ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.31 by root, Thu Nov 1 09:05:33 2007 UTC vs.
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84
85static int have_monotonic; /* runtime */
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 149
91/*****************************************************************************/ 150/*****************************************************************************/
92 151
93ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
94ev_time (void) 186ev_time (void)
95{ 187{
96#if EV_USE_REALTIME 188#if EV_USE_REALTIME
97 struct timespec ts; 189 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 196#endif
105} 197}
106 198
107static ev_tstamp 199inline ev_tstamp
108get_clock (void) 200get_clock (void)
109{ 201{
110#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
111 if (have_monotonic) 203 if (expect_true (have_monotonic))
112 { 204 {
113 struct timespec ts; 205 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 208 }
117#endif 209#endif
118 210
119 return ev_time (); 211 return ev_time ();
120} 212}
121 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
122#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
123 221
124#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
126 { \ 224 { \
127 int newcnt = cur; \ 225 int newcnt = cur; \
128 do \ 226 do \
129 { \ 227 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
136 cur = newcnt; \ 234 cur = newcnt; \
137 } 235 }
138 236
139/*****************************************************************************/ 237/*****************************************************************************/
140 238
141typedef struct
142{
143 struct ev_io *head;
144 int events;
145} ANFD;
146
147static ANFD *anfds;
148static int anfdmax;
149
150static void 239static void
151anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
152{ 241{
153 while (count--) 242 while (count--)
154 { 243 {
155 base->head = 0; 244 base->head = 0;
156 base->events = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
157 ++base; 248 ++base;
158 } 249 }
159} 250}
160 251
161typedef struct
162{
163 W w;
164 int events;
165} ANPENDING;
166
167static ANPENDING *pendings;
168static int pendingmax, pendingcnt;
169
170static void 252static void
171event (W w, int events) 253event (EV_P_ W w, int events)
172{ 254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
173 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
174 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
175 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
176 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
177} 265}
178 266
179static void 267static void
180queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
181{ 269{
182 int i; 270 int i;
183 271
184 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
185 event (events [i], type); 273 event (EV_A_ events [i], type);
186} 274}
187 275
188static void 276static void
189fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
190{ 278{
191 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
192 struct ev_io *w; 280 struct ev_io *w;
193 281
194 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
195 { 283 {
196 int ev = w->events & events; 284 int ev = w->events & events;
197 285
198 if (ev) 286 if (ev)
199 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
200 } 288 }
201} 289}
202 290
203/*****************************************************************************/ 291/*****************************************************************************/
204 292
205static int *fdchanges;
206static int fdchangemax, fdchangecnt;
207
208static void 293static void
209fd_reify (void) 294fd_reify (EV_P)
210{ 295{
211 int i; 296 int i;
212 297
213 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
214 { 299 {
216 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
217 struct ev_io *w; 302 struct ev_io *w;
218 303
219 int events = 0; 304 int events = 0;
220 305
221 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
222 events |= w->events; 307 events |= w->events;
223 308
224 anfd->events &= ~EV_REIFY; 309 anfd->reify = 0;
225 310
226 if (anfd->events != events) 311 if (anfd->events != events)
227 { 312 {
228 method_modify (fd, anfd->events, events); 313 method_modify (EV_A_ fd, anfd->events, events);
229 anfd->events = events; 314 anfd->events = events;
230 } 315 }
231 } 316 }
232 317
233 fdchangecnt = 0; 318 fdchangecnt = 0;
234} 319}
235 320
236static void 321static void
237fd_change (int fd) 322fd_change (EV_P_ int fd)
238{ 323{
239 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
240 return; 325 return;
241 326
242 anfds [fd].events |= EV_REIFY; 327 anfds [fd].reify = 1;
243 328
244 ++fdchangecnt; 329 ++fdchangecnt;
245 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
246 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
247} 332}
248 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
249/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
250static void 347static void
251fd_recheck (void) 348fd_ebadf (EV_P)
252{ 349{
253 int fd; 350 int fd;
254 351
255 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
256 if (anfds [fd].events) 353 if (anfds [fd].events)
257 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
258 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
259 { 366 {
260 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 367 close (fd);
261 ev_io_stop (anfds [fd].head); 368 fd_kill (EV_A_ fd);
369 return;
262 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
263} 386}
264 387
265/*****************************************************************************/ 388/*****************************************************************************/
266 389
267static struct ev_timer **timers;
268static int timermax, timercnt;
269
270static struct ev_periodic **periodics;
271static int periodicmax, periodiccnt;
272
273static void 390static void
274upheap (WT *timers, int k) 391upheap (WT *heap, int k)
275{ 392{
276 WT w = timers [k]; 393 WT w = heap [k];
277 394
278 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
279 { 396 {
280 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
281 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
282 k >>= 1; 399 k >>= 1;
283 } 400 }
284 401
285 timers [k] = w; 402 heap [k] = w;
286 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
287 404
288} 405}
289 406
290static void 407static void
291downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
292{ 409{
293 WT w = timers [k]; 410 WT w = heap [k];
294 411
295 while (k < (N >> 1)) 412 while (k < (N >> 1))
296 { 413 {
297 int j = k << 1; 414 int j = k << 1;
298 415
299 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
300 ++j; 417 ++j;
301 418
302 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
303 break; 420 break;
304 421
305 timers [k] = timers [j]; 422 heap [k] = heap [j];
306 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
307 k = j; 424 k = j;
308 } 425 }
309 426
310 timers [k] = w; 427 heap [k] = w;
311 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
312} 429}
313 430
314/*****************************************************************************/ 431/*****************************************************************************/
315 432
316typedef struct 433typedef struct
317{ 434{
318 struct ev_signal *head; 435 struct ev_watcher_list *head;
319 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
320} ANSIG; 437} ANSIG;
321 438
322static ANSIG *signals; 439static ANSIG *signals;
323static int signalmax; 440static int signalmax;
324 441
325static int sigpipe [2]; 442static int sigpipe [2];
326static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
327static struct ev_io sigev; 444static struct ev_io sigev;
328 445
329static void 446static void
330signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
331{ 448{
332 while (count--) 449 while (count--)
333 { 450 {
334 base->head = 0; 451 base->head = 0;
335 base->gotsig = 0; 452 base->gotsig = 0;
453
336 ++base; 454 ++base;
337 } 455 }
338} 456}
339 457
340static void 458static void
342{ 460{
343 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
344 462
345 if (!gotsig) 463 if (!gotsig)
346 { 464 {
465 int old_errno = errno;
347 gotsig = 1; 466 gotsig = 1;
348 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
349 } 469 }
350} 470}
351 471
352static void 472static void
353sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
354{ 474{
355 struct ev_signal *w; 475 struct ev_watcher_list *w;
356 int sig; 476 int signum;
357 477
478 read (sigpipe [0], &revents, 1);
358 gotsig = 0; 479 gotsig = 0;
359 read (sigpipe [0], &revents, 1);
360 480
361 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
362 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
363 { 483 {
364 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
365 485
366 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
367 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
368 } 488 }
369} 489}
370 490
371static void 491static void
372siginit (void) 492siginit (EV_P)
373{ 493{
494#ifndef WIN32
374 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
375 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
376 497
377 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
378 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
379 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
380 502
381 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
382 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
383} 506}
384 507
385/*****************************************************************************/ 508/*****************************************************************************/
386 509
387static struct ev_idle **idles; 510#ifndef WIN32
388static int idlemax, idlecnt;
389
390static struct ev_prepare **prepares;
391static int preparemax, preparecnt;
392
393static struct ev_check **checks;
394static int checkmax, checkcnt;
395
396/*****************************************************************************/
397 511
398static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
399static struct ev_signal childev; 513static struct ev_signal childev;
400 514
401#ifndef WCONTINUED 515#ifndef WCONTINUED
402# define WCONTINUED 0 516# define WCONTINUED 0
403#endif 517#endif
404 518
405static void 519static void
406childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
407{ 521{
408 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
409 int pid, status; 537 int pid, status;
410 538
411 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
412 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
413 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
414 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
415 w->status = status; 543
416 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
417 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
418} 547}
548
549#endif
419 550
420/*****************************************************************************/ 551/*****************************************************************************/
421 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
422#if EV_USE_EPOLL 556#if EV_USE_EPOLL
423# include "ev_epoll.c" 557# include "ev_epoll.c"
424#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
425#if EV_USE_SELECT 562#if EV_USE_SELECT
426# include "ev_select.c" 563# include "ev_select.c"
427#endif 564#endif
428 565
429int 566int
436ev_version_minor (void) 573ev_version_minor (void)
437{ 574{
438 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
439} 576}
440 577
441int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
442{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
443 if (!ev_method) 599 if (!method)
444 { 600 {
445#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
446 { 602 {
447 struct timespec ts; 603 struct timespec ts;
448 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
449 have_monotonic = 1; 605 have_monotonic = 1;
450 } 606 }
451#endif 607#endif
452 608
453 ev_now = ev_time (); 609 rt_now = ev_time ();
454 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
455 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
456 613
457 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
458 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
459 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
460 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
461#if EV_USE_EPOLL 627#if EV_USE_EPOLL
462 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
463#endif 632#endif
464#if EV_USE_SELECT 633#if EV_USE_SELECT
465 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
466#endif 635#endif
636 }
637}
467 638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop)
720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
468 if (ev_method) 729 if (ev_method (EV_A))
469 { 730 {
470 ev_watcher_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
471 siginit (); 733 siginit (EV_A);
472 734
735#ifndef WIN32
473 ev_signal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
474 ev_signal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
475 } 741 }
742 else
743 default_loop = 0;
476 } 744 }
477 745
478 return ev_method; 746 return default_loop;
479} 747}
480 748
481/*****************************************************************************/
482
483void 749void
484ev_prefork (void) 750ev_default_destroy (void)
485{ 751{
486 /* nop */ 752#if EV_MULTIPLICITY
487} 753 struct ev_loop *loop = default_loop;
488
489void
490ev_postfork_parent (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_child (void)
497{
498#if EV_USE_EPOLL
499 if (ev_method == EVMETHOD_EPOLL)
500 epoll_postfork_child ();
501#endif 754#endif
502 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
503 ev_io_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
504 close (sigpipe [0]); 778 close (sigpipe [0]);
505 close (sigpipe [1]); 779 close (sigpipe [1]);
506 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
507 siginit (); 783 siginit (EV_A);
508} 784}
509 785
510/*****************************************************************************/ 786/*****************************************************************************/
511 787
512static void 788static void
513call_pending (void) 789call_pending (EV_P)
514{ 790{
791 int pri;
792
793 for (pri = NUMPRI; pri--; )
515 while (pendingcnt) 794 while (pendingcnt [pri])
516 { 795 {
517 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
518 797
519 if (p->w) 798 if (p->w)
520 { 799 {
521 p->w->pending = 0; 800 p->w->pending = 0;
522 p->w->cb (p->w, p->events); 801 p->w->cb (EV_A_ p->w, p->events);
523 } 802 }
524 } 803 }
525} 804}
526 805
527static void 806static void
528timers_reify (void) 807timers_reify (EV_P)
529{ 808{
530 while (timercnt && timers [0]->at <= now) 809 while (timercnt && timers [0]->at <= mn_now)
531 { 810 {
532 struct ev_timer *w = timers [0]; 811 struct ev_timer *w = timers [0];
812
813 assert (("inactive timer on timer heap detected", ev_is_active (w)));
533 814
534 /* first reschedule or stop timer */ 815 /* first reschedule or stop timer */
535 if (w->repeat) 816 if (w->repeat)
536 { 817 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
537 w->at = now + w->repeat; 819 w->at = mn_now + w->repeat;
538 assert (("timer timeout in the past, negative repeat?", w->at > now));
539 downheap ((WT *)timers, timercnt, 0); 820 downheap ((WT *)timers, timercnt, 0);
540 } 821 }
541 else 822 else
542 ev_timer_stop (w); /* nonrepeating: stop timer */ 823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
543 824
544 event ((W)w, EV_TIMEOUT); 825 event (EV_A_ (W)w, EV_TIMEOUT);
545 } 826 }
546} 827}
547 828
548static void 829static void
549periodics_reify (void) 830periodics_reify (EV_P)
550{ 831{
551 while (periodiccnt && periodics [0]->at <= ev_now) 832 while (periodiccnt && periodics [0]->at <= rt_now)
552 { 833 {
553 struct ev_periodic *w = periodics [0]; 834 struct ev_periodic *w = periodics [0];
835
836 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
554 837
555 /* first reschedule or stop timer */ 838 /* first reschedule or stop timer */
556 if (w->interval) 839 if (w->interval)
557 { 840 {
558 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
559 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
560 downheap ((WT *)periodics, periodiccnt, 0); 843 downheap ((WT *)periodics, periodiccnt, 0);
561 } 844 }
562 else 845 else
563 ev_periodic_stop (w); /* nonrepeating: stop timer */ 846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
564 847
565 event ((W)w, EV_TIMEOUT); 848 event (EV_A_ (W)w, EV_PERIODIC);
566 } 849 }
567} 850}
568 851
569static void 852static void
570periodics_reschedule (ev_tstamp diff) 853periodics_reschedule (EV_P)
571{ 854{
572 int i; 855 int i;
573 856
574 /* adjust periodics after time jump */ 857 /* adjust periodics after time jump */
575 for (i = 0; i < periodiccnt; ++i) 858 for (i = 0; i < periodiccnt; ++i)
576 { 859 {
577 struct ev_periodic *w = periodics [i]; 860 struct ev_periodic *w = periodics [i];
578 861
579 if (w->interval) 862 if (w->interval)
580 { 863 {
581 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
582 865
583 if (fabs (diff) >= 1e-4) 866 if (fabs (diff) >= 1e-4)
584 { 867 {
585 ev_periodic_stop (w); 868 ev_periodic_stop (EV_A_ w);
586 ev_periodic_start (w); 869 ev_periodic_start (EV_A_ w);
587 870
588 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
589 } 872 }
590 } 873 }
591 } 874 }
592} 875}
593 876
877inline int
878time_update_monotonic (EV_P)
879{
880 mn_now = get_clock ();
881
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 }
887 else
888 {
889 now_floor = mn_now;
890 rt_now = ev_time ();
891 return 1;
892 }
893}
894
594static void 895static void
595time_update (void) 896time_update (EV_P)
596{ 897{
597 int i; 898 int i;
598 899
599 ev_now = ev_time (); 900#if EV_USE_MONOTONIC
600
601 if (have_monotonic) 901 if (expect_true (have_monotonic))
602 { 902 {
603 ev_tstamp odiff = diff; 903 if (time_update_monotonic (EV_A))
604
605 for (i = 4; --i; ) /* loop a few times, before making important decisions */
606 { 904 {
607 now = get_clock (); 905 ev_tstamp odiff = rtmn_diff;
906
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 {
608 diff = ev_now - now; 909 rtmn_diff = rt_now - mn_now;
609 910
610 if (fabs (odiff - diff) < MIN_TIMEJUMP) 911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
611 return; /* all is well */ 912 return; /* all is well */
612 913
613 ev_now = ev_time (); 914 rt_now = ev_time ();
915 mn_now = get_clock ();
916 now_floor = mn_now;
917 }
918
919 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
614 } 922 }
615
616 periodics_reschedule (diff - odiff);
617 /* no timer adjustment, as the monotonic clock doesn't jump */
618 } 923 }
619 else 924 else
925#endif
620 { 926 {
621 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 927 rt_now = ev_time ();
928
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
622 { 930 {
623 periodics_reschedule (ev_now - now); 931 periodics_reschedule (EV_A);
624 932
625 /* adjust timers. this is easy, as the offset is the same for all */ 933 /* adjust timers. this is easy, as the offset is the same for all */
626 for (i = 0; i < timercnt; ++i) 934 for (i = 0; i < timercnt; ++i)
627 timers [i]->at += diff; 935 timers [i]->at += rt_now - mn_now;
628 } 936 }
629 937
630 now = ev_now; 938 mn_now = rt_now;
631 } 939 }
632} 940}
633 941
634int ev_loop_done; 942void
943ev_ref (EV_P)
944{
945 ++activecnt;
946}
635 947
948void
949ev_unref (EV_P)
950{
951 --activecnt;
952}
953
954static int loop_done;
955
956void
636void ev_loop (int flags) 957ev_loop (EV_P_ int flags)
637{ 958{
638 double block; 959 double block;
639 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
640 961
641 do 962 do
642 { 963 {
643 /* queue check watchers (and execute them) */ 964 /* queue check watchers (and execute them) */
644 if (preparecnt) 965 if (expect_false (preparecnt))
645 { 966 {
646 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
647 call_pending (); 968 call_pending (EV_A);
648 } 969 }
649 970
650 /* update fd-related kernel structures */ 971 /* update fd-related kernel structures */
651 fd_reify (); 972 fd_reify (EV_A);
652 973
653 /* calculate blocking time */ 974 /* calculate blocking time */
654 975
655 /* we only need this for !monotonic clockor timers, but as we basically 976 /* we only need this for !monotonic clockor timers, but as we basically
656 always have timers, we just calculate it always */ 977 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A);
981 else
982#endif
983 {
657 ev_now = ev_time (); 984 rt_now = ev_time ();
985 mn_now = rt_now;
986 }
658 987
659 if (flags & EVLOOP_NONBLOCK || idlecnt) 988 if (flags & EVLOOP_NONBLOCK || idlecnt)
660 block = 0.; 989 block = 0.;
661 else 990 else
662 { 991 {
663 block = MAX_BLOCKTIME; 992 block = MAX_BLOCKTIME;
664 993
665 if (timercnt) 994 if (timercnt)
666 { 995 {
667 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 996 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
668 if (block > to) block = to; 997 if (block > to) block = to;
669 } 998 }
670 999
671 if (periodiccnt) 1000 if (periodiccnt)
672 { 1001 {
673 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
674 if (block > to) block = to; 1003 if (block > to) block = to;
675 } 1004 }
676 1005
677 if (block < 0.) block = 0.; 1006 if (block < 0.) block = 0.;
678 } 1007 }
679 1008
680 method_poll (block); 1009 method_poll (EV_A_ block);
681 1010
682 /* update ev_now, do magic */ 1011 /* update rt_now, do magic */
683 time_update (); 1012 time_update (EV_A);
684 1013
685 /* queue pending timers and reschedule them */ 1014 /* queue pending timers and reschedule them */
686 timers_reify (); /* relative timers called last */ 1015 timers_reify (EV_A); /* relative timers called last */
687 periodics_reify (); /* absolute timers called first */ 1016 periodics_reify (EV_A); /* absolute timers called first */
688 1017
689 /* queue idle watchers unless io or timers are pending */ 1018 /* queue idle watchers unless io or timers are pending */
690 if (!pendingcnt) 1019 if (!pendingcnt)
691 queue_events ((W *)idles, idlecnt, EV_IDLE); 1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
692 1021
693 /* queue check watchers, to be executed first */ 1022 /* queue check watchers, to be executed first */
694 if (checkcnt) 1023 if (checkcnt)
695 queue_events ((W *)checks, checkcnt, EV_CHECK); 1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
696 1025
697 call_pending (); 1026 call_pending (EV_A);
698 } 1027 }
699 while (!ev_loop_done); 1028 while (activecnt && !loop_done);
700 1029
701 if (ev_loop_done != 2) 1030 if (loop_done != 2)
702 ev_loop_done = 0; 1031 loop_done = 0;
1032}
1033
1034void
1035ev_unloop (EV_P_ int how)
1036{
1037 loop_done = how;
703} 1038}
704 1039
705/*****************************************************************************/ 1040/*****************************************************************************/
706 1041
707static void 1042inline void
708wlist_add (WL *head, WL elem) 1043wlist_add (WL *head, WL elem)
709{ 1044{
710 elem->next = *head; 1045 elem->next = *head;
711 *head = elem; 1046 *head = elem;
712} 1047}
713 1048
714static void 1049inline void
715wlist_del (WL *head, WL elem) 1050wlist_del (WL *head, WL elem)
716{ 1051{
717 while (*head) 1052 while (*head)
718 { 1053 {
719 if (*head == elem) 1054 if (*head == elem)
724 1059
725 head = &(*head)->next; 1060 head = &(*head)->next;
726 } 1061 }
727} 1062}
728 1063
729static void 1064inline void
730ev_clear (W w) 1065ev_clear_pending (EV_P_ W w)
731{ 1066{
732 if (w->pending) 1067 if (w->pending)
733 { 1068 {
734 pendings [w->pending - 1].w = 0; 1069 pendings [ABSPRI (w)][w->pending - 1].w = 0;
735 w->pending = 0; 1070 w->pending = 0;
736 } 1071 }
737} 1072}
738 1073
739static void 1074inline void
740ev_start (W w, int active) 1075ev_start (EV_P_ W w, int active)
741{ 1076{
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
742 w->active = active; 1080 w->active = active;
1081 ev_ref (EV_A);
743} 1082}
744 1083
745static void 1084inline void
746ev_stop (W w) 1085ev_stop (EV_P_ W w)
747{ 1086{
1087 ev_unref (EV_A);
748 w->active = 0; 1088 w->active = 0;
749} 1089}
750 1090
751/*****************************************************************************/ 1091/*****************************************************************************/
752 1092
753void 1093void
754ev_io_start (struct ev_io *w) 1094ev_io_start (EV_P_ struct ev_io *w)
755{ 1095{
1096 int fd = w->fd;
1097
756 if (ev_is_active (w)) 1098 if (ev_is_active (w))
757 return; 1099 return;
758 1100
759 int fd = w->fd; 1101 assert (("ev_io_start called with negative fd", fd >= 0));
760 1102
761 ev_start ((W)w, 1); 1103 ev_start (EV_A_ (W)w, 1);
762 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
763 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1105 wlist_add ((WL *)&anfds[fd].head, (WL)w);
764 1106
765 fd_change (fd); 1107 fd_change (EV_A_ fd);
766} 1108}
767 1109
768void 1110void
769ev_io_stop (struct ev_io *w) 1111ev_io_stop (EV_P_ struct ev_io *w)
770{ 1112{
771 ev_clear ((W)w); 1113 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1114 if (!ev_is_active (w))
773 return; 1115 return;
774 1116
775 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
776 ev_stop ((W)w); 1118 ev_stop (EV_A_ (W)w);
777 1119
778 fd_change (w->fd); 1120 fd_change (EV_A_ w->fd);
779} 1121}
780 1122
781void 1123void
782ev_timer_start (struct ev_timer *w) 1124ev_timer_start (EV_P_ struct ev_timer *w)
783{ 1125{
784 if (ev_is_active (w)) 1126 if (ev_is_active (w))
785 return; 1127 return;
786 1128
787 w->at += now; 1129 w->at += mn_now;
788 1130
789 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
790 1132
791 ev_start ((W)w, ++timercnt); 1133 ev_start (EV_A_ (W)w, ++timercnt);
792 array_needsize (timers, timermax, timercnt, ); 1134 array_needsize (timers, timermax, timercnt, );
793 timers [timercnt - 1] = w; 1135 timers [timercnt - 1] = w;
794 upheap ((WT *)timers, timercnt - 1); 1136 upheap ((WT *)timers, timercnt - 1);
795}
796 1137
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139}
1140
797void 1141void
798ev_timer_stop (struct ev_timer *w) 1142ev_timer_stop (EV_P_ struct ev_timer *w)
799{ 1143{
800 ev_clear ((W)w); 1144 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1145 if (!ev_is_active (w))
802 return; 1146 return;
803 1147
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1149
804 if (w->active < timercnt--) 1150 if (((W)w)->active < timercnt--)
805 { 1151 {
806 timers [w->active - 1] = timers [timercnt]; 1152 timers [((W)w)->active - 1] = timers [timercnt];
807 downheap ((WT *)timers, timercnt, w->active - 1); 1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
808 } 1154 }
809 1155
810 w->at = w->repeat; 1156 w->at = w->repeat;
811 1157
812 ev_stop ((W)w); 1158 ev_stop (EV_A_ (W)w);
813} 1159}
814 1160
815void 1161void
816ev_timer_again (struct ev_timer *w) 1162ev_timer_again (EV_P_ struct ev_timer *w)
817{ 1163{
818 if (ev_is_active (w)) 1164 if (ev_is_active (w))
819 { 1165 {
820 if (w->repeat) 1166 if (w->repeat)
821 { 1167 {
822 w->at = now + w->repeat; 1168 w->at = mn_now + w->repeat;
823 downheap ((WT *)timers, timercnt, w->active - 1); 1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
824 } 1170 }
825 else 1171 else
826 ev_timer_stop (w); 1172 ev_timer_stop (EV_A_ w);
827 } 1173 }
828 else if (w->repeat) 1174 else if (w->repeat)
829 ev_timer_start (w); 1175 ev_timer_start (EV_A_ w);
830} 1176}
831 1177
832void 1178void
833ev_periodic_start (struct ev_periodic *w) 1179ev_periodic_start (EV_P_ struct ev_periodic *w)
834{ 1180{
835 if (ev_is_active (w)) 1181 if (ev_is_active (w))
836 return; 1182 return;
837 1183
838 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
839 1185
840 /* this formula differs from the one in periodic_reify because we do not always round up */ 1186 /* this formula differs from the one in periodic_reify because we do not always round up */
841 if (w->interval) 1187 if (w->interval)
842 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
843 1189
844 ev_start ((W)w, ++periodiccnt); 1190 ev_start (EV_A_ (W)w, ++periodiccnt);
845 array_needsize (periodics, periodicmax, periodiccnt, ); 1191 array_needsize (periodics, periodicmax, periodiccnt, );
846 periodics [periodiccnt - 1] = w; 1192 periodics [periodiccnt - 1] = w;
847 upheap ((WT *)periodics, periodiccnt - 1); 1193 upheap ((WT *)periodics, periodiccnt - 1);
848}
849 1194
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196}
1197
850void 1198void
851ev_periodic_stop (struct ev_periodic *w) 1199ev_periodic_stop (EV_P_ struct ev_periodic *w)
852{ 1200{
853 ev_clear ((W)w); 1201 ev_clear_pending (EV_A_ (W)w);
854 if (!ev_is_active (w)) 1202 if (!ev_is_active (w))
855 return; 1203 return;
856 1204
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1206
857 if (w->active < periodiccnt--) 1207 if (((W)w)->active < periodiccnt--)
858 { 1208 {
859 periodics [w->active - 1] = periodics [periodiccnt]; 1209 periodics [((W)w)->active - 1] = periodics [periodiccnt];
860 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
861 } 1211 }
862 1212
863 ev_stop ((W)w); 1213 ev_stop (EV_A_ (W)w);
864} 1214}
865 1215
866void 1216void
867ev_signal_start (struct ev_signal *w) 1217ev_idle_start (EV_P_ struct ev_idle *w)
868{ 1218{
869 if (ev_is_active (w)) 1219 if (ev_is_active (w))
870 return; 1220 return;
871 1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w);
1236}
1237
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281
1282#ifndef SA_RESTART
1283# define SA_RESTART 0
1284#endif
1285
1286void
1287ev_signal_start (EV_P_ struct ev_signal *w)
1288{
1289#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1291#endif
1292 if (ev_is_active (w))
1293 return;
1294
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296
872 ev_start ((W)w, 1); 1297 ev_start (EV_A_ (W)w, 1);
873 array_needsize (signals, signalmax, w->signum, signals_init); 1298 array_needsize (signals, signalmax, w->signum, signals_init);
874 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
875 1300
876 if (!w->next) 1301 if (!w->next)
877 { 1302 {
878 struct sigaction sa; 1303 struct sigaction sa;
879 sa.sa_handler = sighandler; 1304 sa.sa_handler = sighandler;
880 sigfillset (&sa.sa_mask); 1305 sigfillset (&sa.sa_mask);
881 sa.sa_flags = 0; 1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
882 sigaction (w->signum, &sa, 0); 1307 sigaction (w->signum, &sa, 0);
883 } 1308 }
884} 1309}
885 1310
886void 1311void
887ev_signal_stop (struct ev_signal *w) 1312ev_signal_stop (EV_P_ struct ev_signal *w)
888{ 1313{
889 ev_clear ((W)w); 1314 ev_clear_pending (EV_A_ (W)w);
890 if (!ev_is_active (w)) 1315 if (!ev_is_active (w))
891 return; 1316 return;
892 1317
893 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
894 ev_stop ((W)w); 1319 ev_stop (EV_A_ (W)w);
895 1320
896 if (!signals [w->signum - 1].head) 1321 if (!signals [w->signum - 1].head)
897 signal (w->signum, SIG_DFL); 1322 signal (w->signum, SIG_DFL);
898} 1323}
899 1324
900void 1325void
901ev_idle_start (struct ev_idle *w) 1326ev_child_start (EV_P_ struct ev_child *w)
902{ 1327{
1328#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop));
1330#endif
903 if (ev_is_active (w)) 1331 if (ev_is_active (w))
904 return; 1332 return;
905 1333
906 ev_start ((W)w, ++idlecnt); 1334 ev_start (EV_A_ (W)w, 1);
907 array_needsize (idles, idlemax, idlecnt, ); 1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
908 idles [idlecnt - 1] = w;
909} 1336}
910 1337
911void 1338void
912ev_idle_stop (struct ev_idle *w) 1339ev_child_stop (EV_P_ struct ev_child *w)
913{ 1340{
914 ev_clear ((W)w); 1341 ev_clear_pending (EV_A_ (W)w);
915 if (ev_is_active (w)) 1342 if (ev_is_active (w))
916 return; 1343 return;
917 1344
918 idles [w->active - 1] = idles [--idlecnt];
919 ev_stop ((W)w);
920}
921
922void
923ev_prepare_start (struct ev_prepare *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, ++preparecnt);
929 array_needsize (prepares, preparemax, preparecnt, );
930 prepares [preparecnt - 1] = w;
931}
932
933void
934ev_prepare_stop (struct ev_prepare *w)
935{
936 ev_clear ((W)w);
937 if (ev_is_active (w))
938 return;
939
940 prepares [w->active - 1] = prepares [--preparecnt];
941 ev_stop ((W)w);
942}
943
944void
945ev_check_start (struct ev_check *w)
946{
947 if (ev_is_active (w))
948 return;
949
950 ev_start ((W)w, ++checkcnt);
951 array_needsize (checks, checkmax, checkcnt, );
952 checks [checkcnt - 1] = w;
953}
954
955void
956ev_check_stop (struct ev_check *w)
957{
958 ev_clear ((W)w);
959 if (ev_is_active (w))
960 return;
961
962 checks [w->active - 1] = checks [--checkcnt];
963 ev_stop ((W)w);
964}
965
966void
967ev_child_start (struct ev_child *w)
968{
969 if (ev_is_active (w))
970 return;
971
972 ev_start ((W)w, 1);
973 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
974}
975
976void
977ev_child_stop (struct ev_child *w)
978{
979 ev_clear ((W)w);
980 if (ev_is_active (w))
981 return;
982
983 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
984 ev_stop ((W)w); 1346 ev_stop (EV_A_ (W)w);
985} 1347}
986 1348
987/*****************************************************************************/ 1349/*****************************************************************************/
988 1350
989struct ev_once 1351struct ev_once
993 void (*cb)(int revents, void *arg); 1355 void (*cb)(int revents, void *arg);
994 void *arg; 1356 void *arg;
995}; 1357};
996 1358
997static void 1359static void
998once_cb (struct ev_once *once, int revents) 1360once_cb (EV_P_ struct ev_once *once, int revents)
999{ 1361{
1000 void (*cb)(int revents, void *arg) = once->cb; 1362 void (*cb)(int revents, void *arg) = once->cb;
1001 void *arg = once->arg; 1363 void *arg = once->arg;
1002 1364
1003 ev_io_stop (&once->io); 1365 ev_io_stop (EV_A_ &once->io);
1004 ev_timer_stop (&once->to); 1366 ev_timer_stop (EV_A_ &once->to);
1005 free (once); 1367 free (once);
1006 1368
1007 cb (revents, arg); 1369 cb (revents, arg);
1008} 1370}
1009 1371
1010static void 1372static void
1011once_cb_io (struct ev_io *w, int revents) 1373once_cb_io (EV_P_ struct ev_io *w, int revents)
1012{ 1374{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1014} 1376}
1015 1377
1016static void 1378static void
1017once_cb_to (struct ev_timer *w, int revents) 1379once_cb_to (EV_P_ struct ev_timer *w, int revents)
1018{ 1380{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1020} 1382}
1021 1383
1022void 1384void
1023ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1024{ 1386{
1025 struct ev_once *once = malloc (sizeof (struct ev_once)); 1387 struct ev_once *once = malloc (sizeof (struct ev_once));
1026 1388
1027 if (!once) 1389 if (!once)
1028 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1033 1395
1034 ev_watcher_init (&once->io, once_cb_io); 1396 ev_watcher_init (&once->io, once_cb_io);
1035 if (fd >= 0) 1397 if (fd >= 0)
1036 { 1398 {
1037 ev_io_set (&once->io, fd, events); 1399 ev_io_set (&once->io, fd, events);
1038 ev_io_start (&once->io); 1400 ev_io_start (EV_A_ &once->io);
1039 } 1401 }
1040 1402
1041 ev_watcher_init (&once->to, once_cb_to); 1403 ev_watcher_init (&once->to, once_cb_to);
1042 if (timeout >= 0.) 1404 if (timeout >= 0.)
1043 { 1405 {
1044 ev_timer_set (&once->to, timeout, 0.); 1406 ev_timer_set (&once->to, timeout, 0.);
1045 ev_timer_start (&once->to); 1407 ev_timer_start (EV_A_ &once->to);
1046 } 1408 }
1047 } 1409 }
1048} 1410}
1049 1411
1050/*****************************************************************************/
1051
1052#if 0
1053
1054struct ev_io wio;
1055
1056static void
1057sin_cb (struct ev_io *w, int revents)
1058{
1059 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1060}
1061
1062static void
1063ocb (struct ev_timer *w, int revents)
1064{
1065 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1066 ev_timer_stop (w);
1067 ev_timer_start (w);
1068}
1069
1070static void
1071scb (struct ev_signal *w, int revents)
1072{
1073 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1074 ev_io_stop (&wio);
1075 ev_io_start (&wio);
1076}
1077
1078static void
1079gcb (struct ev_signal *w, int revents)
1080{
1081 fprintf (stderr, "generic %x\n", revents);
1082
1083}
1084
1085int main (void)
1086{
1087 ev_init (0);
1088
1089 ev_io_init (&wio, sin_cb, 0, EV_READ);
1090 ev_io_start (&wio);
1091
1092 struct ev_timer t[10000];
1093
1094#if 0
1095 int i;
1096 for (i = 0; i < 10000; ++i)
1097 {
1098 struct ev_timer *w = t + i;
1099 ev_watcher_init (w, ocb, i);
1100 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1101 ev_timer_start (w);
1102 if (drand48 () < 0.5)
1103 ev_timer_stop (w);
1104 }
1105#endif
1106
1107 struct ev_timer t1;
1108 ev_timer_init (&t1, ocb, 5, 10);
1109 ev_timer_start (&t1);
1110
1111 struct ev_signal sig;
1112 ev_signal_init (&sig, scb, SIGQUIT);
1113 ev_signal_start (&sig);
1114
1115 struct ev_check cw;
1116 ev_check_init (&cw, gcb);
1117 ev_check_start (&cw);
1118
1119 struct ev_idle iw;
1120 ev_idle_init (&iw, gcb);
1121 ev_idle_start (&iw);
1122
1123 ev_loop (0);
1124
1125 return 0;
1126}
1127
1128#endif
1129
1130
1131
1132

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines