ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
97#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
98# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 210# define EV_USE_INOTIFY 1
100# else 211# else
101# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
102# endif 213# endif
103#endif 214#endif
104 215
105#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
107#endif 221# endif
222#endif
108 223
109/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 259
111#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
114#endif 263#endif
116#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
119#endif 268#endif
120 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
285#if EV_SELECT_IS_WINSOCKET
286# include <winsock.h>
287#endif
288
289#if EV_USE_EVENTFD
290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
294# endif
295int eventfd (unsigned int initval, int flags);
296# ifdef __cplusplus
297}
298# endif
299#endif
300
121/**/ 301/**/
122 302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
308
309/*
310 * This is used to avoid floating point rounding problems.
311 * It is added to ev_rt_now when scheduling periodics
312 * to ensure progress, time-wise, even when rounding
313 * errors are against us.
314 * This value is good at least till the year 4000.
315 * Better solutions welcome.
316 */
317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
318
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 322
128#include "ev.h"
129
130#if __GNUC__ >= 3 323#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 325# define noinline __attribute__ ((noinline))
133#else 326#else
134# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
135# define inline static 328# define noinline
329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
330# define inline
331# endif
136#endif 332#endif
137 333
138#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 335#define expect_true(expr) expect ((expr) != 0, 1)
336#define inline_size static inline
337
338#if EV_MINIMAL
339# define inline_speed static noinline
340#else
341# define inline_speed static inline
342#endif
140 343
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 344#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 345#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 346
347#define EMPTY /* required for microsofts broken pseudo-c compiler */
348#define EMPTY2(a,b) /* used to suppress some warnings */
349
144typedef struct ev_watcher *W; 350typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
147 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
362
363#ifdef _WIN32
364# include "ev_win32.c"
365#endif
149 366
150/*****************************************************************************/ 367/*****************************************************************************/
151 368
369static void (*syserr_cb)(const char *msg);
370
371void
372ev_set_syserr_cb (void (*cb)(const char *msg))
373{
374 syserr_cb = cb;
375}
376
377static void noinline
378syserr (const char *msg)
379{
380 if (!msg)
381 msg = "(libev) system error";
382
383 if (syserr_cb)
384 syserr_cb (msg);
385 else
386 {
387 perror (msg);
388 abort ();
389 }
390}
391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
408
409void
410ev_set_allocator (void *(*cb)(void *ptr, long size))
411{
412 alloc = cb;
413}
414
415inline_speed void *
416ev_realloc (void *ptr, long size)
417{
418 ptr = alloc (ptr, size);
419
420 if (!ptr && size)
421 {
422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
423 abort ();
424 }
425
426 return ptr;
427}
428
429#define ev_malloc(size) ev_realloc (0, (size))
430#define ev_free(ptr) ev_realloc ((ptr), 0)
431
432/*****************************************************************************/
433
152typedef struct 434typedef struct
153{ 435{
154 struct ev_watcher_list *head; 436 WL head;
155 unsigned char events; 437 unsigned char events;
156 unsigned char reify; 438 unsigned char reify;
439#if EV_SELECT_IS_WINSOCKET
440 SOCKET handle;
441#endif
157} ANFD; 442} ANFD;
158 443
159typedef struct 444typedef struct
160{ 445{
161 W w; 446 W w;
162 int events; 447 int events;
163} ANPENDING; 448} ANPENDING;
164 449
450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
452typedef struct
453{
454 WL head;
455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
474#endif
475
165#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
166 477
167struct ev_loop 478 struct ev_loop
168{ 479 {
480 ev_tstamp ev_rt_now;
481 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 482 #define VAR(name,decl) decl;
170# include "ev_vars.h" 483 #include "ev_vars.h"
171};
172# undef VAR 484 #undef VAR
485 };
173# include "ev_wrap.h" 486 #include "ev_wrap.h"
487
488 static struct ev_loop default_loop_struct;
489 struct ev_loop *ev_default_loop_ptr;
174 490
175#else 491#else
176 492
493 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 494 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 495 #include "ev_vars.h"
179# undef VAR 496 #undef VAR
497
498 static int ev_default_loop_ptr;
180 499
181#endif 500#endif
182 501
183/*****************************************************************************/ 502/*****************************************************************************/
184 503
185inline ev_tstamp 504ev_tstamp
186ev_time (void) 505ev_time (void)
187{ 506{
188#if EV_USE_REALTIME 507#if EV_USE_REALTIME
189 struct timespec ts; 508 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 509 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 513 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 514 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 515#endif
197} 516}
198 517
199inline ev_tstamp 518ev_tstamp inline_size
200get_clock (void) 519get_clock (void)
201{ 520{
202#if EV_USE_MONOTONIC 521#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 522 if (expect_true (have_monotonic))
204 { 523 {
209#endif 528#endif
210 529
211 return ev_time (); 530 return ev_time ();
212} 531}
213 532
533#if EV_MULTIPLICITY
214ev_tstamp 534ev_tstamp
215ev_now (EV_P) 535ev_now (EV_P)
216{ 536{
217 return rt_now; 537 return ev_rt_now;
218} 538}
539#endif
219 540
220#define array_roundsize(base,n) ((n) | 4 & ~3) 541void
221 542ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 543{
223 if (expect_false ((cnt) > cur)) \ 544 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
236 565
237/*****************************************************************************/ 566/*****************************************************************************/
238 567
239static void 568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
570int inline_size
571array_nextsize (int elem, int cur, int cnt)
572{
573 int ncur = cur + 1;
574
575 do
576 ncur <<= 1;
577 while (cnt > ncur);
578
579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
581 {
582 ncur *= elem;
583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
584 ncur = ncur - sizeof (void *) * 4;
585 ncur /= elem;
586 }
587
588 return ncur;
589}
590
591static noinline void *
592array_realloc (int elem, void *base, int *cur, int cnt)
593{
594 *cur = array_nextsize (elem, *cur, cnt);
595 return ev_realloc (base, elem * *cur);
596}
597
598#define array_needsize(type,base,cur,cnt,init) \
599 if (expect_false ((cnt) > (cur))) \
600 { \
601 int ocur_ = (cur); \
602 (base) = (type *)array_realloc \
603 (sizeof (type), (base), &(cur), (cnt)); \
604 init ((base) + (ocur_), (cur) - ocur_); \
605 }
606
607#if 0
608#define array_slim(type,stem) \
609 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
610 { \
611 stem ## max = array_roundsize (stem ## cnt >> 1); \
612 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
613 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
614 }
615#endif
616
617#define array_free(stem, idx) \
618 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
619
620/*****************************************************************************/
621
622void noinline
623ev_feed_event (EV_P_ void *w, int revents)
624{
625 W w_ = (W)w;
626 int pri = ABSPRI (w_);
627
628 if (expect_false (w_->pending))
629 pendings [pri][w_->pending - 1].events |= revents;
630 else
631 {
632 w_->pending = ++pendingcnt [pri];
633 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
634 pendings [pri][w_->pending - 1].w = w_;
635 pendings [pri][w_->pending - 1].events = revents;
636 }
637}
638
639void inline_speed
640queue_events (EV_P_ W *events, int eventcnt, int type)
641{
642 int i;
643
644 for (i = 0; i < eventcnt; ++i)
645 ev_feed_event (EV_A_ events [i], type);
646}
647
648/*****************************************************************************/
649
650void inline_size
240anfds_init (ANFD *base, int count) 651anfds_init (ANFD *base, int count)
241{ 652{
242 while (count--) 653 while (count--)
243 { 654 {
244 base->head = 0; 655 base->head = 0;
247 658
248 ++base; 659 ++base;
249 } 660 }
250} 661}
251 662
252static void 663void inline_speed
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
277fd_event (EV_P_ int fd, int events) 664fd_event (EV_P_ int fd, int revents)
278{ 665{
279 ANFD *anfd = anfds + fd; 666 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 667 ev_io *w;
281 668
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 669 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 670 {
284 int ev = w->events & events; 671 int ev = w->events & revents;
285 672
286 if (ev) 673 if (ev)
287 event (EV_A_ (W)w, ev); 674 ev_feed_event (EV_A_ (W)w, ev);
288 } 675 }
289} 676}
290 677
291/*****************************************************************************/ 678void
679ev_feed_fd_event (EV_P_ int fd, int revents)
680{
681 if (fd >= 0 && fd < anfdmax)
682 fd_event (EV_A_ fd, revents);
683}
292 684
293static void 685void inline_size
294fd_reify (EV_P) 686fd_reify (EV_P)
295{ 687{
296 int i; 688 int i;
297 689
298 for (i = 0; i < fdchangecnt; ++i) 690 for (i = 0; i < fdchangecnt; ++i)
299 { 691 {
300 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 694 ev_io *w;
303 695
304 int events = 0; 696 unsigned char events = 0;
305 697
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 699 events |= (unsigned char)w->events;
308 700
309 anfd->reify = 0; 701#if EV_SELECT_IS_WINSOCKET
310 702 if (events)
311 if (anfd->events != events)
312 { 703 {
313 method_modify (EV_A_ fd, anfd->events, events); 704 unsigned long argp;
314 anfd->events = events; 705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
708 anfd->handle = _get_osfhandle (fd);
709 #endif
710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
315 } 711 }
712#endif
713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
718 anfd->reify = 0;
719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
316 } 724 }
317 725
318 fdchangecnt = 0; 726 fdchangecnt = 0;
319} 727}
320 728
321static void 729void inline_size
322fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
323{ 731{
324 if (anfds [fd].reify || fdchangecnt < 0) 732 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
328 734
735 if (expect_true (!reify))
736 {
329 ++fdchangecnt; 737 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
332} 741}
333 742
334static void 743void inline_speed
335fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
336{ 745{
337 struct ev_io *w; 746 ev_io *w;
338 747
339 while ((w = (struct ev_io *)anfds [fd].head)) 748 while ((w = (ev_io *)anfds [fd].head))
340 { 749 {
341 ev_io_stop (EV_A_ w); 750 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 751 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 752 }
753}
754
755int inline_size
756fd_valid (int fd)
757{
758#ifdef _WIN32
759 return _get_osfhandle (fd) != -1;
760#else
761 return fcntl (fd, F_GETFD) != -1;
762#endif
344} 763}
345 764
346/* called on EBADF to verify fds */ 765/* called on EBADF to verify fds */
347static void 766static void noinline
348fd_ebadf (EV_P) 767fd_ebadf (EV_P)
349{ 768{
350 int fd; 769 int fd;
351 770
352 for (fd = 0; fd < anfdmax; ++fd) 771 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 772 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 773 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 774 fd_kill (EV_A_ fd);
356} 775}
357 776
358/* called on ENOMEM in select/poll to kill some fds and retry */ 777/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 778static void noinline
360fd_enomem (EV_P) 779fd_enomem (EV_P)
361{ 780{
362 int fd; 781 int fd;
363 782
364 for (fd = anfdmax; fd--; ) 783 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 784 if (anfds [fd].events)
366 { 785 {
367 close (fd);
368 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
369 return; 787 return;
370 } 788 }
371} 789}
372 790
373/* susually called after fork if method needs to re-arm all fds from scratch */ 791/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 792static void noinline
375fd_rearm_all (EV_P) 793fd_rearm_all (EV_P)
376{ 794{
377 int fd; 795 int fd;
378 796
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 798 if (anfds [fd].events)
382 { 799 {
383 anfds [fd].events = 0; 800 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
385 } 802 }
386} 803}
387 804
388/*****************************************************************************/ 805/*****************************************************************************/
389 806
390static void 807/*
391upheap (WT *heap, int k) 808 * the heap functions want a real array index. array index 0 uis guaranteed to not
392{ 809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
393 WT w = heap [k]; 810 * the branching factor of the d-tree.
811 */
394 812
395 while (k && heap [k >> 1]->at > w->at) 813/*
396 { 814 * at the moment we allow libev the luxury of two heaps,
397 heap [k] = heap [k >> 1]; 815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
398 ((W)heap [k])->active = k + 1; 816 * which is more cache-efficient.
399 k >>= 1; 817 * the difference is about 5% with 50000+ watchers.
400 } 818 */
819#if EV_USE_4HEAP
401 820
402 heap [k] = w; 821#define DHEAP 4
403 ((W)heap [k])->active = k + 1; 822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
404 825
405} 826/* away from the root */
406 827void inline_speed
407static void
408downheap (WT *heap, int N, int k) 828downheap (ANHE *heap, int N, int k)
409{ 829{
410 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
411 832
412 while (k < (N >> 1)) 833 for (;;)
413 { 834 {
414 int j = k << 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
415 838
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
417 ++j; 841 {
418 842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
419 if (w->at <= heap [j]->at) 843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
420 break; 855 break;
421 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
422 heap [k] = heap [j]; 895 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
424 k = j; 898 k = c;
425 } 899 }
426 900
427 heap [k] = w; 901 heap [k] = he;
428 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
926}
927
928void inline_size
929adjustheap (ANHE *heap, int N, int k)
930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
932 upheap (heap, k);
933 else
934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
429} 947}
430 948
431/*****************************************************************************/ 949/*****************************************************************************/
432 950
433typedef struct 951typedef struct
434{ 952{
435 struct ev_watcher_list *head; 953 WL head;
436 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
437} ANSIG; 955} ANSIG;
438 956
439static ANSIG *signals; 957static ANSIG *signals;
440static int signalmax; 958static int signalmax;
441 959
442static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445 961
446static void 962void inline_size
447signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
448{ 964{
449 while (count--) 965 while (count--)
450 { 966 {
451 base->head = 0; 967 base->head = 0;
453 969
454 ++base; 970 ++base;
455 } 971 }
456} 972}
457 973
974/*****************************************************************************/
975
976void inline_speed
977fd_intern (int fd)
978{
979#ifdef _WIN32
980 int arg = 1;
981 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
982#else
983 fcntl (fd, F_SETFD, FD_CLOEXEC);
984 fcntl (fd, F_SETFL, O_NONBLOCK);
985#endif
986}
987
988static void noinline
989evpipe_init (EV_P)
990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
1006 fd_intern (evpipe [0]);
1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
1010
1011 ev_io_start (EV_A_ &pipeev);
1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
458static void 1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
1079}
1080
1081/*****************************************************************************/
1082
1083static void
459sighandler (int signum) 1084ev_sighandler (int signum)
460{ 1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
461 signals [signum - 1].gotsig = 1; 1094 signals [signum - 1].gotsig = 1;
462 1095 evpipe_write (EV_A_ &gotsig);
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470} 1096}
471 1097
472static void 1098void noinline
473sigcb (EV_P_ struct ev_io *iow, int revents) 1099ev_feed_signal_event (EV_P_ int signum)
474{ 1100{
475 struct ev_watcher_list *w; 1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
476 int signum; 1107 --signum;
477 1108
478 read (sigpipe [0], &revents, 1); 1109 if (signum < 0 || signum >= signalmax)
479 gotsig = 0; 1110 return;
480 1111
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0; 1112 signals [signum].gotsig = 0;
485 1113
486 for (w = signals [signum].head; w; w = w->next) 1114 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL); 1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 1116}
507 1117
508/*****************************************************************************/ 1118/*****************************************************************************/
509 1119
1120static WL childs [EV_PID_HASHSIZE];
1121
510#ifndef WIN32 1122#ifndef _WIN32
511 1123
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 1124static ev_signal childev;
1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
1130void inline_speed
1131child_reap (EV_P_ int chain, int pid, int status)
1132{
1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1135
1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
1140 {
1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1142 w->rpid = pid;
1143 w->rstatus = status;
1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1145 }
1146 }
1147}
514 1148
515#ifndef WCONTINUED 1149#ifndef WCONTINUED
516# define WCONTINUED 0 1150# define WCONTINUED 0
517#endif 1151#endif
518 1152
519static void 1153static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1154childcb (EV_P_ ev_signal *sw, int revents)
536{ 1155{
537 int pid, status; 1156 int pid, status;
538 1157
1158 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1159 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1160 if (!WCONTINUED
1161 || errno != EINVAL
1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1163 return;
1164
541 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
1166 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1168
544 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
1170 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1172}
548 1173
549#endif 1174#endif
550 1175
551/*****************************************************************************/ 1176/*****************************************************************************/
552 1177
1178#if EV_USE_PORT
1179# include "ev_port.c"
1180#endif
553#if EV_USE_KQUEUE 1181#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1182# include "ev_kqueue.c"
555#endif 1183#endif
556#if EV_USE_EPOLL 1184#if EV_USE_EPOLL
557# include "ev_epoll.c" 1185# include "ev_epoll.c"
574{ 1202{
575 return EV_VERSION_MINOR; 1203 return EV_VERSION_MINOR;
576} 1204}
577 1205
578/* return true if we are running with elevated privileges and should ignore env variables */ 1206/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1207int inline_size
580enable_secure (void) 1208enable_secure (void)
581{ 1209{
582#ifdef WIN32 1210#ifdef _WIN32
583 return 0; 1211 return 0;
584#else 1212#else
585 return getuid () != geteuid () 1213 return getuid () != geteuid ()
586 || getgid () != getegid (); 1214 || getgid () != getegid ();
587#endif 1215#endif
588} 1216}
589 1217
590int 1218unsigned int
591ev_method (EV_P) 1219ev_supported_backends (void)
592{ 1220{
593 return method; 1221 unsigned int flags = 0;
594}
595 1222
596static void 1223 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 1224 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1225 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1226 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1227 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1228
1229 return flags;
1230}
1231
1232unsigned int
1233ev_recommended_backends (void)
598{ 1234{
599 if (!method) 1235 unsigned int flags = ev_supported_backends ();
1236
1237#ifndef __NetBSD__
1238 /* kqueue is borked on everything but netbsd apparently */
1239 /* it usually doesn't work correctly on anything but sockets and pipes */
1240 flags &= ~EVBACKEND_KQUEUE;
1241#endif
1242#ifdef __APPLE__
1243 // flags &= ~EVBACKEND_KQUEUE; for documentation
1244 flags &= ~EVBACKEND_POLL;
1245#endif
1246
1247 return flags;
1248}
1249
1250unsigned int
1251ev_embeddable_backends (void)
1252{
1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1254
1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
1260}
1261
1262unsigned int
1263ev_backend (EV_P)
1264{
1265 return backend;
1266}
1267
1268unsigned int
1269ev_loop_count (EV_P)
1270{
1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
1284}
1285
1286static void noinline
1287loop_init (EV_P_ unsigned int flags)
1288{
1289 if (!backend)
600 { 1290 {
601#if EV_USE_MONOTONIC 1291#if EV_USE_MONOTONIC
602 { 1292 {
603 struct timespec ts; 1293 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 1295 have_monotonic = 1;
606 } 1296 }
607#endif 1297#endif
608 1298
609 rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 1300 mn_now = get_clock ();
611 now_floor = mn_now; 1301 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
613 1303
614 if (methods == EVMETHOD_AUTO) 1304 io_blocktime = 0.;
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
1312
1313 /* pid check not overridable via env */
1314#ifndef _WIN32
1315 if (flags & EVFLAG_FORKCHECK)
1316 curpid = getpid ();
1317#endif
1318
1319 if (!(flags & EVFLAG_NOENV)
1320 && !enable_secure ()
1321 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 1323
620 method = 0; 1324 if (!(flags & 0x0000ffffU))
621#if EV_USE_WIN32 1325 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1326
1327#if EV_USE_PORT
1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 1329#endif
624#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1331 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 1332#endif
627#if EV_USE_EPOLL 1333#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1334 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 1335#endif
630#if EV_USE_POLL 1336#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1337 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 1338#endif
633#if EV_USE_SELECT 1339#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 1341#endif
636 }
637}
638 1342
639void 1343 ev_init (&pipeev, pipecb);
1344 ev_set_priority (&pipeev, EV_MAXPRI);
1345 }
1346}
1347
1348static void noinline
640loop_destroy (EV_P) 1349loop_destroy (EV_P)
641{ 1350{
1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1369
642#if EV_USE_WIN32 1370#if EV_USE_INOTIFY
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1371 if (fs_fd >= 0)
1372 close (fs_fd);
1373#endif
1374
1375 if (backend_fd >= 0)
1376 close (backend_fd);
1377
1378#if EV_USE_PORT
1379 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
644#endif 1380#endif
645#if EV_USE_KQUEUE 1381#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1382 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
647#endif 1383#endif
648#if EV_USE_EPOLL 1384#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1385 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
650#endif 1386#endif
651#if EV_USE_POLL 1387#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1388 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
653#endif 1389#endif
654#if EV_USE_SELECT 1390#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1391 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
656#endif 1392#endif
657 1393
658 method = 0; 1394 for (i = NUMPRI; i--; )
659 /*TODO*/ 1395 {
660} 1396 array_free (pending, [i]);
1397#if EV_IDLE_ENABLE
1398 array_free (idle, [i]);
1399#endif
1400 }
661 1401
662void 1402 ev_free (anfds); anfdmax = 0;
1403
1404 /* have to use the microsoft-never-gets-it-right macro */
1405 array_free (fdchange, EMPTY);
1406 array_free (timer, EMPTY);
1407#if EV_PERIODIC_ENABLE
1408 array_free (periodic, EMPTY);
1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1413 array_free (prepare, EMPTY);
1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1418
1419 backend = 0;
1420}
1421
1422#if EV_USE_INOTIFY
1423void inline_size infy_fork (EV_P);
1424#endif
1425
1426void inline_size
663loop_fork (EV_P) 1427loop_fork (EV_P)
664{ 1428{
665 /*TODO*/ 1429#if EV_USE_PORT
1430 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1431#endif
1432#if EV_USE_KQUEUE
1433 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1434#endif
666#if EV_USE_EPOLL 1435#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1436 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1437#endif
1438#if EV_USE_INOTIFY
1439 infy_fork (EV_A);
1440#endif
1441
1442 if (ev_is_active (&pipeev))
1443 {
1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1450
1451 ev_ref (EV_A);
1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464
1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1468 }
1469
1470 postfork = 0;
1471}
1472
1473#if EV_MULTIPLICITY
1474
1475struct ev_loop *
1476ev_loop_new (unsigned int flags)
1477{
1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1479
1480 memset (loop, 0, sizeof (struct ev_loop));
1481
1482 loop_init (EV_A_ flags);
1483
1484 if (ev_backend (EV_A))
1485 return loop;
1486
1487 return 0;
1488}
1489
1490void
1491ev_loop_destroy (EV_P)
1492{
1493 loop_destroy (EV_A);
1494 ev_free (loop);
1495}
1496
1497void
1498ev_loop_fork (EV_P)
1499{
1500 postfork = 1; /* must be in line with ev_default_fork */
1501}
1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
668#endif 1597# endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 1598#endif
672} 1599}
1600
1601#endif /* multiplicity */
673 1602
674#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
675struct ev_loop * 1604struct ev_loop *
676ev_loop_new (int methods) 1605ev_default_loop_init (unsigned int flags)
677{ 1606#else
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1607int
679 1608ev_default_loop (unsigned int flags)
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif 1609#endif
702 1610{
1611 if (!ev_default_loop_ptr)
1612 {
703#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else 1615#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1; 1616 ev_default_loop_ptr = 1;
725#endif 1617#endif
726 1618
727 loop_init (EV_A_ methods); 1619 loop_init (EV_A_ flags);
728 1620
729 if (ev_method (EV_A)) 1621 if (ev_backend (EV_A))
730 { 1622 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735#ifndef WIN32 1623#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 1628#endif
741 } 1629 }
742 else 1630 else
743 default_loop = 0; 1631 ev_default_loop_ptr = 0;
744 } 1632 }
745 1633
746 return default_loop; 1634 return ev_default_loop_ptr;
747} 1635}
748 1636
749void 1637void
750ev_default_destroy (void) 1638ev_default_destroy (void)
751{ 1639{
752#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 1641 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 1642#endif
755 1643
1644#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
758 1647#endif
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764 1648
765 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
766} 1650}
767 1651
768void 1652void
769ev_default_fork (void) 1653ev_default_fork (void)
770{ 1654{
771#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1656 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1657#endif
774 1658
775 loop_fork (EV_A); 1659 if (backend)
776 1660 postfork = 1; /* must be in line with ev_loop_fork */
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1661}
785 1662
786/*****************************************************************************/ 1663/*****************************************************************************/
787 1664
788static void 1665void
1666ev_invoke (EV_P_ void *w, int revents)
1667{
1668 EV_CB_INVOKE ((W)w, revents);
1669}
1670
1671void inline_speed
789call_pending (EV_P) 1672call_pending (EV_P)
790{ 1673{
791 int pri; 1674 int pri;
792 1675
793 for (pri = NUMPRI; pri--; ) 1676 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1677 while (pendingcnt [pri])
795 { 1678 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1680
798 if (p->w) 1681 if (expect_true (p->w))
799 { 1682 {
1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1684
800 p->w->pending = 0; 1685 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
802 } 1688 }
803 } 1689 }
804} 1690}
805 1691
806static void 1692#if EV_IDLE_ENABLE
1693void inline_size
1694idle_reify (EV_P)
1695{
1696 if (expect_false (idleall))
1697 {
1698 int pri;
1699
1700 for (pri = NUMPRI; pri--; )
1701 {
1702 if (pendingcnt [pri])
1703 break;
1704
1705 if (idlecnt [pri])
1706 {
1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1708 break;
1709 }
1710 }
1711 }
1712}
1713#endif
1714
1715void inline_size
807timers_reify (EV_P) 1716timers_reify (EV_P)
808{ 1717{
1718 EV_FREQUENT_CHECK;
1719
809 while (timercnt && timers [0]->at <= mn_now) 1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
810 { 1721 {
811 struct ev_timer *w = timers [0]; 1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
812 1723
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
814 1725
815 /* first reschedule or stop timer */ 1726 /* first reschedule or stop timer */
816 if (w->repeat) 1727 if (w->repeat)
817 { 1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
819 w->at = mn_now + w->repeat; 1734
1735 ANHE_at_cache (timers [HEAP0]);
820 downheap ((WT *)timers, timercnt, 0); 1736 downheap (timers, timercnt, HEAP0);
821 } 1737 }
822 else 1738 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1740
1741 EV_FREQUENT_CHECK;
825 event (EV_A_ (W)w, EV_TIMEOUT); 1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1743 }
827} 1744}
828 1745
829static void 1746#if EV_PERIODIC_ENABLE
1747void inline_size
830periodics_reify (EV_P) 1748periodics_reify (EV_P)
831{ 1749{
1750 EV_FREQUENT_CHECK;
1751
832 while (periodiccnt && periodics [0]->at <= rt_now) 1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
833 { 1753 {
834 struct ev_periodic *w = periodics [0]; 1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
835 1755
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
837 1757
838 /* first reschedule or stop timer */ 1758 /* first reschedule or stop timer */
839 if (w->interval) 1759 if (w->reschedule_cb)
840 { 1760 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
843 downheap ((WT *)periodics, periodiccnt, 0); 1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
844 } 1786 }
845 else 1787 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1789
1790 EV_FREQUENT_CHECK;
848 event (EV_A_ (W)w, EV_PERIODIC); 1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1792 }
850} 1793}
851 1794
852static void 1795static void noinline
853periodics_reschedule (EV_P) 1796periodics_reschedule (EV_P)
854{ 1797{
855 int i; 1798 int i;
856 1799
857 /* adjust periodics after time jump */ 1800 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
859 { 1802 {
860 struct ev_periodic *w = periodics [i]; 1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
861 1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1814}
1815#endif
1816
1817void inline_speed
1818time_update (EV_P_ ev_tstamp max_block)
1819{
1820 int i;
1821
1822#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic))
1824 {
1825 ev_tstamp odiff = rtmn_diff;
1826
1827 mn_now = get_clock ();
1828
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */
1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
863 { 1832 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1833 ev_rt_now = rtmn_diff + mn_now;
1834 return;
1835 }
865 1836
866 if (fabs (diff) >= 1e-4) 1837 now_floor = mn_now;
1838 ev_rt_now = ev_time ();
1839
1840 /* loop a few times, before making important decisions.
1841 * on the choice of "4": one iteration isn't enough,
1842 * in case we get preempted during the calls to
1843 * ev_time and get_clock. a second call is almost guaranteed
1844 * to succeed in that case, though. and looping a few more times
1845 * doesn't hurt either as we only do this on time-jumps or
1846 * in the unlikely event of having been preempted here.
1847 */
1848 for (i = 4; --i; )
1849 {
1850 rtmn_diff = ev_rt_now - mn_now;
1851
1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1853 return; /* all is well */
1854
1855 ev_rt_now = ev_time ();
1856 mn_now = get_clock ();
1857 now_floor = mn_now;
1858 }
1859
1860# if EV_PERIODIC_ENABLE
1861 periodics_reschedule (EV_A);
1862# endif
1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1865 }
1866 else
1867#endif
1868 {
1869 ev_rt_now = ev_time ();
1870
1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1872 {
1873#if EV_PERIODIC_ENABLE
1874 periodics_reschedule (EV_A);
1875#endif
1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1877 for (i = 0; i < timercnt; ++i)
867 { 1878 {
868 ev_periodic_stop (EV_A_ w); 1879 ANHE *he = timers + i + HEAP0;
869 ev_periodic_start (EV_A_ w); 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
870 1881 ANHE_at_cache (*he);
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 } 1882 }
873 } 1883 }
874 }
875}
876 1884
877inline int
878time_update_monotonic (EV_P)
879{
880 mn_now = get_clock ();
881
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 }
887 else
888 {
889 now_floor = mn_now;
890 rt_now = ev_time ();
891 return 1;
892 }
893}
894
895static void
896time_update (EV_P)
897{
898 int i;
899
900#if EV_USE_MONOTONIC
901 if (expect_true (have_monotonic))
902 {
903 if (time_update_monotonic (EV_A))
904 {
905 ev_tstamp odiff = rtmn_diff;
906
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 {
909 rtmn_diff = rt_now - mn_now;
910
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */
913
914 rt_now = ev_time ();
915 mn_now = get_clock ();
916 now_floor = mn_now;
917 }
918
919 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 }
923 }
924 else
925#endif
926 {
927 rt_now = ev_time ();
928
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 {
931 periodics_reschedule (EV_A);
932
933 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now;
936 }
937
938 mn_now = rt_now; 1885 mn_now = ev_rt_now;
939 } 1886 }
940} 1887}
941 1888
942void 1889void
943ev_ref (EV_P) 1890ev_ref (EV_P)
954static int loop_done; 1901static int loop_done;
955 1902
956void 1903void
957ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
958{ 1905{
959 double block; 1906 loop_done = EVUNLOOP_CANCEL;
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1907
1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
961 1909
962 do 1910 do
963 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1916#ifndef _WIN32
1917 if (expect_false (curpid)) /* penalise the forking check even more */
1918 if (expect_false (getpid () != curpid))
1919 {
1920 curpid = getpid ();
1921 postfork = 1;
1922 }
1923#endif
1924
1925#if EV_FORK_ENABLE
1926 /* we might have forked, so queue fork handlers */
1927 if (expect_false (postfork))
1928 if (forkcnt)
1929 {
1930 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1931 call_pending (EV_A);
1932 }
1933#endif
1934
964 /* queue check watchers (and execute them) */ 1935 /* queue prepare watchers (and execute them) */
965 if (expect_false (preparecnt)) 1936 if (expect_false (preparecnt))
966 { 1937 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1938 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1939 call_pending (EV_A);
969 } 1940 }
970 1941
1942 if (expect_false (!activecnt))
1943 break;
1944
1945 /* we might have forked, so reify kernel state if necessary */
1946 if (expect_false (postfork))
1947 loop_fork (EV_A);
1948
971 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1950 fd_reify (EV_A);
973 1951
974 /* calculate blocking time */ 1952 /* calculate blocking time */
1953 {
1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
975 1956
976 /* we only need this for !monotonic clockor timers, but as we basically 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
977 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A);
981 else
982#endif
983 { 1958 {
984 rt_now = ev_time (); 1959 /* update time to cancel out callback processing overhead */
985 mn_now = rt_now; 1960 time_update (EV_A_ 1e100);
986 }
987 1961
988 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.;
990 else
991 {
992 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
993 1963
994 if (timercnt) 1964 if (timercnt)
995 { 1965 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
997 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
998 } 1968 }
999 1969
1970#if EV_PERIODIC_ENABLE
1000 if (periodiccnt) 1971 if (periodiccnt)
1001 { 1972 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1003 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1004 } 1975 }
1976#endif
1005 1977
1006 if (block < 0.) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1007 } 1991 }
1008 1992
1009 method_poll (EV_A_ block); 1993 ++loop_count;
1994 backend_poll (EV_A_ waittime);
1010 1995
1011 /* update rt_now, do magic */ 1996 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1997 time_update (EV_A_ waittime + sleeptime);
1998 }
1013 1999
1014 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
2002#if EV_PERIODIC_ENABLE
1016 periodics_reify (EV_A); /* absolute timers called first */ 2003 periodics_reify (EV_A); /* absolute timers called first */
2004#endif
1017 2005
2006#if EV_IDLE_ENABLE
1018 /* queue idle watchers unless io or timers are pending */ 2007 /* queue idle watchers unless other events are pending */
1019 if (!pendingcnt) 2008 idle_reify (EV_A);
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2009#endif
1021 2010
1022 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1023 if (checkcnt) 2012 if (expect_false (checkcnt))
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1025 2014
1026 call_pending (EV_A); 2015 call_pending (EV_A);
1027 } 2016 }
1028 while (activecnt && !loop_done); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1029 2022
1030 if (loop_done != 2) 2023 if (loop_done == EVUNLOOP_ONE)
1031 loop_done = 0; 2024 loop_done = EVUNLOOP_CANCEL;
1032} 2025}
1033 2026
1034void 2027void
1035ev_unloop (EV_P_ int how) 2028ev_unloop (EV_P_ int how)
1036{ 2029{
1037 loop_done = how; 2030 loop_done = how;
1038} 2031}
1039 2032
1040/*****************************************************************************/ 2033/*****************************************************************************/
1041 2034
1042inline void 2035void inline_size
1043wlist_add (WL *head, WL elem) 2036wlist_add (WL *head, WL elem)
1044{ 2037{
1045 elem->next = *head; 2038 elem->next = *head;
1046 *head = elem; 2039 *head = elem;
1047} 2040}
1048 2041
1049inline void 2042void inline_size
1050wlist_del (WL *head, WL elem) 2043wlist_del (WL *head, WL elem)
1051{ 2044{
1052 while (*head) 2045 while (*head)
1053 { 2046 {
1054 if (*head == elem) 2047 if (*head == elem)
1059 2052
1060 head = &(*head)->next; 2053 head = &(*head)->next;
1061 } 2054 }
1062} 2055}
1063 2056
1064inline void 2057void inline_speed
1065ev_clear_pending (EV_P_ W w) 2058clear_pending (EV_P_ W w)
1066{ 2059{
1067 if (w->pending) 2060 if (w->pending)
1068 { 2061 {
1069 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2062 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1070 w->pending = 0; 2063 w->pending = 0;
1071 } 2064 }
1072} 2065}
1073 2066
1074inline void 2067int
2068ev_clear_pending (EV_P_ void *w)
2069{
2070 W w_ = (W)w;
2071 int pending = w_->pending;
2072
2073 if (expect_true (pending))
2074 {
2075 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2076 w_->pending = 0;
2077 p->w = 0;
2078 return p->events;
2079 }
2080 else
2081 return 0;
2082}
2083
2084void inline_size
2085pri_adjust (EV_P_ W w)
2086{
2087 int pri = w->priority;
2088 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2089 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2090 w->priority = pri;
2091}
2092
2093void inline_speed
1075ev_start (EV_P_ W w, int active) 2094ev_start (EV_P_ W w, int active)
1076{ 2095{
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2096 pri_adjust (EV_A_ w);
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
1080 w->active = active; 2097 w->active = active;
1081 ev_ref (EV_A); 2098 ev_ref (EV_A);
1082} 2099}
1083 2100
1084inline void 2101void inline_size
1085ev_stop (EV_P_ W w) 2102ev_stop (EV_P_ W w)
1086{ 2103{
1087 ev_unref (EV_A); 2104 ev_unref (EV_A);
1088 w->active = 0; 2105 w->active = 0;
1089} 2106}
1090 2107
1091/*****************************************************************************/ 2108/*****************************************************************************/
1092 2109
1093void 2110void noinline
1094ev_io_start (EV_P_ struct ev_io *w) 2111ev_io_start (EV_P_ ev_io *w)
1095{ 2112{
1096 int fd = w->fd; 2113 int fd = w->fd;
1097 2114
1098 if (ev_is_active (w)) 2115 if (expect_false (ev_is_active (w)))
1099 return; 2116 return;
1100 2117
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1102 2119
2120 EV_FREQUENT_CHECK;
2121
1103 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1106 2125
1107 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1108} 2127 w->events &= ~EV_IOFDSET;
1109 2128
1110void 2129 EV_FREQUENT_CHECK;
2130}
2131
2132void noinline
1111ev_io_stop (EV_P_ struct ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1112{ 2134{
1113 ev_clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 2136 if (expect_false (!ev_is_active (w)))
1115 return; 2137 return;
1116 2138
2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
2142
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1119 2145
1120 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
1121}
1122 2147
1123void 2148 EV_FREQUENT_CHECK;
2149}
2150
2151void noinline
1124ev_timer_start (EV_P_ struct ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1125{ 2153{
1126 if (ev_is_active (w)) 2154 if (expect_false (ev_is_active (w)))
1127 return; 2155 return;
1128 2156
1129 w->at += mn_now; 2157 ev_at (w) += mn_now;
1130 2158
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1133 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1134 array_needsize (timers, timermax, timercnt, ); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1135 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1136 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1137 2169
2170 EV_FREQUENT_CHECK;
2171
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1139} 2173}
1140 2174
1141void 2175void noinline
1142ev_timer_stop (EV_P_ struct ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1143{ 2177{
1144 ev_clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1145 if (!ev_is_active (w)) 2179 if (expect_false (!ev_is_active (w)))
1146 return; 2180 return;
1147 2181
2182 EV_FREQUENT_CHECK;
2183
2184 {
2185 int active = ev_active (w);
2186
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1149 2188
1150 if (((W)w)->active < timercnt--) 2189 --timercnt;
2190
2191 if (expect_true (active < timercnt + HEAP0))
1151 { 2192 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2194 adjustheap (timers, timercnt, active);
1154 } 2195 }
2196 }
1155 2197
1156 w->at = w->repeat; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1157 2201
1158 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1159} 2203}
1160 2204
1161void 2205void noinline
1162ev_timer_again (EV_P_ struct ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1163{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1164 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1165 { 2211 {
1166 if (w->repeat) 2212 if (w->repeat)
1167 { 2213 {
1168 w->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2215 ANHE_at_cache (timers [ev_active (w)]);
2216 adjustheap (timers, timercnt, ev_active (w));
1170 } 2217 }
1171 else 2218 else
1172 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1173 } 2220 }
1174 else if (w->repeat) 2221 else if (w->repeat)
2222 {
2223 ev_at (w) = w->repeat;
1175 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1176} 2225 }
1177 2226
1178void 2227 EV_FREQUENT_CHECK;
2228}
2229
2230#if EV_PERIODIC_ENABLE
2231void noinline
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1180{ 2233{
1181 if (ev_is_active (w)) 2234 if (expect_false (ev_is_active (w)))
1182 return; 2235 return;
1183 2236
2237 if (w->reschedule_cb)
2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2239 else if (w->interval)
2240 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2244 }
2245 else
2246 ev_at (w) = w->offset;
1189 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1192 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1194 2256
2257 EV_FREQUENT_CHECK;
2258
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1196} 2260}
1197 2261
1198void 2262void noinline
1199ev_periodic_stop (EV_P_ struct ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1200{ 2264{
1201 ev_clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1202 if (!ev_is_active (w)) 2266 if (expect_false (!ev_is_active (w)))
1203 return; 2267 return;
1204 2268
2269 EV_FREQUENT_CHECK;
2270
2271 {
2272 int active = ev_active (w);
2273
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1206 2275
1207 if (((W)w)->active < periodiccnt--) 2276 --periodiccnt;
2277
2278 if (expect_true (active < periodiccnt + HEAP0))
1208 { 2279 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2281 adjustheap (periodics, periodiccnt, active);
1211 } 2282 }
2283 }
2284
2285 EV_FREQUENT_CHECK;
1212 2286
1213 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1214} 2288}
1215 2289
1216void 2290void noinline
1217ev_idle_start (EV_P_ struct ev_idle *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
1218{ 2292{
1219 if (ev_is_active (w)) 2293 /* TODO: use adjustheap and recalculation */
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 2294 ev_periodic_stop (EV_A_ w);
2295 ev_periodic_start (EV_A_ w);
1236} 2296}
1237 2297#endif
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281 2298
1282#ifndef SA_RESTART 2299#ifndef SA_RESTART
1283# define SA_RESTART 0 2300# define SA_RESTART 0
1284#endif 2301#endif
1285 2302
1286void 2303void noinline
1287ev_signal_start (EV_P_ struct ev_signal *w) 2304ev_signal_start (EV_P_ ev_signal *w)
1288{ 2305{
1289#if EV_MULTIPLICITY 2306#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2307 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1291#endif 2308#endif
1292 if (ev_is_active (w)) 2309 if (expect_false (ev_is_active (w)))
1293 return; 2310 return;
1294 2311
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1297 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1300 2334
1301 if (!w->next) 2335 if (!((WL)w)->next)
1302 { 2336 {
2337#if _WIN32
2338 signal (w->signum, ev_sighandler);
2339#else
1303 struct sigaction sa; 2340 struct sigaction sa;
1304 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1305 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2345#endif
1308 } 2346 }
1309}
1310 2347
1311void 2348 EV_FREQUENT_CHECK;
2349}
2350
2351void noinline
1312ev_signal_stop (EV_P_ struct ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1313{ 2353{
1314 ev_clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1315 if (!ev_is_active (w)) 2355 if (expect_false (!ev_is_active (w)))
1316 return; 2356 return;
1317 2357
2358 EV_FREQUENT_CHECK;
2359
1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1319 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1320 2362
1321 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1322 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
1323}
1324 2365
2366 EV_FREQUENT_CHECK;
2367}
2368
1325void 2369void
1326ev_child_start (EV_P_ struct ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1327{ 2371{
1328#if EV_MULTIPLICITY 2372#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1330#endif 2374#endif
1331 if (ev_is_active (w)) 2375 if (expect_false (ev_is_active (w)))
1332 return; 2376 return;
1333 2377
2378 EV_FREQUENT_CHECK;
2379
1334 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1336}
1337 2382
2383 EV_FREQUENT_CHECK;
2384}
2385
1338void 2386void
1339ev_child_stop (EV_P_ struct ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1340{ 2388{
1341 ev_clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 2390 if (expect_false (!ev_is_active (w)))
1343 return; 2391 return;
1344 2392
2393 EV_FREQUENT_CHECK;
2394
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1347} 2399}
2400
2401#if EV_STAT_ENABLE
2402
2403# ifdef _WIN32
2404# undef lstat
2405# define lstat(a,b) _stati64 (a,b)
2406# endif
2407
2408#define DEF_STAT_INTERVAL 5.0074891
2409#define MIN_STAT_INTERVAL 0.1074891
2410
2411static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2412
2413#if EV_USE_INOTIFY
2414# define EV_INOTIFY_BUFSIZE 8192
2415
2416static void noinline
2417infy_add (EV_P_ ev_stat *w)
2418{
2419 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2420
2421 if (w->wd < 0)
2422 {
2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2424
2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2429 {
2430 char path [4096];
2431 strcpy (path, w->path);
2432
2433 do
2434 {
2435 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2436 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2437
2438 char *pend = strrchr (path, '/');
2439
2440 if (!pend)
2441 break; /* whoops, no '/', complain to your admin */
2442
2443 *pend = 0;
2444 w->wd = inotify_add_watch (fs_fd, path, mask);
2445 }
2446 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2447 }
2448 }
2449 else
2450 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2451
2452 if (w->wd >= 0)
2453 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2454}
2455
2456static void noinline
2457infy_del (EV_P_ ev_stat *w)
2458{
2459 int slot;
2460 int wd = w->wd;
2461
2462 if (wd < 0)
2463 return;
2464
2465 w->wd = -2;
2466 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2467 wlist_del (&fs_hash [slot].head, (WL)w);
2468
2469 /* remove this watcher, if others are watching it, they will rearm */
2470 inotify_rm_watch (fs_fd, wd);
2471}
2472
2473static void noinline
2474infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2475{
2476 if (slot < 0)
2477 /* overflow, need to check for all hahs slots */
2478 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2479 infy_wd (EV_A_ slot, wd, ev);
2480 else
2481 {
2482 WL w_;
2483
2484 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2485 {
2486 ev_stat *w = (ev_stat *)w_;
2487 w_ = w_->next; /* lets us remove this watcher and all before it */
2488
2489 if (w->wd == wd || wd == -1)
2490 {
2491 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2492 {
2493 w->wd = -1;
2494 infy_add (EV_A_ w); /* re-add, no matter what */
2495 }
2496
2497 stat_timer_cb (EV_A_ &w->timer, 0);
2498 }
2499 }
2500 }
2501}
2502
2503static void
2504infy_cb (EV_P_ ev_io *w, int revents)
2505{
2506 char buf [EV_INOTIFY_BUFSIZE];
2507 struct inotify_event *ev = (struct inotify_event *)buf;
2508 int ofs;
2509 int len = read (fs_fd, buf, sizeof (buf));
2510
2511 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2512 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2513}
2514
2515void inline_size
2516infy_init (EV_P)
2517{
2518 if (fs_fd != -2)
2519 return;
2520
2521 fs_fd = inotify_init ();
2522
2523 if (fs_fd >= 0)
2524 {
2525 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2526 ev_set_priority (&fs_w, EV_MAXPRI);
2527 ev_io_start (EV_A_ &fs_w);
2528 }
2529}
2530
2531void inline_size
2532infy_fork (EV_P)
2533{
2534 int slot;
2535
2536 if (fs_fd < 0)
2537 return;
2538
2539 close (fs_fd);
2540 fs_fd = inotify_init ();
2541
2542 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2543 {
2544 WL w_ = fs_hash [slot].head;
2545 fs_hash [slot].head = 0;
2546
2547 while (w_)
2548 {
2549 ev_stat *w = (ev_stat *)w_;
2550 w_ = w_->next; /* lets us add this watcher */
2551
2552 w->wd = -1;
2553
2554 if (fs_fd >= 0)
2555 infy_add (EV_A_ w); /* re-add, no matter what */
2556 else
2557 ev_timer_start (EV_A_ &w->timer);
2558 }
2559
2560 }
2561}
2562
2563#endif
2564
2565void
2566ev_stat_stat (EV_P_ ev_stat *w)
2567{
2568 if (lstat (w->path, &w->attr) < 0)
2569 w->attr.st_nlink = 0;
2570 else if (!w->attr.st_nlink)
2571 w->attr.st_nlink = 1;
2572}
2573
2574static void noinline
2575stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2576{
2577 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2578
2579 /* we copy this here each the time so that */
2580 /* prev has the old value when the callback gets invoked */
2581 w->prev = w->attr;
2582 ev_stat_stat (EV_A_ w);
2583
2584 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2585 if (
2586 w->prev.st_dev != w->attr.st_dev
2587 || w->prev.st_ino != w->attr.st_ino
2588 || w->prev.st_mode != w->attr.st_mode
2589 || w->prev.st_nlink != w->attr.st_nlink
2590 || w->prev.st_uid != w->attr.st_uid
2591 || w->prev.st_gid != w->attr.st_gid
2592 || w->prev.st_rdev != w->attr.st_rdev
2593 || w->prev.st_size != w->attr.st_size
2594 || w->prev.st_atime != w->attr.st_atime
2595 || w->prev.st_mtime != w->attr.st_mtime
2596 || w->prev.st_ctime != w->attr.st_ctime
2597 ) {
2598 #if EV_USE_INOTIFY
2599 infy_del (EV_A_ w);
2600 infy_add (EV_A_ w);
2601 ev_stat_stat (EV_A_ w); /* avoid race... */
2602 #endif
2603
2604 ev_feed_event (EV_A_ w, EV_STAT);
2605 }
2606}
2607
2608void
2609ev_stat_start (EV_P_ ev_stat *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 /* since we use memcmp, we need to clear any padding data etc. */
2615 memset (&w->prev, 0, sizeof (ev_statdata));
2616 memset (&w->attr, 0, sizeof (ev_statdata));
2617
2618 ev_stat_stat (EV_A_ w);
2619
2620 if (w->interval < MIN_STAT_INTERVAL)
2621 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2622
2623 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2624 ev_set_priority (&w->timer, ev_priority (w));
2625
2626#if EV_USE_INOTIFY
2627 infy_init (EV_A);
2628
2629 if (fs_fd >= 0)
2630 infy_add (EV_A_ w);
2631 else
2632#endif
2633 ev_timer_start (EV_A_ &w->timer);
2634
2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2638}
2639
2640void
2641ev_stat_stop (EV_P_ ev_stat *w)
2642{
2643 clear_pending (EV_A_ (W)w);
2644 if (expect_false (!ev_is_active (w)))
2645 return;
2646
2647 EV_FREQUENT_CHECK;
2648
2649#if EV_USE_INOTIFY
2650 infy_del (EV_A_ w);
2651#endif
2652 ev_timer_stop (EV_A_ &w->timer);
2653
2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2657}
2658#endif
2659
2660#if EV_IDLE_ENABLE
2661void
2662ev_idle_start (EV_P_ ev_idle *w)
2663{
2664 if (expect_false (ev_is_active (w)))
2665 return;
2666
2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2670
2671 {
2672 int active = ++idlecnt [ABSPRI (w)];
2673
2674 ++idleall;
2675 ev_start (EV_A_ (W)w, active);
2676
2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2678 idles [ABSPRI (w)][active - 1] = w;
2679 }
2680
2681 EV_FREQUENT_CHECK;
2682}
2683
2684void
2685ev_idle_stop (EV_P_ ev_idle *w)
2686{
2687 clear_pending (EV_A_ (W)w);
2688 if (expect_false (!ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 {
2694 int active = ev_active (w);
2695
2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2698
2699 ev_stop (EV_A_ (W)w);
2700 --idleall;
2701 }
2702
2703 EV_FREQUENT_CHECK;
2704}
2705#endif
2706
2707void
2708ev_prepare_start (EV_P_ ev_prepare *w)
2709{
2710 if (expect_false (ev_is_active (w)))
2711 return;
2712
2713 EV_FREQUENT_CHECK;
2714
2715 ev_start (EV_A_ (W)w, ++preparecnt);
2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2720}
2721
2722void
2723ev_prepare_stop (EV_P_ ev_prepare *w)
2724{
2725 clear_pending (EV_A_ (W)w);
2726 if (expect_false (!ev_is_active (w)))
2727 return;
2728
2729 EV_FREQUENT_CHECK;
2730
2731 {
2732 int active = ev_active (w);
2733
2734 prepares [active - 1] = prepares [--preparecnt];
2735 ev_active (prepares [active - 1]) = active;
2736 }
2737
2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2741}
2742
2743void
2744ev_check_start (EV_P_ ev_check *w)
2745{
2746 if (expect_false (ev_is_active (w)))
2747 return;
2748
2749 EV_FREQUENT_CHECK;
2750
2751 ev_start (EV_A_ (W)w, ++checkcnt);
2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2756}
2757
2758void
2759ev_check_stop (EV_P_ ev_check *w)
2760{
2761 clear_pending (EV_A_ (W)w);
2762 if (expect_false (!ev_is_active (w)))
2763 return;
2764
2765 EV_FREQUENT_CHECK;
2766
2767 {
2768 int active = ev_active (w);
2769
2770 checks [active - 1] = checks [--checkcnt];
2771 ev_active (checks [active - 1]) = active;
2772 }
2773
2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2777}
2778
2779#if EV_EMBED_ENABLE
2780void noinline
2781ev_embed_sweep (EV_P_ ev_embed *w)
2782{
2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2784}
2785
2786static void
2787embed_io_cb (EV_P_ ev_io *io, int revents)
2788{
2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2790
2791 if (ev_cb (w))
2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2793 else
2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2820
2821void
2822ev_embed_start (EV_P_ ev_embed *w)
2823{
2824 if (expect_false (ev_is_active (w)))
2825 return;
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2831 }
2832
2833 EV_FREQUENT_CHECK;
2834
2835 ev_set_priority (&w->io, ev_priority (w));
2836 ev_io_start (EV_A_ &w->io);
2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2847}
2848
2849void
2850ev_embed_stop (EV_P_ ev_embed *w)
2851{
2852 clear_pending (EV_A_ (W)w);
2853 if (expect_false (!ev_is_active (w)))
2854 return;
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2860
2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2864}
2865#endif
2866
2867#if EV_FORK_ENABLE
2868void
2869ev_fork_start (EV_P_ ev_fork *w)
2870{
2871 if (expect_false (ev_is_active (w)))
2872 return;
2873
2874 EV_FREQUENT_CHECK;
2875
2876 ev_start (EV_A_ (W)w, ++forkcnt);
2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2881}
2882
2883void
2884ev_fork_stop (EV_P_ ev_fork *w)
2885{
2886 clear_pending (EV_A_ (W)w);
2887 if (expect_false (!ev_is_active (w)))
2888 return;
2889
2890 EV_FREQUENT_CHECK;
2891
2892 {
2893 int active = ev_active (w);
2894
2895 forks [active - 1] = forks [--forkcnt];
2896 ev_active (forks [active - 1]) = active;
2897 }
2898
2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2949}
2950#endif
1348 2951
1349/*****************************************************************************/ 2952/*****************************************************************************/
1350 2953
1351struct ev_once 2954struct ev_once
1352{ 2955{
1353 struct ev_io io; 2956 ev_io io;
1354 struct ev_timer to; 2957 ev_timer to;
1355 void (*cb)(int revents, void *arg); 2958 void (*cb)(int revents, void *arg);
1356 void *arg; 2959 void *arg;
1357}; 2960};
1358 2961
1359static void 2962static void
1362 void (*cb)(int revents, void *arg) = once->cb; 2965 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 2966 void *arg = once->arg;
1364 2967
1365 ev_io_stop (EV_A_ &once->io); 2968 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 2969 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 2970 ev_free (once);
1368 2971
1369 cb (revents, arg); 2972 cb (revents, arg);
1370} 2973}
1371 2974
1372static void 2975static void
1373once_cb_io (EV_P_ struct ev_io *w, int revents) 2976once_cb_io (EV_P_ ev_io *w, int revents)
1374{ 2977{
1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2978 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1376} 2979}
1377 2980
1378static void 2981static void
1379once_cb_to (EV_P_ struct ev_timer *w, int revents) 2982once_cb_to (EV_P_ ev_timer *w, int revents)
1380{ 2983{
1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2984 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1382} 2985}
1383 2986
1384void 2987void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2988ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 2989{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 2990 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 2991
1389 if (!once) 2992 if (expect_false (!once))
2993 {
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2994 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 2995 return;
1392 { 2996 }
2997
1393 once->cb = cb; 2998 once->cb = cb;
1394 once->arg = arg; 2999 once->arg = arg;
1395 3000
1396 ev_watcher_init (&once->io, once_cb_io); 3001 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 3002 if (fd >= 0)
1398 { 3003 {
1399 ev_io_set (&once->io, fd, events); 3004 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 3005 ev_io_start (EV_A_ &once->io);
1401 } 3006 }
1402 3007
1403 ev_watcher_init (&once->to, once_cb_to); 3008 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 3009 if (timeout >= 0.)
1405 { 3010 {
1406 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
1408 }
1409 } 3013 }
1410} 3014}
1411 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
3020#ifdef __cplusplus
3021}
3022#endif
3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines