endif 785#endif
627#if EV_USE_EPOLL 786#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags);
629#endif 788#endif
630#if EV_USE_POLL 789#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags);
632#endif 791#endif
633#if EV_USE_SELECT 792#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags);
635#endif 794#endif
795
796 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI);
636 } 798 }
637} 799}
638 800
639void 801void
640loop_destroy (EV_P) 802loop_destroy (EV_P)
641{ 803{
642#if EV_USE_WIN32 804 int i;
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 805
644#endif
645#if EV_USE_KQUEUE 806#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif 808#endif
648#if EV_USE_EPOLL 809#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
653#endif 814#endif
654#if EV_USE_SELECT 815#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 816 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 817#endif
657 818
819 for (i = NUMPRI; i--; )
820 array_free (pending, [i]);
821
822 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0);
824 array_free (timer, EMPTY0);
825#if EV_PERIODICS
826 array_free (periodic, EMPTY0);
827#endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0);
830 array_free (check, EMPTY0);
831
658 method = 0; 832 method = 0;
659 /*TODO*/
660} 833}
661 834
662void 835static void
663loop_fork (EV_P) 836loop_fork (EV_P)
664{ 837{
665 /*TODO*/
666#if EV_USE_EPOLL 838#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 840#endif
669#if EV_USE_KQUEUE 841#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 843#endif
844
845 if (ev_is_active (&sigev))
846 {
847 /* default loop */
848
849 ev_ref (EV_A);
850 ev_io_stop (EV_A_ &sigev);
851 close (sigpipe [0]);
852 close (sigpipe [1]);
853
854 while (pipe (sigpipe))
855 syserr ("(libev) error creating pipe");
856
857 siginit (EV_A);
858 }
859
860 postfork = 0;
672} 861}
673 862
674#if EV_MULTIPLICITY 863#if EV_MULTIPLICITY
675struct ev_loop * 864struct ev_loop *
676ev_loop_new (int methods) 865ev_loop_new (unsigned int flags)
677{ 866{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 867 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 868
869 memset (loop, 0, sizeof (struct ev_loop));
870
680 loop_init (EV_A_ methods); 871 loop_init (EV_A_ flags);
681 872
682 if (ev_method (EV_A)) 873 if (ev_method (EV_A))
683 return loop; 874 return loop;
684 875
685 return 0; 876 return 0;
687 878
688void 879void
689ev_loop_destroy (EV_P) 880ev_loop_destroy (EV_P)
690{ 881{
691 loop_destroy (EV_A); 882 loop_destroy (EV_A);
692 free (loop); 883 ev_free (loop);
693} 884}
694 885
695void 886void
696ev_loop_fork (EV_P) 887ev_loop_fork (EV_P)
697{ 888{
698 loop_fork (EV_A); 889 postfork = 1;
699} 890}
700 891
701#endif 892#endif
702 893
703#if EV_MULTIPLICITY 894#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 895struct ev_loop *
896ev_default_loop_ (unsigned int flags)
708#else 897#else
709static int default_loop;
710
711int 898int
899ev_default_loop (unsigned int flags)
712#endif 900#endif
713ev_default_loop (int methods)
714{ 901{
715 if (sigpipe [0] == sigpipe [1]) 902 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe)) 903 if (pipe (sigpipe))
717 return 0; 904 return 0;
718 905
719 if (!default_loop) 906 if (!ev_default_loop_ptr)
720 { 907 {
721#if EV_MULTIPLICITY 908#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 909 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 910#else
724 default_loop = 1; 911 ev_default_loop_ptr = 1;
725#endif 912#endif
726 913
727 loop_init (EV_A_ methods); 914 loop_init (EV_A_ flags);
728 915
729 if (ev_method (EV_A)) 916 if (ev_method (EV_A))
730 { 917 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 918 siginit (EV_A);
734 919
735#ifndef WIN32 920#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 921 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 922 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 923 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 924 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 925#endif
741 } 926 }
742 else 927 else
743 default_loop = 0; 928 ev_default_loop_ptr = 0;
744 } 929 }
745 930
746 return default_loop; 931 return ev_default_loop_ptr;
747} 932}
748 933
749void 934void
750ev_default_destroy (void) 935ev_default_destroy (void)
751{ 936{
752#if EV_MULTIPLICITY 937#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 938 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 939#endif
755 940
941#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 942 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 943 ev_signal_stop (EV_A_ &childev);
944#endif
758 945
759 ev_ref (EV_A); /* signal watcher */ 946 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 947 ev_io_stop (EV_A_ &sigev);
761 948
762 close (sigpipe [0]); sigpipe [0] = 0; 949 close (sigpipe [0]); sigpipe [0] = 0;
767 954
768void 955void
769ev_default_fork (void) 956ev_default_fork (void)
770{ 957{
771#if EV_MULTIPLICITY 958#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 959 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 960#endif
774 961
775 loop_fork (EV_A); 962 if (method)
776 963 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 964}
785 965
786/*****************************************************************************/ 966/*****************************************************************************/
967
968static int
969any_pending (EV_P)
970{
971 int pri;
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978}
787 979
788static void 980static void
789call_pending (EV_P) 981call_pending (EV_P)
790{ 982{
791 int pri; 983 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 988 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 989
798 if (p->w) 990 if (p->w)
799 { 991 {
800 p->w->pending = 0; 992 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 993 EV_CB_INVOKE (p->w, p->events);
802 } 994 }
803 } 995 }
804} 996}
805 997
806static void 998static void
807timers_reify (EV_P) 999timers_reify (EV_P)
808{ 1000{
809 while (timercnt && timers [0]->at <= mn_now) 1001 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 1002 {
811 struct ev_timer *w = timers [0]; 1003 struct ev_timer *w = timers [0];
812 1004
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1005 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 1006
815 /* first reschedule or stop timer */ 1007 /* first reschedule or stop timer */
816 if (w->repeat) 1008 if (w->repeat)
817 { 1009 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1011
819 w->at = mn_now + w->repeat; 1012 ((WT)w)->at += w->repeat;
1013 if (((WT)w)->at < mn_now)
1014 ((WT)w)->at = mn_now;
1015
820 downheap ((WT *)timers, timercnt, 0); 1016 downheap ((WT *)timers, timercnt, 0);
821 } 1017 }
822 else 1018 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1020
825 event (EV_A_ (W)w, EV_TIMEOUT); 1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1022 }
827} 1023}
828 1024
1025#if EV_PERIODICS
829static void 1026static void
830periodics_reify (EV_P) 1027periodics_reify (EV_P)
831{ 1028{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1030 {
834 struct ev_periodic *w = periodics [0]; 1031 struct ev_periodic *w = periodics [0];
835 1032
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1033 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1034
838 /* first reschedule or stop timer */ 1035 /* first reschedule or stop timer */
839 if (w->interval) 1036 if (w->reschedule_cb)
840 { 1037 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0);
1041 }
1042 else if (w->interval)
1043 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1046 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1047 }
845 else 1048 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1050
848 event (EV_A_ (W)w, EV_PERIODIC); 1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1052 }
850} 1053}
851 1054
852static void 1055static void
853periodics_reschedule (EV_P) 1056periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1060 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1061 for (i = 0; i < periodiccnt; ++i)
859 { 1062 {
860 struct ev_periodic *w = periodics [i]; 1063 struct ev_periodic *w = periodics [i];
861 1064
1065 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1067 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1069 }
1070
1071 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i);
875} 1074}
1075#endif
876 1076
877inline int 1077inline int
878time_update_monotonic (EV_P) 1078time_update_monotonic (EV_P)
879{ 1079{
880 mn_now = get_clock (); 1080 mn_now = get_clock ();
881 1081
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1083 {
884 rt_now = rtmn_diff + mn_now; 1084 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1085 return 0;
886 } 1086 }
887 else 1087 else
888 { 1088 {
889 now_floor = mn_now; 1089 now_floor = mn_now;
890 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
891 return 1; 1091 return 1;
892 } 1092 }
893} 1093}
894 1094
895static void 1095static void
904 { 1104 {
905 ev_tstamp odiff = rtmn_diff; 1105 ev_tstamp odiff = rtmn_diff;
906 1106
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1108 {
909 rtmn_diff = rt_now - mn_now; 1109 rtmn_diff = ev_rt_now - mn_now;
910 1110
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1112 return; /* all is well */
913 1113
914 rt_now = ev_time (); 1114 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1115 mn_now = get_clock ();
916 now_floor = mn_now; 1116 now_floor = mn_now;
917 } 1117 }
918 1118
1119# if EV_PERIODICS
919 periodics_reschedule (EV_A); 1120 periodics_reschedule (EV_A);
1121# endif
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 1122 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 } 1124 }
923 } 1125 }
924 else 1126 else
925#endif 1127#endif
926 { 1128 {
927 rt_now = ev_time (); 1129 ev_rt_now = ev_time ();
928 1130
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1132 {
1133#if EV_PERIODICS
931 periodics_reschedule (EV_A); 1134 periodics_reschedule (EV_A);
1135#endif
932 1136
933 /* adjust timers. this is easy, as the offset is the same for all */ 1137 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1138 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1139 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1140 }
937 1141
938 mn_now = rt_now; 1142 mn_now = ev_rt_now;
939 } 1143 }
940} 1144}
941 1145
942void 1146void
943ev_ref (EV_P) 1147ev_ref (EV_P)
957ev_loop (EV_P_ int flags) 1161ev_loop (EV_P_ int flags)
958{ 1162{
959 double block; 1163 double block;
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
961 1165
962 do 1166 while (activecnt)
963 { 1167 {
964 /* queue check watchers (and execute them) */ 1168 /* queue check watchers (and execute them) */
965 if (expect_false (preparecnt)) 1169 if (expect_false (preparecnt))
966 { 1170 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1172 call_pending (EV_A);
969 } 1173 }
970 1174
1175 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork))
1177 loop_fork (EV_A);
1178
971 /* update fd-related kernel structures */ 1179 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1180 fd_reify (EV_A);
973 1181
974 /* calculate blocking time */ 1182 /* calculate blocking time */
975 1183
976 /* we only need this for !monotonic clockor timers, but as we basically 1184 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1185 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1186#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1187 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1188 time_update_monotonic (EV_A);
981 else 1189 else
982#endif 1190#endif
983 { 1191 {
984 rt_now = ev_time (); 1192 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1193 mn_now = ev_rt_now;
986 } 1194 }
987 1195
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1197 block = 0.;
990 else 1198 else
991 { 1199 {
992 block = MAX_BLOCKTIME; 1200 block = MAX_BLOCKTIME;
993 1201
994 if (timercnt) 1202 if (timercnt)
995 { 1203 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1205 if (block > to) block = to;
998 } 1206 }
999 1207
1208#if EV_PERIODICS
1000 if (periodiccnt) 1209 if (periodiccnt)
1001 { 1210 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1212 if (block > to) block = to;
1004 } 1213 }
1214#endif
1005 1215
1006 if (block < 0.) block = 0.; 1216 if (block < 0.) block = 0.;
1007 } 1217 }
1008 1218
1009 method_poll (EV_A_ block); 1219 method_poll (EV_A_ block);
1010 1220
1011 /* update rt_now, do magic */ 1221 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1222 time_update (EV_A);
1013 1223
1014 /* queue pending timers and reschedule them */ 1224 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1225 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS
1016 periodics_reify (EV_A); /* absolute timers called first */ 1227 periodics_reify (EV_A); /* absolute timers called first */
1228#endif
1017 1229
1018 /* queue idle watchers unless io or timers are pending */ 1230 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1231 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1233
1022 /* queue check watchers, to be executed first */ 1234 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1235 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1025 1237
1026 call_pending (EV_A); 1238 call_pending (EV_A);
1239
1240 if (loop_done)
1241 break;
1027 } 1242 }
1028 while (activecnt && !loop_done);
1029 1243
1030 if (loop_done != 2) 1244 if (loop_done != 2)
1031 loop_done = 0; 1245 loop_done = 0;
1032} 1246}
1033 1247
1099 return; 1313 return;
1100 1314
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1315 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1316
1103 ev_start (EV_A_ (W)w, 1); 1317 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1318 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1319 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1320
1107 fd_change (EV_A_ fd); 1321 fd_change (EV_A_ fd);
1108} 1322}
1109 1323
1112{ 1326{
1113 ev_clear_pending (EV_A_ (W)w); 1327 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1328 if (!ev_is_active (w))
1115 return; 1329 return;
1116 1330
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1334 ev_stop (EV_A_ (W)w);
1119 1335
1120 fd_change (EV_A_ w->fd); 1336 fd_change (EV_A_ w->fd);
1121} 1337}
1124ev_timer_start (EV_P_ struct ev_timer *w) 1340ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1341{
1126 if (ev_is_active (w)) 1342 if (ev_is_active (w))
1127 return; 1343 return;
1128 1344
1129 w->at += mn_now; 1345 ((WT)w)->at += mn_now;
1130 1346
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1348
1133 ev_start (EV_A_ (W)w, ++timercnt); 1349 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1135 timers [timercnt - 1] = w; 1351 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1352 upheap ((WT *)timers, timercnt - 1);
1137 1353
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1355}
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149 1365
1150 if (((W)w)->active < timercnt--) 1366 if (((W)w)->active < timercnt--)
1151 { 1367 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1368 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1370 }
1155 1371
1156 w->at = w->repeat; 1372 ((WT)w)->at -= mn_now;
1157 1373
1158 ev_stop (EV_A_ (W)w); 1374 ev_stop (EV_A_ (W)w);
1159} 1375}
1160 1376
1161void 1377void
1163{ 1379{
1164 if (ev_is_active (w)) 1380 if (ev_is_active (w))
1165 { 1381 {
1166 if (w->repeat) 1382 if (w->repeat)
1167 { 1383 {
1168 w->at = mn_now + w->repeat; 1384 ((WT)w)->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1385 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1170 } 1386 }
1171 else 1387 else
1172 ev_timer_stop (EV_A_ w); 1388 ev_timer_stop (EV_A_ w);
1173 } 1389 }
1174 else if (w->repeat) 1390 else if (w->repeat)
1391 {
1392 w->at = w->repeat;
1175 ev_timer_start (EV_A_ w); 1393 ev_timer_start (EV_A_ w);
1394 }
1176} 1395}
1177 1396
1397#if EV_PERIODICS
1178void 1398void
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1399ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1400{
1181 if (ev_is_active (w)) 1401 if (ev_is_active (w))
1182 return; 1402 return;
1183 1403
1404 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval)
1407 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1409 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1411 }
1189 1412
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1413 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1192 periodics [periodiccnt - 1] = w; 1415 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1416 upheap ((WT *)periodics, periodiccnt - 1);
1194 1417
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1419}
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206 1429
1207 if (((W)w)->active < periodiccnt--) 1430 if (((W)w)->active < periodiccnt--)
1208 { 1431 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1432 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1211 } 1434 }
1212 1435
1213 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1214} 1437}
1215 1438
1216void 1439void
1440ev_periodic_again (EV_P_ struct ev_periodic *w)
1441{
1442 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w);
1445}
1446#endif
1447
1448void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1449ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1450{
1219 if (ev_is_active (w)) 1451 if (ev_is_active (w))
1220 return; 1452 return;
1221 1453
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1454 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1224 idles [idlecnt - 1] = w; 1456 idles [idlecnt - 1] = w;
1225} 1457}
1226 1458
1227void 1459void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1460ev_idle_stop (EV_P_ struct ev_idle *w)
1229{ 1461{
1230 ev_clear_pending (EV_A_ (W)w); 1462 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1463 if (!ev_is_active (w))
1232 return; 1464 return;
1233 1465
1234 idles [((W)w)->active - 1] = idles [--idlecnt]; 1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 1467 ev_stop (EV_A_ (W)w);
1236} 1468}
1240{ 1472{
1241 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1242 return; 1474 return;
1243 1475
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1476 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1246 prepares [preparecnt - 1] = w; 1478 prepares [preparecnt - 1] = w;
1247} 1479}
1248 1480
1249void 1481void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{ 1483{
1252 ev_clear_pending (EV_A_ (W)w); 1484 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1485 if (!ev_is_active (w))
1254 return; 1486 return;
1255 1487
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w); 1489 ev_stop (EV_A_ (W)w);
1258} 1490}
1262{ 1494{
1263 if (ev_is_active (w)) 1495 if (ev_is_active (w))
1264 return; 1496 return;
1265 1497
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1498 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1268 checks [checkcnt - 1] = w; 1500 checks [checkcnt - 1] = w;
1269} 1501}
1270 1502
1271void 1503void
1272ev_check_stop (EV_P_ struct ev_check *w) 1504ev_check_stop (EV_P_ struct ev_check *w)
1273{ 1505{
1274 ev_clear_pending (EV_A_ (W)w); 1506 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w)) 1507 if (!ev_is_active (w))
1276 return; 1508 return;
1277 1509
1278 checks [((W)w)->active - 1] = checks [--checkcnt]; 1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1280} 1512}
1285 1517
1286void 1518void
1287ev_signal_start (EV_P_ struct ev_signal *w) 1519ev_signal_start (EV_P_ struct ev_signal *w)
1288{ 1520{
1289#if EV_MULTIPLICITY 1521#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1291#endif 1523#endif
1292 if (ev_is_active (w)) 1524 if (ev_is_active (w))
1293 return; 1525 return;
1294 1526
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1528
1297 ev_start (EV_A_ (W)w, 1); 1529 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1530 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1531 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1532
1301 if (!w->next) 1533 if (!((WL)w)->next)
1302 { 1534 {
1535#if _WIN32
1536 signal (w->signum, sighandler);
1537#else
1303 struct sigaction sa; 1538 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1539 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1540 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1541 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1542 sigaction (w->signum, &sa, 0);
1543#endif
1308 } 1544 }
1309} 1545}
1310 1546
1311void 1547void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1548ev_signal_stop (EV_P_ struct ev_signal *w)
1324 1560
1325void 1561void
1326ev_child_start (EV_P_ struct ev_child *w) 1562ev_child_start (EV_P_ struct ev_child *w)
1327{ 1563{
1328#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1330#endif 1566#endif
1331 if (ev_is_active (w)) 1567 if (ev_is_active (w))
1332 return; 1568 return;
1333 1569
1334 ev_start (EV_A_ (W)w, 1); 1570 ev_start (EV_A_ (W)w, 1);
1337 1573
1338void 1574void
1339ev_child_stop (EV_P_ struct ev_child *w) 1575ev_child_stop (EV_P_ struct ev_child *w)
1340{ 1576{
1341 ev_clear_pending (EV_A_ (W)w); 1577 ev_clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 1578 if (!ev_is_active (w))
1343 return; 1579 return;
1344 1580
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 1582 ev_stop (EV_A_ (W)w);
1347} 1583}
1362 void (*cb)(int revents, void *arg) = once->cb; 1598 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1599 void *arg = once->arg;
1364 1600
1365 ev_io_stop (EV_A_ &once->io); 1601 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1602 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1603 ev_free (once);
1368 1604
1369 cb (revents, arg); 1605 cb (revents, arg);
1370} 1606}
1371 1607
1372static void 1608static void
1382} 1618}
1383 1619
1384void 1620void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1622{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1624
1389 if (!once) 1625 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1627 else
1392 { 1628 {
1393 once->cb = cb; 1629 once->cb = cb;
1394 once->arg = arg; 1630 once->arg = arg;
1395 1631
1396 ev_watcher_init (&once->io, once_cb_io); 1632 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1633 if (fd >= 0)
1398 { 1634 {
1399 ev_io_set (&once->io, fd, events); 1635 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1636 ev_io_start (EV_A_ &once->io);
1401 } 1637 }
1402 1638
1403 ev_watcher_init (&once->to, once_cb_to); 1639 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1640 if (timeout >= 0.)
1405 { 1641 {
1406 ev_timer_set (&once->to, timeout, 0.); 1642 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1643 ev_timer_start (EV_A_ &once->to);
1408 } 1644 }
1409 } 1645 }
1410} 1646}
1411 1647
1648#ifdef __cplusplus
1649}
1650#endif
1651

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines